nouveau_bios.c 175.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright 2005-2006 Erik Waling
 * Copyright 2006 Stephane Marchesin
 * Copyright 2007-2009 Stuart Bennett
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "drmP.h"
#define NV_DEBUG_NOTRACE
#include "nouveau_drv.h"
#include "nouveau_hw.h"
29
#include "nouveau_encoder.h"
30
#include "nouveau_gpio.h"
31

32 33
#include <linux/io-mapping.h>

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/* these defines are made up */
#define NV_CIO_CRE_44_HEADA 0x0
#define NV_CIO_CRE_44_HEADB 0x3
#define FEATURE_MOBILE 0x10	/* also FEATURE_QUADRO for BMP */

#define EDID1_LEN 128

#define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg)
#define LOG_OLD_VALUE(x)

struct init_exec {
	bool execute;
	bool repeat;
};

static bool nv_cksum(const uint8_t *data, unsigned int length)
{
	/*
	 * There's a few checksums in the BIOS, so here's a generic checking
	 * function.
	 */
	int i;
	uint8_t sum = 0;

	for (i = 0; i < length; i++)
		sum += data[i];

	if (sum)
		return true;

	return false;
}

static int
68
score_vbios(struct nvbios *bios, const bool writeable)
69
{
70 71
	if (!bios->data || bios->data[0] != 0x55 || bios->data[1] != 0xAA) {
		NV_TRACEWARN(bios->dev, "... BIOS signature not found\n");
72 73 74
		return 0;
	}

75 76
	if (nv_cksum(bios->data, bios->data[2] * 512)) {
		NV_TRACEWARN(bios->dev, "... BIOS checksum invalid\n");
77 78
		/* if a ro image is somewhat bad, it's probably all rubbish */
		return writeable ? 2 : 1;
79
	}
80

81
	NV_TRACE(bios->dev, "... appears to be valid\n");
82 83 84
	return 3;
}

85 86
static void
bios_shadow_prom(struct nvbios *bios)
87
{
88
	struct drm_device *dev = bios->dev;
89
	struct drm_nouveau_private *dev_priv = dev->dev_private;
90 91
	u32 pcireg, access;
	u16 pcir;
92 93
	int i;

94
	/* enable access to rom */
95
	if (dev_priv->card_type >= NV_50)
96
		pcireg = 0x088050;
97
	else
98 99
		pcireg = NV_PBUS_PCI_NV_20;
	access = nv_mask(dev, pcireg, 0x00000001, 0x00000000);
100

101 102 103 104 105 106 107 108 109 110
	/* bail if no rom signature, with a workaround for a PROM reading
	 * issue on some chipsets.  the first read after a period of
	 * inactivity returns the wrong result, so retry the first header
	 * byte a few times before giving up as a workaround
	 */
	i = 16;
	do {
		if (nv_rd08(dev, NV_PROM_OFFSET + 0) == 0x55)
			break;
	} while (i--);
111

112
	if (!i || nv_rd08(dev, NV_PROM_OFFSET + 1) != 0xaa)
113 114 115
		goto out;

	/* additional check (see note below) - read PCI record header */
116 117 118 119 120 121
	pcir = nv_rd08(dev, NV_PROM_OFFSET + 0x18) |
	       nv_rd08(dev, NV_PROM_OFFSET + 0x19) << 8;
	if (nv_rd08(dev, NV_PROM_OFFSET + pcir + 0) != 'P' ||
	    nv_rd08(dev, NV_PROM_OFFSET + pcir + 1) != 'C' ||
	    nv_rd08(dev, NV_PROM_OFFSET + pcir + 2) != 'I' ||
	    nv_rd08(dev, NV_PROM_OFFSET + pcir + 3) != 'R')
122 123
		goto out;

124 125 126 127 128 129 130
	/* read entire bios image to system memory */
	bios->length = nv_rd08(dev, NV_PROM_OFFSET + 2) * 512;
	bios->data = kmalloc(bios->length, GFP_KERNEL);
	if (bios->data) {
		for (i = 0; i < bios->length; i++)
			bios->data[i] = nv_rd08(dev, NV_PROM_OFFSET + i);
	}
131 132

out:
133 134
	/* disable access to rom */
	nv_wr32(dev, pcireg, access);
135 136
}

137 138
static void
bios_shadow_pramin(struct nvbios *bios)
139
{
140
	struct drm_device *dev = bios->dev;
141
	struct drm_nouveau_private *dev_priv = dev->dev_private;
142
	u32 bar0 = 0;
143 144 145
	int i;

	if (dev_priv->card_type >= NV_50) {
146 147
		u64 addr = (u64)(nv_rd32(dev, 0x619f04) & 0xffffff00) << 8;
		if (!addr) {
148
			addr  = (u64)nv_rd32(dev, 0x001700) << 16;
149 150
			addr += 0xf0000;
		}
151

152
		bar0 = nv_mask(dev, 0x001700, 0xffffffff, addr >> 16);
153 154 155
	}

	/* bail if no rom signature */
156
	if (nv_rd08(dev, NV_PRAMIN_OFFSET + 0) != 0x55 ||
157 158 159
	    nv_rd08(dev, NV_PRAMIN_OFFSET + 1) != 0xaa)
		goto out;

160 161 162 163 164 165
	bios->length = nv_rd08(dev, NV_PRAMIN_OFFSET + 2) * 512;
	bios->data = kmalloc(bios->length, GFP_KERNEL);
	if (bios->data) {
		for (i = 0; i < bios->length; i++)
			bios->data[i] = nv_rd08(dev, NV_PRAMIN_OFFSET + i);
	}
166 167 168

out:
	if (dev_priv->card_type >= NV_50)
169
		nv_wr32(dev, 0x001700, bar0);
170 171
}

172 173 174 175 176 177 178 179
static void
bios_shadow_pci(struct nvbios *bios)
{
	struct pci_dev *pdev = bios->dev->pdev;
	size_t length;

	if (!pci_enable_rom(pdev)) {
		void __iomem *rom = pci_map_rom(pdev, &length);
180
		if (rom && length) {
181 182 183 184 185 186
			bios->data = kmalloc(length, GFP_KERNEL);
			if (bios->data) {
				memcpy_fromio(bios->data, rom, length);
				bios->length = length;
			}
		}
187 188
		if (rom)
			pci_unmap_rom(pdev, rom);
189 190 191 192 193 194 195

		pci_disable_rom(pdev);
	}
}

static void
bios_shadow_acpi(struct nvbios *bios)
196
{
197 198 199
	struct pci_dev *pdev = bios->dev->pdev;
	int ptr, len, ret;
	u8 data[3];
200

201
	if (!nouveau_acpi_rom_supported(pdev))
202 203
		return;

204 205 206
	ret = nouveau_acpi_get_bios_chunk(data, 0, sizeof(data));
	if (ret != sizeof(data))
		return;
207

208 209 210 211
	bios->length = min(data[2] * 512, 65536);
	bios->data = kmalloc(bios->length, GFP_KERNEL);
	if (!bios->data)
		return;
212

213 214 215 216
	len = bios->length;
	ptr = 0;
	while (len) {
		int size = (len > ROM_BIOS_PAGE) ? ROM_BIOS_PAGE : len;
217

218 219 220 221 222 223
		ret = nouveau_acpi_get_bios_chunk(bios->data, ptr, size);
		if (ret != size) {
			kfree(bios->data);
			bios->data = NULL;
			return;
		}
224

225 226
		len -= size;
		ptr += size;
227 228 229
	}
}

230 231
struct methods {
	const char desc[8];
232
	void (*shadow)(struct nvbios *);
233
	const bool rw;
234 235 236
	int score;
	u32 size;
	u8 *data;
237 238
};

239 240 241 242 243 244 245 246 247 248 249 250 251
static bool
bios_shadow(struct drm_device *dev)
{
	struct methods shadow_methods[] = {
		{ "PRAMIN", bios_shadow_pramin, true, 0, 0, NULL },
		{ "PROM", bios_shadow_prom, false, 0, 0, NULL },
		{ "ACPI", bios_shadow_acpi, true, 0, 0, NULL },
		{ "PCIROM", bios_shadow_pci, true, 0, 0, NULL },
		{}
	};
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nvbios *bios = &dev_priv->vbios;
	struct methods *mthd, *best;
252 253

	if (nouveau_vbios) {
254 255 256 257 258
		mthd = shadow_methods;
		do {
			if (strcasecmp(nouveau_vbios, mthd->desc))
				continue;
			NV_INFO(dev, "VBIOS source: %s\n", mthd->desc);
259

260 261 262
			mthd->shadow(bios);
			mthd->score = score_vbios(bios, mthd->rw);
			if (mthd->score)
263
				return true;
264
		} while ((++mthd)->shadow);
265 266 267 268

		NV_ERROR(dev, "VBIOS source \'%s\' invalid\n", nouveau_vbios);
	}

269 270 271 272 273 274 275
	mthd = shadow_methods;
	do {
		NV_TRACE(dev, "Checking %s for VBIOS\n", mthd->desc);
		mthd->shadow(bios);
		mthd->score = score_vbios(bios, mthd->rw);
		mthd->size = bios->length;
		mthd->data = bios->data;
276
		bios->data = NULL;
277 278 279 280 281 282 283 284
	} while (mthd->score != 3 && (++mthd)->shadow);

	mthd = shadow_methods;
	best = mthd;
	do {
		if (mthd->score > best->score) {
			kfree(best->data);
			best = mthd;
285 286
		} else
			kfree(mthd->data);
287 288 289 290 291 292 293
	} while ((++mthd)->shadow);

	if (best->score) {
		NV_TRACE(dev, "Using VBIOS from %s\n", best->desc);
		bios->length = best->size;
		bios->data = best->data;
		return true;
294 295
	}

296
	NV_ERROR(dev, "No valid VBIOS image found\n");
297 298 299 300 301 302
	return false;
}

struct init_tbl_entry {
	char *name;
	uint8_t id;
303 304 305 306 307
	/* Return:
	 *  > 0: success, length of opcode
	 *    0: success, but abort further parsing of table (INIT_DONE etc)
	 *  < 0: failure, table parsing will be aborted
	 */
308
	int (*handler)(struct nvbios *, uint16_t, struct init_exec *);
309 310
};

311
static int parse_init_table(struct nvbios *, uint16_t, struct init_exec *);
312 313 314 315 316 317 318 319 320 321 322 323

#define MACRO_INDEX_SIZE	2
#define MACRO_SIZE		8
#define CONDITION_SIZE		12
#define IO_FLAG_CONDITION_SIZE	9
#define IO_CONDITION_SIZE	5
#define MEM_INIT_SIZE		66

static void still_alive(void)
{
#if 0
	sync();
324
	mdelay(2);
325 326 327 328 329 330 331 332 333 334 335 336
#endif
}

static uint32_t
munge_reg(struct nvbios *bios, uint32_t reg)
{
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	struct dcb_entry *dcbent = bios->display.output;

	if (dev_priv->card_type < NV_50)
		return reg;

337 338 339 340 341
	if (reg & 0x80000000) {
		BUG_ON(bios->display.crtc < 0);
		reg += bios->display.crtc * 0x800;
	}

342 343 344 345 346 347 348 349
	if (reg & 0x40000000) {
		BUG_ON(!dcbent);

		reg += (ffs(dcbent->or) - 1) * 0x800;
		if ((reg & 0x20000000) && !(dcbent->sorconf.link & 1))
			reg += 0x00000080;
	}

350
	reg &= ~0xe0000000;
351 352 353 354 355 356 357 358 359 360
	return reg;
}

static int
valid_reg(struct nvbios *bios, uint32_t reg)
{
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	struct drm_device *dev = bios->dev;

	/* C51 has misaligned regs on purpose. Marvellous */
361
	if (reg & 0x2 ||
362
	    (reg & 0x1 && dev_priv->vbios.chip_version != 0x51))
363 364 365
		NV_ERROR(dev, "======= misaligned reg 0x%08X =======\n", reg);

	/* warn on C51 regs that haven't been verified accessible in tracing */
366
	if (reg & 0x1 && dev_priv->vbios.chip_version == 0x51 &&
367 368 369 370
	    reg != 0x130d && reg != 0x1311 && reg != 0x60081d)
		NV_WARN(dev, "=== C51 misaligned reg 0x%08X not verified ===\n",
			reg);

371 372 373
	if (reg >= (8*1024*1024)) {
		NV_ERROR(dev, "=== reg 0x%08x out of mapped bounds ===\n", reg);
		return 0;
374
	}
375 376

	return 1;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
}

static bool
valid_idx_port(struct nvbios *bios, uint16_t port)
{
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	struct drm_device *dev = bios->dev;

	/*
	 * If adding more ports here, the read/write functions below will need
	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
	 * used for the port in question
	 */
	if (dev_priv->card_type < NV_50) {
		if (port == NV_CIO_CRX__COLOR)
			return true;
		if (port == NV_VIO_SRX)
			return true;
	} else {
		if (port == NV_CIO_CRX__COLOR)
			return true;
	}

	NV_ERROR(dev, "========== unknown indexed io port 0x%04X ==========\n",
		 port);

	return false;
}

static bool
valid_port(struct nvbios *bios, uint16_t port)
{
	struct drm_device *dev = bios->dev;

	/*
	 * If adding more ports here, the read/write functions below will need
	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
	 * used for the port in question
	 */
	if (port == NV_VIO_VSE2)
		return true;

	NV_ERROR(dev, "========== unknown io port 0x%04X ==========\n", port);

	return false;
}

static uint32_t
bios_rd32(struct nvbios *bios, uint32_t reg)
{
	uint32_t data;

	reg = munge_reg(bios, reg);
	if (!valid_reg(bios, reg))
		return 0;

	/*
	 * C51 sometimes uses regs with bit0 set in the address. For these
	 * cases there should exist a translation in a BIOS table to an IO
	 * port address which the BIOS uses for accessing the reg
	 *
	 * These only seem to appear for the power control regs to a flat panel,
	 * and the GPIO regs at 0x60081*.  In C51 mmio traces the normal regs
	 * for 0x1308 and 0x1310 are used - hence the mask below.  An S3
	 * suspend-resume mmio trace from a C51 will be required to see if this
	 * is true for the power microcode in 0x14.., or whether the direct IO
	 * port access method is needed
	 */
	if (reg & 0x1)
		reg &= ~0x1;

	data = nv_rd32(bios->dev, reg);

	BIOSLOG(bios, "	Read:  Reg: 0x%08X, Data: 0x%08X\n", reg, data);

	return data;
}

static void
bios_wr32(struct nvbios *bios, uint32_t reg, uint32_t data)
{
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;

	reg = munge_reg(bios, reg);
	if (!valid_reg(bios, reg))
		return;

	/* see note in bios_rd32 */
	if (reg & 0x1)
		reg &= 0xfffffffe;

	LOG_OLD_VALUE(bios_rd32(bios, reg));
	BIOSLOG(bios, "	Write: Reg: 0x%08X, Data: 0x%08X\n", reg, data);

471
	if (dev_priv->vbios.execute) {
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
		still_alive();
		nv_wr32(bios->dev, reg, data);
	}
}

static uint8_t
bios_idxprt_rd(struct nvbios *bios, uint16_t port, uint8_t index)
{
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	struct drm_device *dev = bios->dev;
	uint8_t data;

	if (!valid_idx_port(bios, port))
		return 0;

	if (dev_priv->card_type < NV_50) {
		if (port == NV_VIO_SRX)
			data = NVReadVgaSeq(dev, bios->state.crtchead, index);
		else	/* assume NV_CIO_CRX__COLOR */
			data = NVReadVgaCrtc(dev, bios->state.crtchead, index);
	} else {
		uint32_t data32;

		data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
		data = (data32 >> ((index & 3) << 3)) & 0xff;
	}

	BIOSLOG(bios, "	Indexed IO read:  Port: 0x%04X, Index: 0x%02X, "
		      "Head: 0x%02X, Data: 0x%02X\n",
		port, index, bios->state.crtchead, data);
	return data;
}

static void
bios_idxprt_wr(struct nvbios *bios, uint16_t port, uint8_t index, uint8_t data)
{
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	struct drm_device *dev = bios->dev;

	if (!valid_idx_port(bios, port))
		return;

	/*
	 * The current head is maintained in the nvbios member  state.crtchead.
	 * We trap changes to CR44 and update the head variable and hence the
	 * register set written.
	 * As CR44 only exists on CRTC0, we update crtchead to head0 in advance
	 * of the write, and to head1 after the write
	 */
	if (port == NV_CIO_CRX__COLOR && index == NV_CIO_CRE_44 &&
	    data != NV_CIO_CRE_44_HEADB)
		bios->state.crtchead = 0;

	LOG_OLD_VALUE(bios_idxprt_rd(bios, port, index));
	BIOSLOG(bios, "	Indexed IO write: Port: 0x%04X, Index: 0x%02X, "
		      "Head: 0x%02X, Data: 0x%02X\n",
		port, index, bios->state.crtchead, data);

	if (bios->execute && dev_priv->card_type < NV_50) {
		still_alive();
		if (port == NV_VIO_SRX)
			NVWriteVgaSeq(dev, bios->state.crtchead, index, data);
		else	/* assume NV_CIO_CRX__COLOR */
			NVWriteVgaCrtc(dev, bios->state.crtchead, index, data);
	} else
	if (bios->execute) {
		uint32_t data32, shift = (index & 3) << 3;

		still_alive();

		data32  = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
		data32 &= ~(0xff << shift);
		data32 |= (data << shift);
		bios_wr32(bios, NV50_PDISPLAY_VGACRTC(index & ~3), data32);
	}

	if (port == NV_CIO_CRX__COLOR &&
	    index == NV_CIO_CRE_44 && data == NV_CIO_CRE_44_HEADB)
		bios->state.crtchead = 1;
}

static uint8_t
bios_port_rd(struct nvbios *bios, uint16_t port)
{
	uint8_t data, head = bios->state.crtchead;

	if (!valid_port(bios, port))
		return 0;

	data = NVReadPRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port);

	BIOSLOG(bios, "	IO read:  Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
		port, head, data);

	return data;
}

static void
bios_port_wr(struct nvbios *bios, uint16_t port, uint8_t data)
{
	int head = bios->state.crtchead;

	if (!valid_port(bios, port))
		return;

	LOG_OLD_VALUE(bios_port_rd(bios, port));
	BIOSLOG(bios, "	IO write: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
		port, head, data);

	if (!bios->execute)
		return;

	still_alive();
	NVWritePRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port, data);
}

static bool
io_flag_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
{
	/*
	 * The IO flag condition entry has 2 bytes for the CRTC port; 1 byte
	 * for the CRTC index; 1 byte for the mask to apply to the value
	 * retrieved from the CRTC; 1 byte for the shift right to apply to the
	 * masked CRTC value; 2 bytes for the offset to the flag array, to
	 * which the shifted value is added; 1 byte for the mask applied to the
	 * value read from the flag array; and 1 byte for the value to compare
	 * against the masked byte from the flag table.
	 */

	uint16_t condptr = bios->io_flag_condition_tbl_ptr + cond * IO_FLAG_CONDITION_SIZE;
	uint16_t crtcport = ROM16(bios->data[condptr]);
	uint8_t crtcindex = bios->data[condptr + 2];
	uint8_t mask = bios->data[condptr + 3];
	uint8_t shift = bios->data[condptr + 4];
	uint16_t flagarray = ROM16(bios->data[condptr + 5]);
	uint8_t flagarraymask = bios->data[condptr + 7];
	uint8_t cmpval = bios->data[condptr + 8];
	uint8_t data;

	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
		      "Shift: 0x%02X, FlagArray: 0x%04X, FAMask: 0x%02X, "
		      "Cmpval: 0x%02X\n",
		offset, crtcport, crtcindex, mask, shift, flagarray, flagarraymask, cmpval);

	data = bios_idxprt_rd(bios, crtcport, crtcindex);

	data = bios->data[flagarray + ((data & mask) >> shift)];
	data &= flagarraymask;

	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
		offset, data, cmpval);

	return (data == cmpval);
}

static bool
bios_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
{
	/*
	 * The condition table entry has 4 bytes for the address of the
	 * register to check, 4 bytes for a mask to apply to the register and
	 * 4 for a test comparison value
	 */

	uint16_t condptr = bios->condition_tbl_ptr + cond * CONDITION_SIZE;
	uint32_t reg = ROM32(bios->data[condptr]);
	uint32_t mask = ROM32(bios->data[condptr + 4]);
	uint32_t cmpval = ROM32(bios->data[condptr + 8]);
	uint32_t data;

	BIOSLOG(bios, "0x%04X: Cond: 0x%02X, Reg: 0x%08X, Mask: 0x%08X\n",
		offset, cond, reg, mask);

	data = bios_rd32(bios, reg) & mask;

	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
		offset, data, cmpval);

	return (data == cmpval);
}

static bool
io_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
{
	/*
	 * The IO condition entry has 2 bytes for the IO port address; 1 byte
	 * for the index to write to io_port; 1 byte for the mask to apply to
	 * the byte read from io_port+1; and 1 byte for the value to compare
	 * against the masked byte.
	 */

	uint16_t condptr = bios->io_condition_tbl_ptr + cond * IO_CONDITION_SIZE;
	uint16_t io_port = ROM16(bios->data[condptr]);
	uint8_t port_index = bios->data[condptr + 2];
	uint8_t mask = bios->data[condptr + 3];
	uint8_t cmpval = bios->data[condptr + 4];

	uint8_t data = bios_idxprt_rd(bios, io_port, port_index) & mask;

	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
		offset, data, cmpval);

	return (data == cmpval);
}

static int
nv50_pll_set(struct drm_device *dev, uint32_t reg, uint32_t clk)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_pll_vals pll;
	struct pll_lims pll_limits;
683
	u32 ctrl, mask, coef;
684 685 686 687 688 689 690 691 692 693
	int ret;

	ret = get_pll_limits(dev, reg, &pll_limits);
	if (ret)
		return ret;

	clk = nouveau_calc_pll_mnp(dev, &pll_limits, clk, &pll);
	if (!clk)
		return -ERANGE;

694 695 696 697 698 699 700
	coef = pll.N1 << 8 | pll.M1;
	ctrl = pll.log2P << 16;
	mask = 0x00070000;
	if (reg == 0x004008) {
		mask |= 0x01f80000;
		ctrl |= (pll_limits.log2p_bias << 19);
		ctrl |= (pll.log2P << 22);
701 702
	}

703 704 705 706 707
	if (!dev_priv->vbios.execute)
		return 0;

	nv_mask(dev, reg + 0, mask, ctrl);
	nv_wr32(dev, reg + 4, coef);
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
	return 0;
}

static int
setPLL(struct nvbios *bios, uint32_t reg, uint32_t clk)
{
	struct drm_device *dev = bios->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	/* clk in kHz */
	struct pll_lims pll_lim;
	struct nouveau_pll_vals pllvals;
	int ret;

	if (dev_priv->card_type >= NV_50)
		return nv50_pll_set(dev, reg, clk);

	/* high regs (such as in the mac g5 table) are not -= 4 */
	ret = get_pll_limits(dev, reg > 0x405c ? reg : reg - 4, &pll_lim);
	if (ret)
		return ret;

	clk = nouveau_calc_pll_mnp(dev, &pll_lim, clk, &pllvals);
	if (!clk)
		return -ERANGE;

	if (bios->execute) {
		still_alive();
		nouveau_hw_setpll(dev, reg, &pllvals);
	}

	return 0;
}

static int dcb_entry_idx_from_crtchead(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
744
	struct nvbios *bios = &dev_priv->vbios;
745 746 747 748 749 750 751 752 753 754

	/*
	 * For the results of this function to be correct, CR44 must have been
	 * set (using bios_idxprt_wr to set crtchead), CR58 set for CR57 = 0,
	 * and the DCB table parsed, before the script calling the function is
	 * run.  run_digital_op_script is example of how to do such setup
	 */

	uint8_t dcb_entry = NVReadVgaCrtc5758(dev, bios->state.crtchead, 0);

755
	if (dcb_entry > bios->dcb.entries) {
756 757 758 759 760 761 762 763 764 765 766 767
		NV_ERROR(dev, "CR58 doesn't have a valid DCB entry currently "
				"(%02X)\n", dcb_entry);
		dcb_entry = 0x7f;	/* unused / invalid marker */
	}

	return dcb_entry;
}

static struct nouveau_i2c_chan *
init_i2c_device_find(struct drm_device *dev, int i2c_index)
{
	if (i2c_index == 0xff) {
768 769
		struct drm_nouveau_private *dev_priv = dev->dev_private;
		struct dcb_table *dcb = &dev_priv->vbios.dcb;
770
		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
771
		int idx = dcb_entry_idx_from_crtchead(dev);
772

773
		i2c_index = NV_I2C_DEFAULT(0);
774
		if (idx != 0x7f && dcb->entry[idx].i2c_upper_default)
775
			i2c_index = NV_I2C_DEFAULT(1);
776 777
	}

778 779 780
	return nouveau_i2c_find(dev, i2c_index);
}

781 782
static uint32_t
get_tmds_index_reg(struct drm_device *dev, uint8_t mlv)
783 784 785 786 787 788 789 790 791 792 793 794
{
	/*
	 * For mlv < 0x80, it is an index into a table of TMDS base addresses.
	 * For mlv == 0x80 use the "or" value of the dcb_entry indexed by
	 * CR58 for CR57 = 0 to index a table of offsets to the basic
	 * 0x6808b0 address.
	 * For mlv == 0x81 use the "or" value of the dcb_entry indexed by
	 * CR58 for CR57 = 0 to index a table of offsets to the basic
	 * 0x6808b0 address, and then flip the offset by 8.
	 */

	struct drm_nouveau_private *dev_priv = dev->dev_private;
795
	struct nvbios *bios = &dev_priv->vbios;
796 797 798 799 800 801 802 803 804 805 806 807
	const int pramdac_offset[13] = {
		0, 0, 0x8, 0, 0x2000, 0, 0, 0, 0x2008, 0, 0, 0, 0x2000 };
	const uint32_t pramdac_table[4] = {
		0x6808b0, 0x6808b8, 0x6828b0, 0x6828b8 };

	if (mlv >= 0x80) {
		int dcb_entry, dacoffset;

		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
		dcb_entry = dcb_entry_idx_from_crtchead(dev);
		if (dcb_entry == 0x7f)
			return 0;
808
		dacoffset = pramdac_offset[bios->dcb.entry[dcb_entry].or];
809 810 811 812
		if (mlv == 0x81)
			dacoffset ^= 8;
		return 0x6808b0 + dacoffset;
	} else {
813
		if (mlv >= ARRAY_SIZE(pramdac_table)) {
814 815 816 817 818 819 820 821
			NV_ERROR(dev, "Magic Lookup Value too big (%02X)\n",
									mlv);
			return 0;
		}
		return pramdac_table[mlv];
	}
}

822
static int
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
init_io_restrict_prog(struct nvbios *bios, uint16_t offset,
		      struct init_exec *iexec)
{
	/*
	 * INIT_IO_RESTRICT_PROG   opcode: 0x32 ('2')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): CRTC port
	 * offset + 3  (8  bit): CRTC index
	 * offset + 4  (8  bit): mask
	 * offset + 5  (8  bit): shift
	 * offset + 6  (8  bit): count
	 * offset + 7  (32 bit): register
	 * offset + 11 (32 bit): configuration 1
	 * ...
	 *
	 * Starting at offset + 11 there are "count" 32 bit values.
	 * To find out which value to use read index "CRTC index" on "CRTC
	 * port", AND this value with "mask" and then bit shift right "shift"
	 * bits.  Read the appropriate value using this index and write to
	 * "register"
	 */

	uint16_t crtcport = ROM16(bios->data[offset + 1]);
	uint8_t crtcindex = bios->data[offset + 3];
	uint8_t mask = bios->data[offset + 4];
	uint8_t shift = bios->data[offset + 5];
	uint8_t count = bios->data[offset + 6];
	uint32_t reg = ROM32(bios->data[offset + 7]);
	uint8_t config;
	uint32_t configval;
854
	int len = 11 + count * 4;
855 856

	if (!iexec->execute)
857
		return len;
858 859 860 861 862 863 864 865 866 867

	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
		offset, crtcport, crtcindex, mask, shift, count, reg);

	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
	if (config > count) {
		NV_ERROR(bios->dev,
			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
			 offset, config, count);
868
		return len;
869 870 871 872 873 874 875 876
	}

	configval = ROM32(bios->data[offset + 11 + config * 4]);

	BIOSLOG(bios, "0x%04X: Writing config %02X\n", offset, config);

	bios_wr32(bios, reg, configval);

877
	return len;
878 879
}

880
static int
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
init_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_REPEAT   opcode: 0x33 ('3')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): count
	 *
	 * Execute script following this opcode up to INIT_REPEAT_END
	 * "count" times
	 */

	uint8_t count = bios->data[offset + 1];
	uint8_t i;

	/* no iexec->execute check by design */

	BIOSLOG(bios, "0x%04X: Repeating following segment %d times\n",
		offset, count);

	iexec->repeat = true;

	/*
	 * count - 1, as the script block will execute once when we leave this
	 * opcode -- this is compatible with bios behaviour as:
	 * a) the block is always executed at least once, even if count == 0
	 * b) the bios interpreter skips to the op following INIT_END_REPEAT,
	 * while we don't
	 */
	for (i = 0; i < count - 1; i++)
		parse_init_table(bios, offset + 2, iexec);

	iexec->repeat = false;

915
	return 2;
916 917
}

918
static int
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
init_io_restrict_pll(struct nvbios *bios, uint16_t offset,
		     struct init_exec *iexec)
{
	/*
	 * INIT_IO_RESTRICT_PLL   opcode: 0x34 ('4')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): CRTC port
	 * offset + 3  (8  bit): CRTC index
	 * offset + 4  (8  bit): mask
	 * offset + 5  (8  bit): shift
	 * offset + 6  (8  bit): IO flag condition index
	 * offset + 7  (8  bit): count
	 * offset + 8  (32 bit): register
	 * offset + 12 (16 bit): frequency 1
	 * ...
	 *
	 * Starting at offset + 12 there are "count" 16 bit frequencies (10kHz).
	 * Set PLL register "register" to coefficients for frequency n,
	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
	 * "mask" and shifted right by "shift".
	 *
	 * If "IO flag condition index" > 0, and condition met, double
	 * frequency before setting it.
	 */

	uint16_t crtcport = ROM16(bios->data[offset + 1]);
	uint8_t crtcindex = bios->data[offset + 3];
	uint8_t mask = bios->data[offset + 4];
	uint8_t shift = bios->data[offset + 5];
	int8_t io_flag_condition_idx = bios->data[offset + 6];
	uint8_t count = bios->data[offset + 7];
	uint32_t reg = ROM32(bios->data[offset + 8]);
	uint8_t config;
	uint16_t freq;
954
	int len = 12 + count * 2;
955 956

	if (!iexec->execute)
957
		return len;
958 959 960 961 962 963 964 965 966 967 968 969

	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
		      "Shift: 0x%02X, IO Flag Condition: 0x%02X, "
		      "Count: 0x%02X, Reg: 0x%08X\n",
		offset, crtcport, crtcindex, mask, shift,
		io_flag_condition_idx, count, reg);

	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
	if (config > count) {
		NV_ERROR(bios->dev,
			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
			 offset, config, count);
970
		return len;
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
	}

	freq = ROM16(bios->data[offset + 12 + config * 2]);

	if (io_flag_condition_idx > 0) {
		if (io_flag_condition_met(bios, offset, io_flag_condition_idx)) {
			BIOSLOG(bios, "0x%04X: Condition fulfilled -- "
				      "frequency doubled\n", offset);
			freq *= 2;
		} else
			BIOSLOG(bios, "0x%04X: Condition not fulfilled -- "
				      "frequency unchanged\n", offset);
	}

	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %d0kHz\n",
		offset, reg, config, freq);

	setPLL(bios, reg, freq * 10);

990
	return len;
991 992
}

993
static int
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
init_end_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_END_REPEAT   opcode: 0x36 ('6')
	 *
	 * offset      (8 bit): opcode
	 *
	 * Marks the end of the block for INIT_REPEAT to repeat
	 */

	/* no iexec->execute check by design */

	/*
	 * iexec->repeat flag necessary to go past INIT_END_REPEAT opcode when
	 * we're not in repeat mode
	 */
	if (iexec->repeat)
1011
		return 0;
1012

1013
	return 1;
1014 1015
}

1016
static int
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
init_copy(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_COPY   opcode: 0x37 ('7')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (8  bit): shift
	 * offset + 6  (8  bit): srcmask
	 * offset + 7  (16 bit): CRTC port
	 * offset + 9  (8 bit): CRTC index
	 * offset + 10  (8 bit): mask
	 *
	 * Read index "CRTC index" on "CRTC port", AND with "mask", OR with
	 * (REGVAL("register") >> "shift" & "srcmask") and write-back to CRTC
	 * port
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint8_t shift = bios->data[offset + 5];
	uint8_t srcmask = bios->data[offset + 6];
	uint16_t crtcport = ROM16(bios->data[offset + 7]);
	uint8_t crtcindex = bios->data[offset + 9];
	uint8_t mask = bios->data[offset + 10];
	uint32_t data;
	uint8_t crtcdata;

	if (!iexec->execute)
1045
		return 11;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%02X, "
		      "Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X\n",
		offset, reg, shift, srcmask, crtcport, crtcindex, mask);

	data = bios_rd32(bios, reg);

	if (shift < 0x80)
		data >>= shift;
	else
		data <<= (0x100 - shift);

	data &= srcmask;

	crtcdata  = bios_idxprt_rd(bios, crtcport, crtcindex) & mask;
	crtcdata |= (uint8_t)data;
	bios_idxprt_wr(bios, crtcport, crtcindex, crtcdata);

1064
	return 11;
1065 1066
}

1067
static int
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
init_not(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_NOT   opcode: 0x38 ('8')
	 *
	 * offset      (8  bit): opcode
	 *
	 * Invert the current execute / no-execute condition (i.e. "else")
	 */
	if (iexec->execute)
		BIOSLOG(bios, "0x%04X: ------ Skipping following commands  ------\n", offset);
	else
		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", offset);

	iexec->execute = !iexec->execute;
1083
	return 1;
1084 1085
}

1086
static int
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
init_io_flag_condition(struct nvbios *bios, uint16_t offset,
		       struct init_exec *iexec)
{
	/*
	 * INIT_IO_FLAG_CONDITION   opcode: 0x39 ('9')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): condition number
	 *
	 * Check condition "condition number" in the IO flag condition table.
	 * If condition not met skip subsequent opcodes until condition is
	 * inverted (INIT_NOT), or we hit INIT_RESUME
	 */

	uint8_t cond = bios->data[offset + 1];

	if (!iexec->execute)
1104
		return 2;
1105 1106 1107 1108 1109 1110 1111 1112

	if (io_flag_condition_met(bios, offset, cond))
		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
	else {
		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
		iexec->execute = false;
	}

1113
	return 2;
1114 1115
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static int
init_dp_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_DP_CONDITION   opcode: 0x3A ('')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): "sub" opcode
	 * offset + 2  (8 bit): unknown
	 *
	 */

	struct dcb_entry *dcb = bios->display.output;
	struct drm_device *dev = bios->dev;
	uint8_t cond = bios->data[offset + 1];
1131
	uint8_t *table, *entry;
1132 1133 1134 1135 1136 1137

	BIOSLOG(bios, "0x%04X: subop 0x%02X\n", offset, cond);

	if (!iexec->execute)
		return 3;

1138 1139
	table = nouveau_dp_bios_data(dev, dcb, &entry);
	if (!table)
1140
		return 3;
1141 1142 1143

	switch (cond) {
	case 0:
1144 1145
		entry = dcb_conn(dev, dcb->connector);
		if (!entry || entry[0] != DCB_CONNECTOR_eDP)
1146 1147 1148 1149
			iexec->execute = false;
		break;
	case 1:
	case 2:
1150 1151
		if ((table[0]  < 0x40 && !(entry[5] & cond)) ||
		    (table[0] == 0x40 && !(entry[4] & cond)))
1152 1153 1154 1155 1156 1157 1158 1159
			iexec->execute = false;
		break;
	case 5:
	{
		struct nouveau_i2c_chan *auxch;
		int ret;

		auxch = nouveau_i2c_find(dev, bios->display.output->i2c_index);
1160 1161 1162 1163
		if (!auxch) {
			NV_ERROR(dev, "0x%04X: couldn't get auxch\n", offset);
			return 3;
		}
1164 1165

		ret = nouveau_dp_auxch(auxch, 9, 0xd, &cond, 1);
1166 1167 1168 1169
		if (ret) {
			NV_ERROR(dev, "0x%04X: auxch rd fail: %d\n", offset, ret);
			return 3;
		}
1170

1171
		if (!(cond & 1))
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
			iexec->execute = false;
	}
		break;
	default:
		NV_WARN(dev, "0x%04X: unknown INIT_3A op: %d\n", offset, cond);
		break;
	}

	if (iexec->execute)
		BIOSLOG(bios, "0x%04X: continuing to execute\n", offset);
	else
		BIOSLOG(bios, "0x%04X: skipping following commands\n", offset);

	return 3;
}

static int
init_op_3b(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_3B   opcode: 0x3B ('')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): crtc index
	 *
	 */

	uint8_t or = ffs(bios->display.output->or) - 1;
	uint8_t index = bios->data[offset + 1];
	uint8_t data;

	if (!iexec->execute)
		return 2;

	data = bios_idxprt_rd(bios, 0x3d4, index);
	bios_idxprt_wr(bios, 0x3d4, index, data & ~(1 << or));
	return 2;
}

static int
init_op_3c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_3C   opcode: 0x3C ('')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): crtc index
	 *
	 */

	uint8_t or = ffs(bios->display.output->or) - 1;
	uint8_t index = bios->data[offset + 1];
	uint8_t data;

	if (!iexec->execute)
		return 2;

	data = bios_idxprt_rd(bios, 0x3d4, index);
	bios_idxprt_wr(bios, 0x3d4, index, data | (1 << or));
	return 2;
}

1234
static int
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
init_idx_addr_latched(struct nvbios *bios, uint16_t offset,
		      struct init_exec *iexec)
{
	/*
	 * INIT_INDEX_ADDRESS_LATCHED   opcode: 0x49 ('I')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): control register
	 * offset + 5  (32 bit): data register
	 * offset + 9  (32 bit): mask
	 * offset + 13 (32 bit): data
	 * offset + 17 (8  bit): count
	 * offset + 18 (8  bit): address 1
	 * offset + 19 (8  bit): data 1
	 * ...
	 *
	 * For each of "count" address and data pairs, write "data n" to
	 * "data register", read the current value of "control register",
	 * and write it back once ANDed with "mask", ORed with "data",
	 * and ORed with "address n"
	 */

	uint32_t controlreg = ROM32(bios->data[offset + 1]);
	uint32_t datareg = ROM32(bios->data[offset + 5]);
	uint32_t mask = ROM32(bios->data[offset + 9]);
	uint32_t data = ROM32(bios->data[offset + 13]);
	uint8_t count = bios->data[offset + 17];
1262
	int len = 18 + count * 2;
1263 1264 1265 1266
	uint32_t value;
	int i;

	if (!iexec->execute)
1267
		return len;
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

	BIOSLOG(bios, "0x%04X: ControlReg: 0x%08X, DataReg: 0x%08X, "
		      "Mask: 0x%08X, Data: 0x%08X, Count: 0x%02X\n",
		offset, controlreg, datareg, mask, data, count);

	for (i = 0; i < count; i++) {
		uint8_t instaddress = bios->data[offset + 18 + i * 2];
		uint8_t instdata = bios->data[offset + 19 + i * 2];

		BIOSLOG(bios, "0x%04X: Address: 0x%02X, Data: 0x%02X\n",
			offset, instaddress, instdata);

		bios_wr32(bios, datareg, instdata);
		value  = bios_rd32(bios, controlreg) & mask;
		value |= data;
		value |= instaddress;
		bios_wr32(bios, controlreg, value);
	}

1287
	return len;
1288 1289
}

1290
static int
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
init_io_restrict_pll2(struct nvbios *bios, uint16_t offset,
		      struct init_exec *iexec)
{
	/*
	 * INIT_IO_RESTRICT_PLL2   opcode: 0x4A ('J')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): CRTC port
	 * offset + 3  (8  bit): CRTC index
	 * offset + 4  (8  bit): mask
	 * offset + 5  (8  bit): shift
	 * offset + 6  (8  bit): count
	 * offset + 7  (32 bit): register
	 * offset + 11 (32 bit): frequency 1
	 * ...
	 *
	 * Starting at offset + 11 there are "count" 32 bit frequencies (kHz).
	 * Set PLL register "register" to coefficients for frequency n,
	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
	 * "mask" and shifted right by "shift".
	 */

	uint16_t crtcport = ROM16(bios->data[offset + 1]);
	uint8_t crtcindex = bios->data[offset + 3];
	uint8_t mask = bios->data[offset + 4];
	uint8_t shift = bios->data[offset + 5];
	uint8_t count = bios->data[offset + 6];
	uint32_t reg = ROM32(bios->data[offset + 7]);
1319
	int len = 11 + count * 4;
1320 1321 1322 1323
	uint8_t config;
	uint32_t freq;

	if (!iexec->execute)
1324
		return len;
1325 1326 1327 1328 1329 1330

	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
		offset, crtcport, crtcindex, mask, shift, count, reg);

	if (!reg)
1331
		return len;
1332 1333 1334 1335 1336 1337

	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
	if (config > count) {
		NV_ERROR(bios->dev,
			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
			 offset, config, count);
1338
		return len;
1339 1340 1341 1342 1343 1344 1345 1346 1347
	}

	freq = ROM32(bios->data[offset + 11 + config * 4]);

	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %dkHz\n",
		offset, reg, config, freq);

	setPLL(bios, reg, freq);

1348
	return len;
1349 1350
}

1351
static int
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
init_pll2(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_PLL2   opcode: 0x4B ('K')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (32 bit): freq
	 *
	 * Set PLL register "register" to coefficients for frequency "freq"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint32_t freq = ROM32(bios->data[offset + 5]);

	if (!iexec->execute)
1368
		return 9;
1369 1370 1371 1372 1373

	BIOSLOG(bios, "0x%04X: Reg: 0x%04X, Freq: %dkHz\n",
		offset, reg, freq);

	setPLL(bios, reg, freq);
1374
	return 9;
1375 1376
}

1377
static int
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
init_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_I2C_BYTE   opcode: 0x4C ('L')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): DCB I2C table entry index
	 * offset + 2  (8 bit): I2C slave address
	 * offset + 3  (8 bit): count
	 * offset + 4  (8 bit): I2C register 1
	 * offset + 5  (8 bit): mask 1
	 * offset + 6  (8 bit): data 1
	 * ...
	 *
	 * For each of "count" registers given by "I2C register n" on the device
	 * addressed by "I2C slave address" on the I2C bus given by
	 * "DCB I2C table entry index", read the register, AND the result with
	 * "mask n" and OR it with "data n" before writing it back to the device
	 */

1398
	struct drm_device *dev = bios->dev;
1399
	uint8_t i2c_index = bios->data[offset + 1];
1400
	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1401 1402
	uint8_t count = bios->data[offset + 3];
	struct nouveau_i2c_chan *chan;
1403 1404
	int len = 4 + count * 3;
	int ret, i;
1405 1406

	if (!iexec->execute)
1407
		return len;
1408 1409 1410 1411 1412

	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
		      "Count: 0x%02X\n",
		offset, i2c_index, i2c_address, count);

1413 1414 1415 1416 1417
	chan = init_i2c_device_find(dev, i2c_index);
	if (!chan) {
		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
		return len;
	}
1418 1419

	for (i = 0; i < count; i++) {
1420
		uint8_t reg = bios->data[offset + 4 + i * 3];
1421 1422
		uint8_t mask = bios->data[offset + 5 + i * 3];
		uint8_t data = bios->data[offset + 6 + i * 3];
1423
		union i2c_smbus_data val;
1424

1425 1426 1427
		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
				     I2C_SMBUS_READ, reg,
				     I2C_SMBUS_BYTE_DATA, &val);
1428 1429 1430 1431
		if (ret < 0) {
			NV_ERROR(dev, "0x%04X: i2c rd fail: %d\n", offset, ret);
			return len;
		}
1432 1433 1434

		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
			      "Mask: 0x%02X, Data: 0x%02X\n",
1435
			offset, reg, val.byte, mask, data);
1436

1437 1438
		if (!bios->execute)
			continue;
1439

1440 1441 1442 1443 1444
		val.byte &= mask;
		val.byte |= data;
		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
				     I2C_SMBUS_WRITE, reg,
				     I2C_SMBUS_BYTE_DATA, &val);
1445 1446 1447 1448
		if (ret < 0) {
			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
			return len;
		}
1449 1450
	}

1451
	return len;
1452 1453
}

1454
static int
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
init_zm_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_I2C_BYTE   opcode: 0x4D ('M')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): DCB I2C table entry index
	 * offset + 2  (8 bit): I2C slave address
	 * offset + 3  (8 bit): count
	 * offset + 4  (8 bit): I2C register 1
	 * offset + 5  (8 bit): data 1
	 * ...
	 *
	 * For each of "count" registers given by "I2C register n" on the device
	 * addressed by "I2C slave address" on the I2C bus given by
	 * "DCB I2C table entry index", set the register to "data n"
	 */

1473
	struct drm_device *dev = bios->dev;
1474
	uint8_t i2c_index = bios->data[offset + 1];
1475
	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1476 1477
	uint8_t count = bios->data[offset + 3];
	struct nouveau_i2c_chan *chan;
1478 1479
	int len = 4 + count * 2;
	int ret, i;
1480 1481

	if (!iexec->execute)
1482
		return len;
1483 1484 1485 1486 1487

	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
		      "Count: 0x%02X\n",
		offset, i2c_index, i2c_address, count);

1488 1489 1490 1491 1492
	chan = init_i2c_device_find(dev, i2c_index);
	if (!chan) {
		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
		return len;
	}
1493 1494

	for (i = 0; i < count; i++) {
1495 1496 1497 1498
		uint8_t reg = bios->data[offset + 4 + i * 2];
		union i2c_smbus_data val;

		val.byte = bios->data[offset + 5 + i * 2];
1499 1500

		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Data: 0x%02X\n",
1501 1502 1503 1504 1505 1506 1507 1508
			offset, reg, val.byte);

		if (!bios->execute)
			continue;

		ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
				     I2C_SMBUS_WRITE, reg,
				     I2C_SMBUS_BYTE_DATA, &val);
1509 1510 1511 1512
		if (ret < 0) {
			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
			return len;
		}
1513 1514
	}

1515
	return len;
1516 1517
}

1518
static int
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
init_zm_i2c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_I2C   opcode: 0x4E ('N')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): DCB I2C table entry index
	 * offset + 2  (8 bit): I2C slave address
	 * offset + 3  (8 bit): count
	 * offset + 4  (8 bit): data 1
	 * ...
	 *
	 * Send "count" bytes ("data n") to the device addressed by "I2C slave
	 * address" on the I2C bus given by "DCB I2C table entry index"
	 */

1535
	struct drm_device *dev = bios->dev;
1536
	uint8_t i2c_index = bios->data[offset + 1];
1537
	uint8_t i2c_address = bios->data[offset + 2] >> 1;
1538
	uint8_t count = bios->data[offset + 3];
1539
	int len = 4 + count;
1540 1541 1542
	struct nouveau_i2c_chan *chan;
	struct i2c_msg msg;
	uint8_t data[256];
1543
	int ret, i;
1544 1545

	if (!iexec->execute)
1546
		return len;
1547 1548 1549 1550 1551

	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
		      "Count: 0x%02X\n",
		offset, i2c_index, i2c_address, count);

1552 1553 1554 1555 1556
	chan = init_i2c_device_find(dev, i2c_index);
	if (!chan) {
		NV_ERROR(dev, "0x%04X: i2c bus not found\n", offset);
		return len;
	}
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568

	for (i = 0; i < count; i++) {
		data[i] = bios->data[offset + 4 + i];

		BIOSLOG(bios, "0x%04X: Data: 0x%02X\n", offset, data[i]);
	}

	if (bios->execute) {
		msg.addr = i2c_address;
		msg.flags = 0;
		msg.len = count;
		msg.buf = data;
1569 1570 1571 1572 1573
		ret = i2c_transfer(&chan->adapter, &msg, 1);
		if (ret != 1) {
			NV_ERROR(dev, "0x%04X: i2c wr fail: %d\n", offset, ret);
			return len;
		}
1574 1575
	}

1576
	return len;
1577 1578
}

1579
static int
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
init_tmds(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_TMDS   opcode: 0x4F ('O')	(non-canon name)
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): magic lookup value
	 * offset + 2  (8 bit): TMDS address
	 * offset + 3  (8 bit): mask
	 * offset + 4  (8 bit): data
	 *
	 * Read the data reg for TMDS address "TMDS address", AND it with mask
	 * and OR it with data, then write it back
	 * "magic lookup value" determines which TMDS base address register is
	 * used -- see get_tmds_index_reg()
	 */

1597
	struct drm_device *dev = bios->dev;
1598 1599 1600 1601 1602 1603 1604
	uint8_t mlv = bios->data[offset + 1];
	uint32_t tmdsaddr = bios->data[offset + 2];
	uint8_t mask = bios->data[offset + 3];
	uint8_t data = bios->data[offset + 4];
	uint32_t reg, value;

	if (!iexec->execute)
1605
		return 5;
1606 1607 1608 1609 1610 1611

	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, TMDSAddr: 0x%02X, "
		      "Mask: 0x%02X, Data: 0x%02X\n",
		offset, mlv, tmdsaddr, mask, data);

	reg = get_tmds_index_reg(bios->dev, mlv);
1612 1613 1614 1615
	if (!reg) {
		NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
		return 5;
	}
1616 1617 1618 1619 1620 1621 1622

	bios_wr32(bios, reg,
		  tmdsaddr | NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE);
	value = (bios_rd32(bios, reg + 4) & mask) | data;
	bios_wr32(bios, reg + 4, value);
	bios_wr32(bios, reg, tmdsaddr);

1623
	return 5;
1624 1625
}

1626
static int
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
init_zm_tmds_group(struct nvbios *bios, uint16_t offset,
		   struct init_exec *iexec)
{
	/*
	 * INIT_ZM_TMDS_GROUP   opcode: 0x50 ('P')	(non-canon name)
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): magic lookup value
	 * offset + 2  (8 bit): count
	 * offset + 3  (8 bit): addr 1
	 * offset + 4  (8 bit): data 1
	 * ...
	 *
	 * For each of "count" TMDS address and data pairs write "data n" to
	 * "addr n".  "magic lookup value" determines which TMDS base address
	 * register is used -- see get_tmds_index_reg()
	 */

1645
	struct drm_device *dev = bios->dev;
1646 1647
	uint8_t mlv = bios->data[offset + 1];
	uint8_t count = bios->data[offset + 2];
1648
	int len = 3 + count * 2;
1649 1650 1651 1652
	uint32_t reg;
	int i;

	if (!iexec->execute)
1653
		return len;
1654 1655 1656 1657 1658

	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, Count: 0x%02X\n",
		offset, mlv, count);

	reg = get_tmds_index_reg(bios->dev, mlv);
1659 1660 1661 1662
	if (!reg) {
		NV_ERROR(dev, "0x%04X: no tmds_index_reg\n", offset);
		return len;
	}
1663 1664 1665 1666 1667 1668 1669 1670 1671

	for (i = 0; i < count; i++) {
		uint8_t tmdsaddr = bios->data[offset + 3 + i * 2];
		uint8_t tmdsdata = bios->data[offset + 4 + i * 2];

		bios_wr32(bios, reg + 4, tmdsdata);
		bios_wr32(bios, reg, tmdsaddr);
	}

1672
	return len;
1673 1674
}

1675
static int
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
init_cr_idx_adr_latch(struct nvbios *bios, uint16_t offset,
		      struct init_exec *iexec)
{
	/*
	 * INIT_CR_INDEX_ADDRESS_LATCHED   opcode: 0x51 ('Q')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): CRTC index1
	 * offset + 2  (8 bit): CRTC index2
	 * offset + 3  (8 bit): baseaddr
	 * offset + 4  (8 bit): count
	 * offset + 5  (8 bit): data 1
	 * ...
	 *
	 * For each of "count" address and data pairs, write "baseaddr + n" to
	 * "CRTC index1" and "data n" to "CRTC index2"
	 * Once complete, restore initial value read from "CRTC index1"
	 */
	uint8_t crtcindex1 = bios->data[offset + 1];
	uint8_t crtcindex2 = bios->data[offset + 2];
	uint8_t baseaddr = bios->data[offset + 3];
	uint8_t count = bios->data[offset + 4];
1698
	int len = 5 + count;
1699 1700 1701 1702
	uint8_t oldaddr, data;
	int i;

	if (!iexec->execute)
1703
		return len;
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

	BIOSLOG(bios, "0x%04X: Index1: 0x%02X, Index2: 0x%02X, "
		      "BaseAddr: 0x%02X, Count: 0x%02X\n",
		offset, crtcindex1, crtcindex2, baseaddr, count);

	oldaddr = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex1);

	for (i = 0; i < count; i++) {
		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1,
				     baseaddr + i);
		data = bios->data[offset + 5 + i];
		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex2, data);
	}

	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, oldaddr);

1720
	return len;
1721 1722
}

1723
static int
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
init_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_CR   opcode: 0x52 ('R')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (8  bit): CRTC index
	 * offset + 2  (8  bit): mask
	 * offset + 3  (8  bit): data
	 *
	 * Assign the value of at "CRTC index" ANDed with mask and ORed with
	 * data back to "CRTC index"
	 */

	uint8_t crtcindex = bios->data[offset + 1];
	uint8_t mask = bios->data[offset + 2];
	uint8_t data = bios->data[offset + 3];
	uint8_t value;

	if (!iexec->execute)
1744
		return 4;
1745 1746 1747 1748 1749 1750 1751 1752

	BIOSLOG(bios, "0x%04X: Index: 0x%02X, Mask: 0x%02X, Data: 0x%02X\n",
		offset, crtcindex, mask, data);

	value  = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex) & mask;
	value |= data;
	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, value);

1753
	return 4;
1754 1755
}

1756
static int
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
init_zm_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_CR   opcode: 0x53 ('S')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): CRTC index
	 * offset + 2  (8 bit): value
	 *
	 * Assign "value" to CRTC register with index "CRTC index".
	 */

	uint8_t crtcindex = ROM32(bios->data[offset + 1]);
	uint8_t data = bios->data[offset + 2];

	if (!iexec->execute)
1773
		return 3;
1774 1775 1776

	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, data);

1777
	return 3;
1778 1779
}

1780
static int
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
init_zm_cr_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_CR_GROUP   opcode: 0x54 ('T')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): count
	 * offset + 2  (8 bit): CRTC index 1
	 * offset + 3  (8 bit): value 1
	 * ...
	 *
	 * For "count", assign "value n" to CRTC register with index
	 * "CRTC index n".
	 */

	uint8_t count = bios->data[offset + 1];
1797
	int len = 2 + count * 2;
1798 1799 1800
	int i;

	if (!iexec->execute)
1801
		return len;
1802 1803 1804 1805

	for (i = 0; i < count; i++)
		init_zm_cr(bios, offset + 2 + 2 * i - 1, iexec);

1806
	return len;
1807 1808
}

1809
static int
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
init_condition_time(struct nvbios *bios, uint16_t offset,
		    struct init_exec *iexec)
{
	/*
	 * INIT_CONDITION_TIME   opcode: 0x56 ('V')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): condition number
	 * offset + 2  (8 bit): retries / 50
	 *
	 * Check condition "condition number" in the condition table.
	 * Bios code then sleeps for 2ms if the condition is not met, and
	 * repeats up to "retries" times, but on one C51 this has proved
	 * insufficient.  In mmiotraces the driver sleeps for 20ms, so we do
	 * this, and bail after "retries" times, or 2s, whichever is less.
	 * If still not met after retries, clear execution flag for this table.
	 */

	uint8_t cond = bios->data[offset + 1];
	uint16_t retries = bios->data[offset + 2] * 50;
	unsigned cnt;

	if (!iexec->execute)
1833
		return 3;
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

	if (retries > 100)
		retries = 100;

	BIOSLOG(bios, "0x%04X: Condition: 0x%02X, Retries: 0x%02X\n",
		offset, cond, retries);

	if (!bios->execute) /* avoid 2s delays when "faking" execution */
		retries = 1;

	for (cnt = 0; cnt < retries; cnt++) {
		if (bios_condition_met(bios, offset, cond)) {
			BIOSLOG(bios, "0x%04X: Condition met, continuing\n",
								offset);
			break;
		} else {
			BIOSLOG(bios, "0x%04X: "
				"Condition not met, sleeping for 20ms\n",
								offset);
1853
			mdelay(20);
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
		}
	}

	if (!bios_condition_met(bios, offset, cond)) {
		NV_WARN(bios->dev,
			"0x%04X: Condition still not met after %dms, "
			"skipping following opcodes\n", offset, 20 * retries);
		iexec->execute = false;
	}

1864
	return 3;
1865 1866
}

1867 1868 1869 1870 1871 1872 1873 1874 1875
static int
init_ltime(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_LTIME   opcode: 0x57 ('V')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): time
	 *
S
Stefan Weil 已提交
1876
	 * Sleep for "time" milliseconds.
1877 1878 1879 1880 1881 1882 1883
	 */

	unsigned time = ROM16(bios->data[offset + 1]);

	if (!iexec->execute)
		return 3;

S
Stefan Weil 已提交
1884
	BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X milliseconds\n",
1885 1886
		offset, time);

1887
	mdelay(time);
1888 1889 1890 1891

	return 3;
}

1892
static int
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
init_zm_reg_sequence(struct nvbios *bios, uint16_t offset,
		     struct init_exec *iexec)
{
	/*
	 * INIT_ZM_REG_SEQUENCE   opcode: 0x58 ('X')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): base register
	 * offset + 5  (8  bit): count
	 * offset + 6  (32 bit): value 1
	 * ...
	 *
	 * Starting at offset + 6 there are "count" 32 bit values.
	 * For "count" iterations set "base register" + 4 * current_iteration
	 * to "value current_iteration"
	 */

	uint32_t basereg = ROM32(bios->data[offset + 1]);
	uint32_t count = bios->data[offset + 5];
1912
	int len = 6 + count * 4;
1913 1914 1915
	int i;

	if (!iexec->execute)
1916
		return len;
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927

	BIOSLOG(bios, "0x%04X: BaseReg: 0x%08X, Count: 0x%02X\n",
		offset, basereg, count);

	for (i = 0; i < count; i++) {
		uint32_t reg = basereg + i * 4;
		uint32_t data = ROM32(bios->data[offset + 6 + i * 4]);

		bios_wr32(bios, reg, data);
	}

1928
	return len;
1929 1930
}

1931
static int
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
init_sub_direct(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_SUB_DIRECT   opcode: 0x5B ('[')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): subroutine offset (in bios)
	 *
	 * Calls a subroutine that will execute commands until INIT_DONE
	 * is found.
	 */

	uint16_t sub_offset = ROM16(bios->data[offset + 1]);

	if (!iexec->execute)
1947
		return 3;
1948 1949 1950 1951 1952 1953 1954 1955

	BIOSLOG(bios, "0x%04X: Executing subroutine at 0x%04X\n",
		offset, sub_offset);

	parse_init_table(bios, sub_offset, iexec);

	BIOSLOG(bios, "0x%04X: End of 0x%04X subroutine\n", offset, sub_offset);

1956
	return 3;
1957 1958
}

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
static int
init_jump(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_JUMP   opcode: 0x5C ('\')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): offset (in bios)
	 *
	 * Continue execution of init table from 'offset'
	 */

	uint16_t jmp_offset = ROM16(bios->data[offset + 1]);

	if (!iexec->execute)
		return 3;

	BIOSLOG(bios, "0x%04X: Jump to 0x%04X\n", offset, jmp_offset);
	return jmp_offset - offset;
}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
static int
init_i2c_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_I2C_IF   opcode: 0x5E ('^')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): DCB I2C table entry index
	 * offset + 2  (8 bit): I2C slave address
	 * offset + 3  (8 bit): I2C register
	 * offset + 4  (8 bit): mask
	 * offset + 5  (8 bit): data
	 *
	 * Read the register given by "I2C register" on the device addressed
	 * by "I2C slave address" on the I2C bus given by "DCB I2C table
	 * entry index". Compare the result AND "mask" to "data".
	 * If they're not equal, skip subsequent opcodes until condition is
	 * inverted (INIT_NOT), or we hit INIT_RESUME
	 */

	uint8_t i2c_index = bios->data[offset + 1];
	uint8_t i2c_address = bios->data[offset + 2] >> 1;
	uint8_t reg = bios->data[offset + 3];
	uint8_t mask = bios->data[offset + 4];
	uint8_t data = bios->data[offset + 5];
	struct nouveau_i2c_chan *chan;
	union i2c_smbus_data val;
	int ret;

	/* no execute check by design */

	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
		offset, i2c_index, i2c_address);

	chan = init_i2c_device_find(bios->dev, i2c_index);
	if (!chan)
		return -ENODEV;

	ret = i2c_smbus_xfer(&chan->adapter, i2c_address, 0,
			     I2C_SMBUS_READ, reg,
			     I2C_SMBUS_BYTE_DATA, &val);
	if (ret < 0) {
		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: [no device], "
			      "Mask: 0x%02X, Data: 0x%02X\n",
			offset, reg, mask, data);
		iexec->execute = 0;
		return 6;
	}

	BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
		      "Mask: 0x%02X, Data: 0x%02X\n",
		offset, reg, val.byte, mask, data);

	iexec->execute = ((val.byte & mask) == data);

	return 6;
}

2038
static int
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
init_copy_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_COPY_NV_REG   opcode: 0x5F ('_')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): src reg
	 * offset + 5  (8  bit): shift
	 * offset + 6  (32 bit): src mask
	 * offset + 10 (32 bit): xor
	 * offset + 14 (32 bit): dst reg
	 * offset + 18 (32 bit): dst mask
	 *
	 * Shift REGVAL("src reg") right by (signed) "shift", AND result with
	 * "src mask", then XOR with "xor". Write this OR'd with
	 * (REGVAL("dst reg") AND'd with "dst mask") to "dst reg"
	 */

	uint32_t srcreg = *((uint32_t *)(&bios->data[offset + 1]));
	uint8_t shift = bios->data[offset + 5];
	uint32_t srcmask = *((uint32_t *)(&bios->data[offset + 6]));
	uint32_t xor = *((uint32_t *)(&bios->data[offset + 10]));
	uint32_t dstreg = *((uint32_t *)(&bios->data[offset + 14]));
	uint32_t dstmask = *((uint32_t *)(&bios->data[offset + 18]));
	uint32_t srcvalue, dstvalue;

	if (!iexec->execute)
2066
		return 22;
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084

	BIOSLOG(bios, "0x%04X: SrcReg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%08X, "
		      "Xor: 0x%08X, DstReg: 0x%08X, DstMask: 0x%08X\n",
		offset, srcreg, shift, srcmask, xor, dstreg, dstmask);

	srcvalue = bios_rd32(bios, srcreg);

	if (shift < 0x80)
		srcvalue >>= shift;
	else
		srcvalue <<= (0x100 - shift);

	srcvalue = (srcvalue & srcmask) ^ xor;

	dstvalue = bios_rd32(bios, dstreg) & dstmask;

	bios_wr32(bios, dstreg, dstvalue | srcvalue);

2085
	return 22;
2086 2087
}

2088
static int
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
init_zm_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_INDEX_IO   opcode: 0x62 ('b')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): CRTC port
	 * offset + 3  (8  bit): CRTC index
	 * offset + 4  (8  bit): data
	 *
	 * Write "data" to index "CRTC index" of "CRTC port"
	 */
	uint16_t crtcport = ROM16(bios->data[offset + 1]);
	uint8_t crtcindex = bios->data[offset + 3];
	uint8_t data = bios->data[offset + 4];

	if (!iexec->execute)
2106
		return 5;
2107 2108 2109

	bios_idxprt_wr(bios, crtcport, crtcindex, data);

2110
	return 5;
2111 2112
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
static inline void
bios_md32(struct nvbios *bios, uint32_t reg,
	  uint32_t mask, uint32_t val)
{
	bios_wr32(bios, reg, (bios_rd32(bios, reg) & ~mask) | val);
}

static uint32_t
peek_fb(struct drm_device *dev, struct io_mapping *fb,
	uint32_t off)
{
	uint32_t val = 0;

	if (off < pci_resource_len(dev->pdev, 1)) {
2127
		uint8_t __iomem *p =
P
Peter Zijlstra 已提交
2128
			io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
2129

2130
		val = ioread32(p + (off & ~PAGE_MASK));
2131

P
Peter Zijlstra 已提交
2132
		io_mapping_unmap_atomic(p);
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	}

	return val;
}

static void
poke_fb(struct drm_device *dev, struct io_mapping *fb,
	uint32_t off, uint32_t val)
{
	if (off < pci_resource_len(dev->pdev, 1)) {
2143
		uint8_t __iomem *p =
P
Peter Zijlstra 已提交
2144
			io_mapping_map_atomic_wc(fb, off & PAGE_MASK);
2145

2146
		iowrite32(val, p + (off & ~PAGE_MASK));
2147 2148
		wmb();

P
Peter Zijlstra 已提交
2149
		io_mapping_unmap_atomic(p);
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	}
}

static inline bool
read_back_fb(struct drm_device *dev, struct io_mapping *fb,
	     uint32_t off, uint32_t val)
{
	poke_fb(dev, fb, off, val);
	return val == peek_fb(dev, fb, off);
}

static int
nv04_init_compute_mem(struct nvbios *bios)
{
	struct drm_device *dev = bios->dev;
	uint32_t patt = 0xdeadbeef;
	struct io_mapping *fb;
	int i;

	/* Map the framebuffer aperture */
	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
				  pci_resource_len(dev->pdev, 1));
	if (!fb)
		return -ENOMEM;

	/* Sequencer and refresh off */
	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);
	bios_md32(bios, NV04_PFB_DEBUG_0, 0, NV04_PFB_DEBUG_0_REFRESH_OFF);

	bios_md32(bios, NV04_PFB_BOOT_0, ~0,
		  NV04_PFB_BOOT_0_RAM_AMOUNT_16MB |
		  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
		  NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_16MBIT);

	for (i = 0; i < 4; i++)
		poke_fb(dev, fb, 4 * i, patt);

	poke_fb(dev, fb, 0x400000, patt + 1);

	if (peek_fb(dev, fb, 0) == patt + 1) {
		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
			  NV04_PFB_BOOT_0_RAM_TYPE_SDRAM_16MBIT);
		bios_md32(bios, NV04_PFB_DEBUG_0,
			  NV04_PFB_DEBUG_0_REFRESH_OFF, 0);

		for (i = 0; i < 4; i++)
			poke_fb(dev, fb, 4 * i, patt);

		if ((peek_fb(dev, fb, 0xc) & 0xffff) != (patt & 0xffff))
			bios_md32(bios, NV04_PFB_BOOT_0,
				  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
				  NV04_PFB_BOOT_0_RAM_AMOUNT,
				  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);

	} else if ((peek_fb(dev, fb, 0xc) & 0xffff0000) !=
		   (patt & 0xffff0000)) {
		bios_md32(bios, NV04_PFB_BOOT_0,
			  NV04_PFB_BOOT_0_RAM_WIDTH_128 |
			  NV04_PFB_BOOT_0_RAM_AMOUNT,
			  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);

2211
	} else if (peek_fb(dev, fb, 0) != patt) {
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
		if (read_back_fb(dev, fb, 0x800000, patt))
			bios_md32(bios, NV04_PFB_BOOT_0,
				  NV04_PFB_BOOT_0_RAM_AMOUNT,
				  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);
		else
			bios_md32(bios, NV04_PFB_BOOT_0,
				  NV04_PFB_BOOT_0_RAM_AMOUNT,
				  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);

		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_TYPE,
			  NV04_PFB_BOOT_0_RAM_TYPE_SGRAM_8MBIT);

	} else if (!read_back_fb(dev, fb, 0x800000, patt)) {
		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
			  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);

	}

	/* Refresh on, sequencer on */
	bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);
	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);

	io_mapping_free(fb);
	return 0;
}

static const uint8_t *
nv05_memory_config(struct nvbios *bios)
{
	/* Defaults for BIOSes lacking a memory config table */
	static const uint8_t default_config_tab[][2] = {
		{ 0x24, 0x00 },
		{ 0x28, 0x00 },
		{ 0x24, 0x01 },
		{ 0x1f, 0x00 },
		{ 0x0f, 0x00 },
		{ 0x17, 0x00 },
		{ 0x06, 0x00 },
		{ 0x00, 0x00 }
	};
	int i = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) &
		 NV_PEXTDEV_BOOT_0_RAMCFG) >> 2;

	if (bios->legacy.mem_init_tbl_ptr)
		return &bios->data[bios->legacy.mem_init_tbl_ptr + 2 * i];
	else
		return default_config_tab[i];
}

static int
nv05_init_compute_mem(struct nvbios *bios)
{
	struct drm_device *dev = bios->dev;
	const uint8_t *ramcfg = nv05_memory_config(bios);
	uint32_t patt = 0xdeadbeef;
	struct io_mapping *fb;
	int i, v;

	/* Map the framebuffer aperture */
	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
				  pci_resource_len(dev->pdev, 1));
	if (!fb)
		return -ENOMEM;

	/* Sequencer off */
	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) | 0x20);

	if (bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_UMA_ENABLE)
		goto out;

	bios_md32(bios, NV04_PFB_DEBUG_0, NV04_PFB_DEBUG_0_REFRESH_OFF, 0);

	/* If present load the hardcoded scrambling table */
	if (bios->legacy.mem_init_tbl_ptr) {
		uint32_t *scramble_tab = (uint32_t *)&bios->data[
			bios->legacy.mem_init_tbl_ptr + 0x10];

		for (i = 0; i < 8; i++)
			bios_wr32(bios, NV04_PFB_SCRAMBLE(i),
				  ROM32(scramble_tab[i]));
	}

	/* Set memory type/width/length defaults depending on the straps */
	bios_md32(bios, NV04_PFB_BOOT_0, 0x3f, ramcfg[0]);

	if (ramcfg[1] & 0x80)
		bios_md32(bios, NV04_PFB_CFG0, 0, NV04_PFB_CFG0_SCRAMBLE);

	bios_md32(bios, NV04_PFB_CFG1, 0x700001, (ramcfg[1] & 1) << 20);
	bios_md32(bios, NV04_PFB_CFG1, 0, 1);

	/* Probe memory bus width */
	for (i = 0; i < 4; i++)
		poke_fb(dev, fb, 4 * i, patt);

	if (peek_fb(dev, fb, 0xc) != patt)
		bios_md32(bios, NV04_PFB_BOOT_0,
			  NV04_PFB_BOOT_0_RAM_WIDTH_128, 0);

	/* Probe memory length */
	v = bios_rd32(bios, NV04_PFB_BOOT_0) & NV04_PFB_BOOT_0_RAM_AMOUNT;

	if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_32MB &&
	    (!read_back_fb(dev, fb, 0x1000000, ++patt) ||
	     !read_back_fb(dev, fb, 0, ++patt)))
		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
			  NV04_PFB_BOOT_0_RAM_AMOUNT_16MB);

	if (v == NV04_PFB_BOOT_0_RAM_AMOUNT_16MB &&
	    !read_back_fb(dev, fb, 0x800000, ++patt))
		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
			  NV04_PFB_BOOT_0_RAM_AMOUNT_8MB);

	if (!read_back_fb(dev, fb, 0x400000, ++patt))
		bios_md32(bios, NV04_PFB_BOOT_0, NV04_PFB_BOOT_0_RAM_AMOUNT,
			  NV04_PFB_BOOT_0_RAM_AMOUNT_4MB);

out:
	/* Sequencer on */
	NVWriteVgaSeq(dev, 0, 1, NVReadVgaSeq(dev, 0, 1) & ~0x20);

	io_mapping_free(fb);
	return 0;
}

static int
nv10_init_compute_mem(struct nvbios *bios)
{
	struct drm_device *dev = bios->dev;
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	const int mem_width[] = { 0x10, 0x00, 0x20 };
	const int mem_width_count = (dev_priv->chipset >= 0x17 ? 3 : 2);
	uint32_t patt = 0xdeadbeef;
	struct io_mapping *fb;
	int i, j, k;

	/* Map the framebuffer aperture */
	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
				  pci_resource_len(dev->pdev, 1));
	if (!fb)
		return -ENOMEM;

	bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);

	/* Probe memory bus width */
	for (i = 0; i < mem_width_count; i++) {
		bios_md32(bios, NV04_PFB_CFG0, 0x30, mem_width[i]);

		for (j = 0; j < 4; j++) {
			for (k = 0; k < 4; k++)
				poke_fb(dev, fb, 0x1c, 0);

			poke_fb(dev, fb, 0x1c, patt);
			poke_fb(dev, fb, 0x3c, 0);

			if (peek_fb(dev, fb, 0x1c) == patt)
				goto mem_width_found;
		}
	}

mem_width_found:
	patt <<= 1;

	/* Probe amount of installed memory */
	for (i = 0; i < 4; i++) {
		int off = bios_rd32(bios, NV04_PFB_FIFO_DATA) - 0x100000;

		poke_fb(dev, fb, off, patt);
		poke_fb(dev, fb, 0, 0);

		peek_fb(dev, fb, 0);
		peek_fb(dev, fb, 0);
		peek_fb(dev, fb, 0);
		peek_fb(dev, fb, 0);

		if (peek_fb(dev, fb, off) == patt)
			goto amount_found;
	}

	/* IC missing - disable the upper half memory space. */
	bios_md32(bios, NV04_PFB_CFG0, 0x1000, 0);

amount_found:
	io_mapping_free(fb);
	return 0;
}

static int
nv20_init_compute_mem(struct nvbios *bios)
{
	struct drm_device *dev = bios->dev;
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	uint32_t mask = (dev_priv->chipset >= 0x25 ? 0x300 : 0x900);
	uint32_t amount, off;
	struct io_mapping *fb;

	/* Map the framebuffer aperture */
	fb = io_mapping_create_wc(pci_resource_start(dev->pdev, 1),
				  pci_resource_len(dev->pdev, 1));
	if (!fb)
		return -ENOMEM;

	bios_wr32(bios, NV10_PFB_REFCTRL, NV10_PFB_REFCTRL_VALID_1);

	/* Allow full addressing */
	bios_md32(bios, NV04_PFB_CFG0, 0, mask);

	amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
	for (off = amount; off > 0x2000000; off -= 0x2000000)
		poke_fb(dev, fb, off - 4, off);

	amount = bios_rd32(bios, NV04_PFB_FIFO_DATA);
	if (amount != peek_fb(dev, fb, amount - 4))
		/* IC missing - disable the upper half memory space. */
		bios_md32(bios, NV04_PFB_CFG0, mask, 0);

	io_mapping_free(fb);
	return 0;
}

2432
static int
2433 2434 2435 2436 2437 2438 2439
init_compute_mem(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_COMPUTE_MEM   opcode: 0x63 ('c')
	 *
	 * offset      (8 bit): opcode
	 *
2440 2441 2442 2443
	 * This opcode is meant to set the PFB memory config registers
	 * appropriately so that we can correctly calculate how much VRAM it
	 * has (on nv10 and better chipsets the amount of installed VRAM is
	 * subsequently reported in NV_PFB_CSTATUS (0x10020C)).
2444
	 *
2445 2446
	 * The implementation of this opcode in general consists of several
	 * parts:
2447
	 *
2448 2449 2450
	 * 1) Determination of memory type and density. Only necessary for
	 *    really old chipsets, the memory type reported by the strap bits
	 *    (0x101000) is assumed to be accurate on nv05 and newer.
2451
	 *
2452 2453 2454
	 * 2) Determination of the memory bus width. Usually done by a cunning
	 *    combination of writes to offsets 0x1c and 0x3c in the fb, and
	 *    seeing whether the written values are read back correctly.
2455
	 *
2456 2457
	 *    Only necessary on nv0x-nv1x and nv34, on the other cards we can
	 *    trust the straps.
2458
	 *
2459 2460 2461 2462
	 * 3) Determination of how many of the card's RAM pads have ICs
	 *    attached, usually done by a cunning combination of writes to an
	 *    offset slightly less than the maximum memory reported by
	 *    NV_PFB_CSTATUS, then seeing if the test pattern can be read back.
2463
	 *
2464 2465 2466 2467
	 * This appears to be a NOP on IGPs and NV4x or newer chipsets, both io
	 * logs of the VBIOS and kmmio traces of the binary driver POSTing the
	 * card show nothing being done for this opcode. Why is it still listed
	 * in the table?!
2468 2469 2470 2471 2472
	 */

	/* no iexec->execute check by design */

	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
2473
	int ret;
2474

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	if (dev_priv->chipset >= 0x40 ||
	    dev_priv->chipset == 0x1a ||
	    dev_priv->chipset == 0x1f)
		ret = 0;
	else if (dev_priv->chipset >= 0x20 &&
		 dev_priv->chipset != 0x34)
		ret = nv20_init_compute_mem(bios);
	else if (dev_priv->chipset >= 0x10)
		ret = nv10_init_compute_mem(bios);
	else if (dev_priv->chipset >= 0x5)
		ret = nv05_init_compute_mem(bios);
	else
		ret = nv04_init_compute_mem(bios);
2488

2489 2490
	if (ret)
		return ret;
2491

2492
	return 1;
2493 2494
}

2495
static int
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
init_reset(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_RESET   opcode: 0x65 ('e')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (32 bit): value1
	 * offset + 9  (32 bit): value2
	 *
	 * Assign "value1" to "register", then assign "value2" to "register"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint32_t value1 = ROM32(bios->data[offset + 5]);
	uint32_t value2 = ROM32(bios->data[offset + 9]);
	uint32_t pci_nv_19, pci_nv_20;

	/* no iexec->execute check by design */

	pci_nv_19 = bios_rd32(bios, NV_PBUS_PCI_NV_19);
2517 2518
	bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19 & ~0xf00);

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	bios_wr32(bios, reg, value1);

	udelay(10);

	bios_wr32(bios, reg, value2);
	bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19);

	pci_nv_20 = bios_rd32(bios, NV_PBUS_PCI_NV_20);
	pci_nv_20 &= ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED;	/* 0xfffffffe */
	bios_wr32(bios, NV_PBUS_PCI_NV_20, pci_nv_20);

2530
	return 13;
2531 2532
}

2533
static int
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
init_configure_mem(struct nvbios *bios, uint16_t offset,
		   struct init_exec *iexec)
{
	/*
	 * INIT_CONFIGURE_MEM   opcode: 0x66 ('f')
	 *
	 * offset      (8 bit): opcode
	 *
	 * Equivalent to INIT_DONE on bios version 3 or greater.
	 * For early bios versions, sets up the memory registers, using values
	 * taken from the memory init table
	 */

	/* no iexec->execute check by design */

	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
	uint16_t seqtbloffs = bios->legacy.sdr_seq_tbl_ptr, meminitdata = meminitoffs + 6;
	uint32_t reg, data;

	if (bios->major_version > 2)
2554
		return 0;
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

	bios_idxprt_wr(bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX, bios_idxprt_rd(
		       bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX) | 0x20);

	if (bios->data[meminitoffs] & 1)
		seqtbloffs = bios->legacy.ddr_seq_tbl_ptr;

	for (reg = ROM32(bios->data[seqtbloffs]);
	     reg != 0xffffffff;
	     reg = ROM32(bios->data[seqtbloffs += 4])) {

		switch (reg) {
2567 2568
		case NV04_PFB_PRE:
			data = NV04_PFB_PRE_CMD_PRECHARGE;
2569
			break;
2570 2571
		case NV04_PFB_PAD:
			data = NV04_PFB_PAD_CKE_NORMAL;
2572
			break;
2573 2574
		case NV04_PFB_REF:
			data = NV04_PFB_REF_CMD_REFRESH;
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
			break;
		default:
			data = ROM32(bios->data[meminitdata]);
			meminitdata += 4;
			if (data == 0xffffffff)
				continue;
		}

		bios_wr32(bios, reg, data);
	}

2586
	return 1;
2587 2588
}

2589
static int
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
init_configure_clk(struct nvbios *bios, uint16_t offset,
		   struct init_exec *iexec)
{
	/*
	 * INIT_CONFIGURE_CLK   opcode: 0x67 ('g')
	 *
	 * offset      (8 bit): opcode
	 *
	 * Equivalent to INIT_DONE on bios version 3 or greater.
	 * For early bios versions, sets up the NVClk and MClk PLLs, using
	 * values taken from the memory init table
	 */

	/* no iexec->execute check by design */

	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
	int clock;

	if (bios->major_version > 2)
2609
		return 0;
2610 2611 2612 2613 2614 2615 2616 2617 2618

	clock = ROM16(bios->data[meminitoffs + 4]) * 10;
	setPLL(bios, NV_PRAMDAC_NVPLL_COEFF, clock);

	clock = ROM16(bios->data[meminitoffs + 2]) * 10;
	if (bios->data[meminitoffs] & 1) /* DDR */
		clock *= 2;
	setPLL(bios, NV_PRAMDAC_MPLL_COEFF, clock);

2619
	return 1;
2620 2621
}

2622
static int
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
init_configure_preinit(struct nvbios *bios, uint16_t offset,
		       struct init_exec *iexec)
{
	/*
	 * INIT_CONFIGURE_PREINIT   opcode: 0x68 ('h')
	 *
	 * offset      (8 bit): opcode
	 *
	 * Equivalent to INIT_DONE on bios version 3 or greater.
	 * For early bios versions, does early init, loading ram and crystal
	 * configuration from straps into CR3C
	 */

	/* no iexec->execute check by design */

	uint32_t straps = bios_rd32(bios, NV_PEXTDEV_BOOT_0);
2639
	uint8_t cr3c = ((straps << 2) & 0xf0) | (straps & 0x40) >> 6;
2640 2641

	if (bios->major_version > 2)
2642
		return 0;
2643 2644 2645 2646

	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR,
			     NV_CIO_CRE_SCRATCH4__INDEX, cr3c);

2647
	return 1;
2648 2649
}

2650
static int
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
init_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_IO   opcode: 0x69 ('i')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): CRTC port
	 * offset + 3  (8  bit): mask
	 * offset + 4  (8  bit): data
	 *
	 * Assign ((IOVAL("crtc port") & "mask") | "data") to "crtc port"
	 */

	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	uint16_t crtcport = ROM16(bios->data[offset + 1]);
	uint8_t mask = bios->data[offset + 3];
	uint8_t data = bios->data[offset + 4];

	if (!iexec->execute)
2670
		return 5;
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Mask: 0x%02X, Data: 0x%02X\n",
		offset, crtcport, mask, data);

	/*
	 * I have no idea what this does, but NVIDIA do this magic sequence
	 * in the places where this INIT_IO happens..
	 */
	if (dev_priv->card_type >= NV_50 && crtcport == 0x3c3 && data == 1) {
		int i;

		bios_wr32(bios, 0x614100, (bios_rd32(
			  bios, 0x614100) & 0x0fffffff) | 0x00800000);

		bios_wr32(bios, 0x00e18c, bios_rd32(
			  bios, 0x00e18c) | 0x00020000);

		bios_wr32(bios, 0x614900, (bios_rd32(
			  bios, 0x614900) & 0x0fffffff) | 0x00800000);

		bios_wr32(bios, 0x000200, bios_rd32(
			  bios, 0x000200) & ~0x40000000);

		mdelay(10);

		bios_wr32(bios, 0x00e18c, bios_rd32(
			  bios, 0x00e18c) & ~0x00020000);

		bios_wr32(bios, 0x000200, bios_rd32(
			  bios, 0x000200) | 0x40000000);

		bios_wr32(bios, 0x614100, 0x00800018);
		bios_wr32(bios, 0x614900, 0x00800018);

		mdelay(10);

		bios_wr32(bios, 0x614100, 0x10000018);
		bios_wr32(bios, 0x614900, 0x10000018);

		for (i = 0; i < 3; i++)
			bios_wr32(bios, 0x614280 + (i*0x800), bios_rd32(
				  bios, 0x614280 + (i*0x800)) & 0xf0f0f0f0);

		for (i = 0; i < 2; i++)
			bios_wr32(bios, 0x614300 + (i*0x800), bios_rd32(
				  bios, 0x614300 + (i*0x800)) & 0xfffff0f0);

		for (i = 0; i < 3; i++)
			bios_wr32(bios, 0x614380 + (i*0x800), bios_rd32(
				  bios, 0x614380 + (i*0x800)) & 0xfffff0f0);

		for (i = 0; i < 2; i++)
			bios_wr32(bios, 0x614200 + (i*0x800), bios_rd32(
				  bios, 0x614200 + (i*0x800)) & 0xfffffff0);

		for (i = 0; i < 2; i++)
			bios_wr32(bios, 0x614108 + (i*0x800), bios_rd32(
				  bios, 0x614108 + (i*0x800)) & 0x0fffffff);
2729
		return 5;
2730 2731 2732 2733
	}

	bios_port_wr(bios, crtcport, (bios_port_rd(bios, crtcport) & mask) |
									data);
2734
	return 5;
2735 2736
}

2737
static int
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
init_sub(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_SUB   opcode: 0x6B ('k')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): script number
	 *
	 * Execute script number "script number", as a subroutine
	 */

	uint8_t sub = bios->data[offset + 1];

	if (!iexec->execute)
2752
		return 2;
2753 2754 2755 2756 2757 2758 2759 2760 2761

	BIOSLOG(bios, "0x%04X: Calling script %d\n", offset, sub);

	parse_init_table(bios,
			 ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]),
			 iexec);

	BIOSLOG(bios, "0x%04X: End of script %d\n", offset, sub);

2762
	return 2;
2763 2764
}

2765
static int
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
init_ram_condition(struct nvbios *bios, uint16_t offset,
		   struct init_exec *iexec)
{
	/*
	 * INIT_RAM_CONDITION   opcode: 0x6D ('m')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): mask
	 * offset + 2  (8 bit): cmpval
	 *
2776
	 * Test if (NV04_PFB_BOOT_0 & "mask") equals "cmpval".
2777 2778 2779 2780 2781 2782 2783 2784 2785
	 * If condition not met skip subsequent opcodes until condition is
	 * inverted (INIT_NOT), or we hit INIT_RESUME
	 */

	uint8_t mask = bios->data[offset + 1];
	uint8_t cmpval = bios->data[offset + 2];
	uint8_t data;

	if (!iexec->execute)
2786
		return 3;
2787

2788
	data = bios_rd32(bios, NV04_PFB_BOOT_0) & mask;
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799

	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
		offset, data, cmpval);

	if (data == cmpval)
		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
	else {
		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
		iexec->execute = false;
	}

2800
	return 3;
2801 2802
}

2803
static int
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
init_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_NV_REG   opcode: 0x6E ('n')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (32 bit): mask
	 * offset + 9  (32 bit): data
	 *
	 * Assign ((REGVAL("register") & "mask") | "data") to "register"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint32_t mask = ROM32(bios->data[offset + 5]);
	uint32_t data = ROM32(bios->data[offset + 9]);

	if (!iexec->execute)
2822
		return 13;
2823 2824 2825 2826 2827 2828

	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Mask: 0x%08X, Data: 0x%08X\n",
		offset, reg, mask, data);

	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | data);

2829
	return 13;
2830 2831
}

2832
static int
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
init_macro(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_MACRO   opcode: 0x6F ('o')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): macro number
	 *
	 * Look up macro index "macro number" in the macro index table.
	 * The macro index table entry has 1 byte for the index in the macro
	 * table, and 1 byte for the number of times to repeat the macro.
	 * The macro table entry has 4 bytes for the register address and
	 * 4 bytes for the value to write to that register
	 */

	uint8_t macro_index_tbl_idx = bios->data[offset + 1];
	uint16_t tmp = bios->macro_index_tbl_ptr + (macro_index_tbl_idx * MACRO_INDEX_SIZE);
	uint8_t macro_tbl_idx = bios->data[tmp];
	uint8_t count = bios->data[tmp + 1];
	uint32_t reg, data;
	int i;

	if (!iexec->execute)
2856
		return 2;
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870

	BIOSLOG(bios, "0x%04X: Macro: 0x%02X, MacroTableIndex: 0x%02X, "
		      "Count: 0x%02X\n",
		offset, macro_index_tbl_idx, macro_tbl_idx, count);

	for (i = 0; i < count; i++) {
		uint16_t macroentryptr = bios->macro_tbl_ptr + (macro_tbl_idx + i) * MACRO_SIZE;

		reg = ROM32(bios->data[macroentryptr]);
		data = ROM32(bios->data[macroentryptr + 4]);

		bios_wr32(bios, reg, data);
	}

2871
	return 2;
2872 2873
}

2874
static int
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
init_done(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_DONE   opcode: 0x71 ('q')
	 *
	 * offset      (8  bit): opcode
	 *
	 * End the current script
	 */

	/* mild retval abuse to stop parsing this table */
2886
	return 0;
2887 2888
}

2889
static int
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
init_resume(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_RESUME   opcode: 0x72 ('r')
	 *
	 * offset      (8  bit): opcode
	 *
	 * End the current execute / no-execute condition
	 */

	if (iexec->execute)
2901
		return 1;
2902 2903 2904 2905

	iexec->execute = true;
	BIOSLOG(bios, "0x%04X: ---- Executing following commands ----\n", offset);

2906
	return 1;
2907 2908
}

2909
static int
2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
init_time(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_TIME   opcode: 0x74 ('t')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): time
	 *
	 * Sleep for "time" microseconds.
	 */

	unsigned time = ROM16(bios->data[offset + 1]);

	if (!iexec->execute)
2924
		return 3;
2925 2926 2927 2928 2929 2930 2931

	BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X microseconds\n",
		offset, time);

	if (time < 1000)
		udelay(time);
	else
2932
		mdelay((time + 900) / 1000);
2933

2934
	return 3;
2935 2936
}

2937
static int
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
init_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_CONDITION   opcode: 0x75 ('u')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): condition number
	 *
	 * Check condition "condition number" in the condition table.
	 * If condition not met skip subsequent opcodes until condition is
	 * inverted (INIT_NOT), or we hit INIT_RESUME
	 */

	uint8_t cond = bios->data[offset + 1];

	if (!iexec->execute)
2954
		return 2;
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964

	BIOSLOG(bios, "0x%04X: Condition: 0x%02X\n", offset, cond);

	if (bios_condition_met(bios, offset, cond))
		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
	else {
		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
		iexec->execute = false;
	}

2965
	return 2;
2966 2967
}

2968
static int
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
init_io_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_IO_CONDITION  opcode: 0x76
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): condition number
	 *
	 * Check condition "condition number" in the io condition table.
	 * If condition not met skip subsequent opcodes until condition is
	 * inverted (INIT_NOT), or we hit INIT_RESUME
	 */

	uint8_t cond = bios->data[offset + 1];

	if (!iexec->execute)
2985
		return 2;
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995

	BIOSLOG(bios, "0x%04X: IO condition: 0x%02X\n", offset, cond);

	if (io_condition_met(bios, offset, cond))
		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
	else {
		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
		iexec->execute = false;
	}

2996
	return 2;
2997 2998
}

2999
static int
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
init_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_INDEX_IO   opcode: 0x78 ('x')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): CRTC port
	 * offset + 3  (8  bit): CRTC index
	 * offset + 4  (8  bit): mask
	 * offset + 5  (8  bit): data
	 *
	 * Read value at index "CRTC index" on "CRTC port", AND with "mask",
	 * OR with "data", write-back
	 */

	uint16_t crtcport = ROM16(bios->data[offset + 1]);
	uint8_t crtcindex = bios->data[offset + 3];
	uint8_t mask = bios->data[offset + 4];
	uint8_t data = bios->data[offset + 5];
	uint8_t value;

	if (!iexec->execute)
3022
		return 6;
3023 3024 3025 3026 3027 3028 3029 3030

	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
		      "Data: 0x%02X\n",
		offset, crtcport, crtcindex, mask, data);

	value = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) | data;
	bios_idxprt_wr(bios, crtcport, crtcindex, value);

3031
	return 6;
3032 3033
}

3034
static int
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
init_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_PLL   opcode: 0x79 ('y')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (16 bit): freq
	 *
	 * Set PLL register "register" to coefficients for frequency (10kHz)
	 * "freq"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint16_t freq = ROM16(bios->data[offset + 5]);

	if (!iexec->execute)
3052
		return 7;
3053 3054 3055 3056 3057

	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Freq: %d0kHz\n", offset, reg, freq);

	setPLL(bios, reg, freq * 10);

3058
	return 7;
3059 3060
}

3061
static int
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
init_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_REG   opcode: 0x7A ('z')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (32 bit): value
	 *
	 * Assign "value" to "register"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint32_t value = ROM32(bios->data[offset + 5]);

	if (!iexec->execute)
3078
		return 9;
3079 3080 3081 3082 3083 3084

	if (reg == 0x000200)
		value |= 1;

	bios_wr32(bios, reg, value);

3085
	return 9;
3086 3087
}

3088
static int
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
init_ram_restrict_pll(struct nvbios *bios, uint16_t offset,
		      struct init_exec *iexec)
{
	/*
	 * INIT_RAM_RESTRICT_PLL   opcode: 0x87 ('')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): PLL type
	 * offset + 2 (32 bit): frequency 0
	 *
	 * Uses the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
	 * ram_restrict_table_ptr.  The value read from there is used to select
	 * a frequency from the table starting at 'frequency 0' to be
	 * programmed into the PLL corresponding to 'type'.
	 *
	 * The PLL limits table on cards using this opcode has a mapping of
	 * 'type' to the relevant registers.
	 */

	struct drm_device *dev = bios->dev;
	uint32_t strap = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & 0x0000003c) >> 2;
	uint8_t index = bios->data[bios->ram_restrict_tbl_ptr + strap];
	uint8_t type = bios->data[offset + 1];
	uint32_t freq = ROM32(bios->data[offset + 2 + (index * 4)]);
	uint8_t *pll_limits = &bios->data[bios->pll_limit_tbl_ptr], *entry;
3114
	int len = 2 + bios->ram_restrict_group_count * 4;
3115 3116 3117
	int i;

	if (!iexec->execute)
3118
		return len;
3119 3120 3121

	if (!bios->pll_limit_tbl_ptr || (pll_limits[0] & 0xf0) != 0x30) {
		NV_ERROR(dev, "PLL limits table not version 3.x\n");
3122
		return len; /* deliberate, allow default clocks to remain */
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
	}

	entry = pll_limits + pll_limits[1];
	for (i = 0; i < pll_limits[3]; i++, entry += pll_limits[2]) {
		if (entry[0] == type) {
			uint32_t reg = ROM32(entry[3]);

			BIOSLOG(bios, "0x%04X: "
				      "Type %02x Reg 0x%08x Freq %dKHz\n",
				offset, type, reg, freq);

			setPLL(bios, reg, freq);
3135
			return len;
3136 3137 3138 3139
		}
	}

	NV_ERROR(dev, "PLL type 0x%02x not found in PLL limits table", type);
3140
	return len;
3141 3142
}

3143
static int
3144 3145 3146 3147 3148 3149 3150 3151 3152
init_8c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_8C   opcode: 0x8C ('')
	 *
	 * NOP so far....
	 *
	 */

3153
	return 1;
3154 3155
}

3156
static int
3157 3158 3159 3160 3161 3162 3163 3164 3165
init_8d(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_8D   opcode: 0x8D ('')
	 *
	 * NOP so far....
	 *
	 */

3166
	return 1;
3167 3168
}

3169
static int
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
init_gpio(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_GPIO   opcode: 0x8E ('')
	 *
	 * offset      (8 bit): opcode
	 *
	 * Loop over all entries in the DCB GPIO table, and initialise
	 * each GPIO according to various values listed in each entry
	 */

3181 3182
	if (iexec->execute && bios->execute)
		nouveau_gpio_reset(bios->dev);
3183

3184
	return 1;
3185 3186
}

3187
static int
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
init_ram_restrict_zm_reg_group(struct nvbios *bios, uint16_t offset,
			       struct init_exec *iexec)
{
	/*
	 * INIT_RAM_RESTRICT_ZM_REG_GROUP   opcode: 0x8F ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): reg
	 * offset + 5  (8  bit): regincrement
	 * offset + 6  (8  bit): count
	 * offset + 7  (32 bit): value 1,1
	 * ...
	 *
	 * Use the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
	 * ram_restrict_table_ptr. The value read from here is 'n', and
	 * "value 1,n" gets written to "reg". This repeats "count" times and on
	 * each iteration 'm', "reg" increases by "regincrement" and
	 * "value m,n" is used. The extent of n is limited by a number read
	 * from the 'M' BIT table, herein called "blocklen"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint8_t regincrement = bios->data[offset + 5];
	uint8_t count = bios->data[offset + 6];
	uint32_t strap_ramcfg, data;
3213 3214 3215
	/* previously set by 'M' BIT table */
	uint16_t blocklen = bios->ram_restrict_group_count * 4;
	int len = 7 + count * blocklen;
3216 3217 3218
	uint8_t index;
	int i;

3219
	/* critical! to know the length of the opcode */;
3220 3221 3222 3223
	if (!blocklen) {
		NV_ERROR(bios->dev,
			 "0x%04X: Zero block length - has the M table "
			 "been parsed?\n", offset);
3224
		return -EINVAL;
3225 3226
	}

3227 3228 3229
	if (!iexec->execute)
		return len;

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	strap_ramcfg = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 2) & 0xf;
	index = bios->data[bios->ram_restrict_tbl_ptr + strap_ramcfg];

	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, RegIncrement: 0x%02X, "
		      "Count: 0x%02X, StrapRamCfg: 0x%02X, Index: 0x%02X\n",
		offset, reg, regincrement, count, strap_ramcfg, index);

	for (i = 0; i < count; i++) {
		data = ROM32(bios->data[offset + 7 + index * 4 + blocklen * i]);

		bios_wr32(bios, reg, data);

		reg += regincrement;
	}

3245
	return len;
3246 3247
}

3248
static int
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
init_copy_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_COPY_ZM_REG   opcode: 0x90 ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): src reg
	 * offset + 5  (32 bit): dst reg
	 *
	 * Put contents of "src reg" into "dst reg"
	 */

	uint32_t srcreg = ROM32(bios->data[offset + 1]);
	uint32_t dstreg = ROM32(bios->data[offset + 5]);

	if (!iexec->execute)
3265
		return 9;
3266 3267 3268

	bios_wr32(bios, dstreg, bios_rd32(bios, srcreg));

3269
	return 9;
3270 3271
}

3272
static int
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
init_zm_reg_group_addr_latched(struct nvbios *bios, uint16_t offset,
			       struct init_exec *iexec)
{
	/*
	 * INIT_ZM_REG_GROUP_ADDRESS_LATCHED   opcode: 0x91 ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): dst reg
	 * offset + 5  (8  bit): count
	 * offset + 6  (32 bit): data 1
	 * ...
	 *
	 * For each of "count" values write "data n" to "dst reg"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint8_t count = bios->data[offset + 5];
3290
	int len = 6 + count * 4;
3291 3292 3293
	int i;

	if (!iexec->execute)
3294
		return len;
3295 3296 3297 3298 3299 3300

	for (i = 0; i < count; i++) {
		uint32_t data = ROM32(bios->data[offset + 6 + 4 * i]);
		bios_wr32(bios, reg, data);
	}

3301
	return len;
3302 3303
}

3304
static int
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
init_reserved(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_RESERVED   opcode: 0x92 ('')
	 *
	 * offset      (8 bit): opcode
	 *
	 * Seemingly does nothing
	 */

3315
	return 1;
3316 3317
}

3318
static int
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
init_96(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_96   opcode: 0x96 ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): sreg
	 * offset + 5  (8  bit): sshift
	 * offset + 6  (8  bit): smask
	 * offset + 7  (8  bit): index
	 * offset + 8  (32 bit): reg
	 * offset + 12 (32 bit): mask
	 * offset + 16 (8  bit): shift
	 *
	 */

	uint16_t xlatptr = bios->init96_tbl_ptr + (bios->data[offset + 7] * 2);
	uint32_t reg = ROM32(bios->data[offset + 8]);
	uint32_t mask = ROM32(bios->data[offset + 12]);
	uint32_t val;

	val = bios_rd32(bios, ROM32(bios->data[offset + 1]));
	if (bios->data[offset + 5] < 0x80)
		val >>= bios->data[offset + 5];
	else
		val <<= (0x100 - bios->data[offset + 5]);
	val &= bios->data[offset + 6];

	val   = bios->data[ROM16(bios->data[xlatptr]) + val];
	val <<= bios->data[offset + 16];

	if (!iexec->execute)
3351
		return 17;
3352 3353

	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | val);
3354
	return 17;
3355 3356
}

3357
static int
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
init_97(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_97   opcode: 0x97 ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (32 bit): mask
	 * offset + 9  (32 bit): value
	 *
	 * Adds "value" to "register" preserving the fields specified
	 * by "mask"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint32_t mask = ROM32(bios->data[offset + 5]);
	uint32_t add = ROM32(bios->data[offset + 9]);
	uint32_t val;

	val = bios_rd32(bios, reg);
	val = (val & mask) | ((val + add) & ~mask);

	if (!iexec->execute)
3381
		return 13;
3382 3383

	bios_wr32(bios, reg, val);
3384
	return 13;
3385 3386
}

3387
static int
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
init_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_AUXCH   opcode: 0x98 ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): address
	 * offset + 5  (8  bit): count
	 * offset + 6  (8  bit): mask 0
	 * offset + 7  (8  bit): data 0
	 *  ...
	 *
	 */

	struct drm_device *dev = bios->dev;
	struct nouveau_i2c_chan *auxch;
	uint32_t addr = ROM32(bios->data[offset + 1]);
3405 3406
	uint8_t count = bios->data[offset + 5];
	int len = 6 + count * 2;
3407 3408 3409 3410
	int ret, i;

	if (!bios->display.output) {
		NV_ERROR(dev, "INIT_AUXCH: no active output\n");
3411
		return len;
3412 3413 3414 3415 3416 3417
	}

	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
	if (!auxch) {
		NV_ERROR(dev, "INIT_AUXCH: couldn't get auxch %d\n",
			 bios->display.output->i2c_index);
3418
		return len;
3419 3420 3421
	}

	if (!iexec->execute)
3422
		return len;
3423 3424

	offset += 6;
3425
	for (i = 0; i < count; i++, offset += 2) {
3426 3427 3428 3429 3430
		uint8_t data;

		ret = nouveau_dp_auxch(auxch, 9, addr, &data, 1);
		if (ret) {
			NV_ERROR(dev, "INIT_AUXCH: rd auxch fail %d\n", ret);
3431
			return len;
3432 3433 3434 3435 3436 3437 3438 3439
		}

		data &= bios->data[offset + 0];
		data |= bios->data[offset + 1];

		ret = nouveau_dp_auxch(auxch, 8, addr, &data, 1);
		if (ret) {
			NV_ERROR(dev, "INIT_AUXCH: wr auxch fail %d\n", ret);
3440
			return len;
3441 3442 3443
		}
	}

3444
	return len;
3445 3446
}

3447
static int
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
init_zm_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_AUXCH   opcode: 0x99 ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): address
	 * offset + 5  (8  bit): count
	 * offset + 6  (8  bit): data 0
	 *  ...
	 *
	 */

	struct drm_device *dev = bios->dev;
	struct nouveau_i2c_chan *auxch;
	uint32_t addr = ROM32(bios->data[offset + 1]);
3464 3465
	uint8_t count = bios->data[offset + 5];
	int len = 6 + count;
3466 3467 3468 3469
	int ret, i;

	if (!bios->display.output) {
		NV_ERROR(dev, "INIT_ZM_AUXCH: no active output\n");
3470
		return len;
3471 3472 3473 3474 3475 3476
	}

	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
	if (!auxch) {
		NV_ERROR(dev, "INIT_ZM_AUXCH: couldn't get auxch %d\n",
			 bios->display.output->i2c_index);
3477
		return len;
3478 3479 3480
	}

	if (!iexec->execute)
3481
		return len;
3482 3483

	offset += 6;
3484
	for (i = 0; i < count; i++, offset++) {
3485 3486 3487
		ret = nouveau_dp_auxch(auxch, 8, addr, &bios->data[offset], 1);
		if (ret) {
			NV_ERROR(dev, "INIT_ZM_AUXCH: wr auxch fail %d\n", ret);
3488
			return len;
3489 3490 3491
		}
	}

3492
	return len;
3493 3494
}

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
static int
init_i2c_long_if(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_I2C_LONG_IF   opcode: 0x9A ('')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): DCB I2C table entry index
	 * offset + 2  (8 bit): I2C slave address
	 * offset + 3  (16 bit): I2C register
	 * offset + 5  (8 bit): mask
	 * offset + 6  (8 bit): data
	 *
	 * Read the register given by "I2C register" on the device addressed
	 * by "I2C slave address" on the I2C bus given by "DCB I2C table
	 * entry index". Compare the result AND "mask" to "data".
	 * If they're not equal, skip subsequent opcodes until condition is
	 * inverted (INIT_NOT), or we hit INIT_RESUME
	 */

	uint8_t i2c_index = bios->data[offset + 1];
	uint8_t i2c_address = bios->data[offset + 2] >> 1;
	uint8_t reglo = bios->data[offset + 3];
	uint8_t reghi = bios->data[offset + 4];
	uint8_t mask = bios->data[offset + 5];
	uint8_t data = bios->data[offset + 6];
	struct nouveau_i2c_chan *chan;
	uint8_t buf0[2] = { reghi, reglo };
	uint8_t buf1[1];
	struct i2c_msg msg[2] = {
		{ i2c_address, 0, 1, buf0 },
		{ i2c_address, I2C_M_RD, 1, buf1 },
	};
	int ret;

	/* no execute check by design */

	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X\n",
		offset, i2c_index, i2c_address);

	chan = init_i2c_device_find(bios->dev, i2c_index);
	if (!chan)
		return -ENODEV;


	ret = i2c_transfer(&chan->adapter, msg, 2);
	if (ret < 0) {
		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: [no device], "
			      "Mask: 0x%02X, Data: 0x%02X\n",
			offset, reghi, reglo, mask, data);
		iexec->execute = 0;
		return 7;
	}

	BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X:0x%02X, Value: 0x%02X, "
		      "Mask: 0x%02X, Data: 0x%02X\n",
		offset, reghi, reglo, buf1[0], mask, data);

	iexec->execute = ((buf1[0] & mask) == data);

	return 7;
}

3558 3559 3560
static struct init_tbl_entry itbl_entry[] = {
	/* command name                       , id  , length  , offset  , mult    , command handler                 */
	/* INIT_PROG (0x31, 15, 10, 4) removed due to no example of use */
3561 3562 3563 3564 3565 3566 3567
	{ "INIT_IO_RESTRICT_PROG"             , 0x32, init_io_restrict_prog           },
	{ "INIT_REPEAT"                       , 0x33, init_repeat                     },
	{ "INIT_IO_RESTRICT_PLL"              , 0x34, init_io_restrict_pll            },
	{ "INIT_END_REPEAT"                   , 0x36, init_end_repeat                 },
	{ "INIT_COPY"                         , 0x37, init_copy                       },
	{ "INIT_NOT"                          , 0x38, init_not                        },
	{ "INIT_IO_FLAG_CONDITION"            , 0x39, init_io_flag_condition          },
3568 3569 3570
	{ "INIT_DP_CONDITION"                 , 0x3A, init_dp_condition               },
	{ "INIT_OP_3B"                        , 0x3B, init_op_3b                      },
	{ "INIT_OP_3C"                        , 0x3C, init_op_3c                      },
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
	{ "INIT_INDEX_ADDRESS_LATCHED"        , 0x49, init_idx_addr_latched           },
	{ "INIT_IO_RESTRICT_PLL2"             , 0x4A, init_io_restrict_pll2           },
	{ "INIT_PLL2"                         , 0x4B, init_pll2                       },
	{ "INIT_I2C_BYTE"                     , 0x4C, init_i2c_byte                   },
	{ "INIT_ZM_I2C_BYTE"                  , 0x4D, init_zm_i2c_byte                },
	{ "INIT_ZM_I2C"                       , 0x4E, init_zm_i2c                     },
	{ "INIT_TMDS"                         , 0x4F, init_tmds                       },
	{ "INIT_ZM_TMDS_GROUP"                , 0x50, init_zm_tmds_group              },
	{ "INIT_CR_INDEX_ADDRESS_LATCHED"     , 0x51, init_cr_idx_adr_latch           },
	{ "INIT_CR"                           , 0x52, init_cr                         },
	{ "INIT_ZM_CR"                        , 0x53, init_zm_cr                      },
	{ "INIT_ZM_CR_GROUP"                  , 0x54, init_zm_cr_group                },
	{ "INIT_CONDITION_TIME"               , 0x56, init_condition_time             },
3584
	{ "INIT_LTIME"                        , 0x57, init_ltime                      },
3585
	{ "INIT_ZM_REG_SEQUENCE"              , 0x58, init_zm_reg_sequence            },
3586
	/* INIT_INDIRECT_REG (0x5A, 7, 0, 0) removed due to no example of use */
3587
	{ "INIT_SUB_DIRECT"                   , 0x5B, init_sub_direct                 },
3588
	{ "INIT_JUMP"                         , 0x5C, init_jump                       },
3589
	{ "INIT_I2C_IF"                       , 0x5E, init_i2c_if                     },
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
	{ "INIT_COPY_NV_REG"                  , 0x5F, init_copy_nv_reg                },
	{ "INIT_ZM_INDEX_IO"                  , 0x62, init_zm_index_io                },
	{ "INIT_COMPUTE_MEM"                  , 0x63, init_compute_mem                },
	{ "INIT_RESET"                        , 0x65, init_reset                      },
	{ "INIT_CONFIGURE_MEM"                , 0x66, init_configure_mem              },
	{ "INIT_CONFIGURE_CLK"                , 0x67, init_configure_clk              },
	{ "INIT_CONFIGURE_PREINIT"            , 0x68, init_configure_preinit          },
	{ "INIT_IO"                           , 0x69, init_io                         },
	{ "INIT_SUB"                          , 0x6B, init_sub                        },
	{ "INIT_RAM_CONDITION"                , 0x6D, init_ram_condition              },
	{ "INIT_NV_REG"                       , 0x6E, init_nv_reg                     },
	{ "INIT_MACRO"                        , 0x6F, init_macro                      },
	{ "INIT_DONE"                         , 0x71, init_done                       },
	{ "INIT_RESUME"                       , 0x72, init_resume                     },
3604
	/* INIT_RAM_CONDITION2 (0x73, 9, 0, 0) removed due to no example of use */
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
	{ "INIT_TIME"                         , 0x74, init_time                       },
	{ "INIT_CONDITION"                    , 0x75, init_condition                  },
	{ "INIT_IO_CONDITION"                 , 0x76, init_io_condition               },
	{ "INIT_INDEX_IO"                     , 0x78, init_index_io                   },
	{ "INIT_PLL"                          , 0x79, init_pll                        },
	{ "INIT_ZM_REG"                       , 0x7A, init_zm_reg                     },
	{ "INIT_RAM_RESTRICT_PLL"             , 0x87, init_ram_restrict_pll           },
	{ "INIT_8C"                           , 0x8C, init_8c                         },
	{ "INIT_8D"                           , 0x8D, init_8d                         },
	{ "INIT_GPIO"                         , 0x8E, init_gpio                       },
	{ "INIT_RAM_RESTRICT_ZM_REG_GROUP"    , 0x8F, init_ram_restrict_zm_reg_group  },
	{ "INIT_COPY_ZM_REG"                  , 0x90, init_copy_zm_reg                },
	{ "INIT_ZM_REG_GROUP_ADDRESS_LATCHED" , 0x91, init_zm_reg_group_addr_latched  },
	{ "INIT_RESERVED"                     , 0x92, init_reserved                   },
	{ "INIT_96"                           , 0x96, init_96                         },
	{ "INIT_97"                           , 0x97, init_97                         },
	{ "INIT_AUXCH"                        , 0x98, init_auxch                      },
	{ "INIT_ZM_AUXCH"                     , 0x99, init_zm_auxch                   },
3623
	{ "INIT_I2C_LONG_IF"                  , 0x9A, init_i2c_long_if                },
3624
	{ NULL                                , 0   , NULL                            }
3625 3626 3627 3628 3629
};

#define MAX_TABLE_OPS 1000

static int
3630
parse_init_table(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
{
	/*
	 * Parses all commands in an init table.
	 *
	 * We start out executing all commands found in the init table. Some
	 * opcodes may change the status of iexec->execute to SKIP, which will
	 * cause the following opcodes to perform no operation until the value
	 * is changed back to EXECUTE.
	 */

3641
	int count = 0, i, ret;
3642 3643
	uint8_t id;

3644 3645 3646 3647
	/* catch NULL script pointers */
	if (offset == 0)
		return 0;

3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
	/*
	 * Loop until INIT_DONE causes us to break out of the loop
	 * (or until offset > bios length just in case... )
	 * (and no more than MAX_TABLE_OPS iterations, just in case... )
	 */
	while ((offset < bios->length) && (count++ < MAX_TABLE_OPS)) {
		id = bios->data[offset];

		/* Find matching id in itbl_entry */
		for (i = 0; itbl_entry[i].name && (itbl_entry[i].id != id); i++)
			;

3660
		if (!itbl_entry[i].name) {
3661 3662 3663 3664 3665
			NV_ERROR(bios->dev,
				 "0x%04X: Init table command not found: "
				 "0x%02X\n", offset, id);
			return -ENOENT;
		}
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686

		BIOSLOG(bios, "0x%04X: [ (0x%02X) - %s ]\n", offset,
			itbl_entry[i].id, itbl_entry[i].name);

		/* execute eventual command handler */
		ret = (*itbl_entry[i].handler)(bios, offset, iexec);
		if (ret < 0) {
			NV_ERROR(bios->dev, "0x%04X: Failed parsing init "
				 "table opcode: %s %d\n", offset,
				 itbl_entry[i].name, ret);
		}

		if (ret <= 0)
			break;

		/*
		 * Add the offset of the current command including all data
		 * of that command. The offset will then be pointing on the
		 * next op code.
		 */
		offset += ret;
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	}

	if (offset >= bios->length)
		NV_WARN(bios->dev,
			"Offset 0x%04X greater than known bios image length.  "
			"Corrupt image?\n", offset);
	if (count >= MAX_TABLE_OPS)
		NV_WARN(bios->dev,
			"More than %d opcodes to a table is unlikely, "
			"is the bios image corrupt?\n", MAX_TABLE_OPS);

	return 0;
}

static void
parse_init_tables(struct nvbios *bios)
{
	/* Loops and calls parse_init_table() for each present table. */

	int i = 0;
	uint16_t table;
	struct init_exec iexec = {true, false};

	if (bios->old_style_init) {
		if (bios->init_script_tbls_ptr)
			parse_init_table(bios, bios->init_script_tbls_ptr, &iexec);
		if (bios->extra_init_script_tbl_ptr)
			parse_init_table(bios, bios->extra_init_script_tbl_ptr, &iexec);

		return;
	}

	while ((table = ROM16(bios->data[bios->init_script_tbls_ptr + i]))) {
		NV_INFO(bios->dev,
			"Parsing VBIOS init table %d at offset 0x%04X\n",
			i / 2, table);
		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", table);

		parse_init_table(bios, table, &iexec);
		i += 2;
	}
}

static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk)
{
	int compare_record_len, i = 0;
	uint16_t compareclk, scriptptr = 0;

	if (bios->major_version < 5) /* pre BIT */
		compare_record_len = 3;
	else
		compare_record_len = 4;

	do {
		compareclk = ROM16(bios->data[clktable + compare_record_len * i]);
		if (pxclk >= compareclk * 10) {
			if (bios->major_version < 5) {
				uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i];
				scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]);
			} else
				scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]);
			break;
		}
		i++;
	} while (compareclk);

	return scriptptr;
}

static void
run_digital_op_script(struct drm_device *dev, uint16_t scriptptr,
		      struct dcb_entry *dcbent, int head, bool dl)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
3761
	struct nvbios *bios = &dev_priv->vbios;
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
	struct init_exec iexec = {true, false};

	NV_TRACE(dev, "0x%04X: Parsing digital output script table\n",
		 scriptptr);
	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_44,
		       head ? NV_CIO_CRE_44_HEADB : NV_CIO_CRE_44_HEADA);
	/* note: if dcb entries have been merged, index may be misleading */
	NVWriteVgaCrtc5758(dev, head, 0, dcbent->index);
	parse_init_table(bios, scriptptr, &iexec);

	nv04_dfp_bind_head(dev, dcbent, head, dl);
}

static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
3778
	struct nvbios *bios = &dev_priv->vbios;
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & OUTPUT_C ? 1 : 0);
	uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]);

	if (!bios->fp.xlated_entry || !sub || !scriptofs)
		return -EINVAL;

	run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link);

	if (script == LVDS_PANEL_OFF) {
		/* off-on delay in ms */
3789
		mdelay(ROM16(bios->data[bios->fp.xlated_entry + 7]));
3790 3791 3792
	}
#ifdef __powerpc__
	/* Powerbook specific quirks */
3793 3794 3795 3796
	if (script == LVDS_RESET &&
	    (dev->pci_device == 0x0179 || dev->pci_device == 0x0189 ||
	     dev->pci_device == 0x0329))
		nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72);
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
#endif

	return 0;
}

static int run_lvds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
{
	/*
	 * The BIT LVDS table's header has the information to setup the
	 * necessary registers. Following the standard 4 byte header are:
	 * A bitmask byte and a dual-link transition pxclk value for use in
	 * selecting the init script when not using straps; 4 script pointers
	 * for panel power, selected by output and on/off; and 8 table pointers
	 * for panel init, the needed one determined by output, and bits in the
	 * conf byte. These tables are similar to the TMDS tables, consisting
	 * of a list of pxclks and script pointers.
	 */
	struct drm_nouveau_private *dev_priv = dev->dev_private;
3815
	struct nvbios *bios = &dev_priv->vbios;
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
	unsigned int outputset = (dcbent->or == 4) ? 1 : 0;
	uint16_t scriptptr = 0, clktable;

	/*
	 * For now we assume version 3.0 table - g80 support will need some
	 * changes
	 */

	switch (script) {
	case LVDS_INIT:
		return -ENOSYS;
	case LVDS_BACKLIGHT_ON:
	case LVDS_PANEL_ON:
		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]);
		break;
	case LVDS_BACKLIGHT_OFF:
	case LVDS_PANEL_OFF:
		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]);
		break;
	case LVDS_RESET:
B
Ben Skeggs 已提交
3836 3837 3838 3839
		clktable = bios->fp.lvdsmanufacturerpointer + 15;
		if (dcbent->or == 4)
			clktable += 8;

3840 3841
		if (dcbent->lvdsconf.use_straps_for_mode) {
			if (bios->fp.dual_link)
B
Ben Skeggs 已提交
3842 3843 3844
				clktable += 4;
			if (bios->fp.if_is_24bit)
				clktable += 2;
3845 3846
		} else {
			/* using EDID */
B
Ben Skeggs 已提交
3847
			int cmpval_24bit = (dcbent->or == 4) ? 4 : 1;
3848 3849

			if (bios->fp.dual_link) {
B
Ben Skeggs 已提交
3850 3851
				clktable += 4;
				cmpval_24bit <<= 1;
3852
			}
B
Ben Skeggs 已提交
3853 3854 3855

			if (bios->fp.strapless_is_24bit & cmpval_24bit)
				clktable += 2;
3856 3857
		}

B
Ben Skeggs 已提交
3858
		clktable = ROM16(bios->data[clktable]);
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
		if (!clktable) {
			NV_ERROR(dev, "Pixel clock comparison table not found\n");
			return -ENOENT;
		}
		scriptptr = clkcmptable(bios, clktable, pxclk);
	}

	if (!scriptptr) {
		NV_ERROR(dev, "LVDS output init script not found\n");
		return -ENOENT;
	}
	run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link);

	return 0;
}

int call_lvds_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
{
	/*
	 * LVDS operations are multiplexed in an effort to present a single API
	 * which works with two vastly differing underlying structures.
	 * This acts as the demux
	 */

	struct drm_nouveau_private *dev_priv = dev->dev_private;
3884
	struct nvbios *bios = &dev_priv->vbios;
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
	uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
	uint32_t sel_clk_binding, sel_clk;
	int ret;

	if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver ||
	    (lvds_ver >= 0x30 && script == LVDS_INIT))
		return 0;

	if (!bios->fp.lvds_init_run) {
		bios->fp.lvds_init_run = true;
		call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk);
	}

	if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change)
		call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk);
	if (script == LVDS_RESET && bios->fp.power_off_for_reset)
		call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk);

	NV_TRACE(dev, "Calling LVDS script %d:\n", script);

	/* don't let script change pll->head binding */
	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;

	if (lvds_ver < 0x30)
		ret = call_lvds_manufacturer_script(dev, dcbent, head, script);
	else
		ret = run_lvds_table(dev, dcbent, head, script, pxclk);

	bios->fp.last_script_invoc = (script << 1 | head);

	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
	/* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */
	nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0);

	return ret;
}

struct lvdstableheader {
	uint8_t lvds_ver, headerlen, recordlen;
};

static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth)
{
	/*
	 * BMP version (0xa) LVDS table has a simple header of version and
	 * record length. The BIT LVDS table has the typical BIT table header:
	 * version byte, header length byte, record length byte, and a byte for
	 * the maximum number of records that can be held in the table.
	 */

	uint8_t lvds_ver, headerlen, recordlen;

	memset(lth, 0, sizeof(struct lvdstableheader));

	if (bios->fp.lvdsmanufacturerpointer == 0x0) {
		NV_ERROR(dev, "Pointer to LVDS manufacturer table invalid\n");
		return -EINVAL;
	}

	lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];

	switch (lvds_ver) {
	case 0x0a:	/* pre NV40 */
		headerlen = 2;
		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
		break;
	case 0x30:	/* NV4x */
		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
		if (headerlen < 0x1f) {
			NV_ERROR(dev, "LVDS table header not understood\n");
			return -EINVAL;
		}
		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
		break;
	case 0x40:	/* G80/G90 */
		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
		if (headerlen < 0x7) {
			NV_ERROR(dev, "LVDS table header not understood\n");
			return -EINVAL;
		}
		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
		break;
	default:
		NV_ERROR(dev,
			 "LVDS table revision %d.%d not currently supported\n",
			 lvds_ver >> 4, lvds_ver & 0xf);
		return -ENOSYS;
	}

	lth->lvds_ver = lvds_ver;
	lth->headerlen = headerlen;
	lth->recordlen = recordlen;

	return 0;
}

static int
get_fp_strap(struct drm_device *dev, struct nvbios *bios)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;

	/*
	 * The fp strap is normally dictated by the "User Strap" in
	 * PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the
	 * Internal_Flags struct at 0x48 is set, the user strap gets overriden
	 * by the PCI subsystem ID during POST, but not before the previous user
	 * strap has been committed to CR58 for CR57=0xf on head A, which may be
	 * read and used instead
	 */

	if (bios->major_version < 5 && bios->data[0x48] & 0x4)
		return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf;

	if (dev_priv->card_type >= NV_50)
		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 24) & 0xf;
	else
		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 16) & 0xf;
}

static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios)
{
	uint8_t *fptable;
	uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex;
	int ret, ofs, fpstrapping;
	struct lvdstableheader lth;

	if (bios->fp.fptablepointer == 0x0) {
		/* Apple cards don't have the fp table; the laptops use DDC */
		/* The table is also missing on some x86 IGPs */
#ifndef __powerpc__
		NV_ERROR(dev, "Pointer to flat panel table invalid\n");
#endif
4018
		bios->digital_min_front_porch = 0x4b;
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
		return 0;
	}

	fptable = &bios->data[bios->fp.fptablepointer];
	fptable_ver = fptable[0];

	switch (fptable_ver) {
	/*
	 * BMP version 0x5.0x11 BIOSen have version 1 like tables, but no
	 * version field, and miss one of the spread spectrum/PWM bytes.
	 * This could affect early GF2Go parts (not seen any appropriate ROMs
	 * though). Here we assume that a version of 0x05 matches this case
	 * (combining with a BMP version check would be better), as the
	 * common case for the panel type field is 0x0005, and that is in
	 * fact what we are reading the first byte of.
	 */
	case 0x05:	/* some NV10, 11, 15, 16 */
		recordlen = 42;
		ofs = -1;
		break;
	case 0x10:	/* some NV15/16, and NV11+ */
		recordlen = 44;
		ofs = 0;
		break;
	case 0x20:	/* NV40+ */
		headerlen = fptable[1];
		recordlen = fptable[2];
		fpentries = fptable[3];
		/*
		 * fptable[4] is the minimum
		 * RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap
		 */
4051
		bios->digital_min_front_porch = fptable[4];
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
		ofs = -7;
		break;
	default:
		NV_ERROR(dev,
			 "FP table revision %d.%d not currently supported\n",
			 fptable_ver >> 4, fptable_ver & 0xf);
		return -ENOSYS;
	}

	if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */
		return 0;

	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
	if (ret)
		return ret;

	if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) {
		bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer +
							lth.headerlen + 1;
		bios->fp.xlatwidth = lth.recordlen;
	}
	if (bios->fp.fpxlatetableptr == 0x0) {
		NV_ERROR(dev, "Pointer to flat panel xlat table invalid\n");
		return -EINVAL;
	}

	fpstrapping = get_fp_strap(dev, bios);

	fpindex = bios->data[bios->fp.fpxlatetableptr +
					fpstrapping * bios->fp.xlatwidth];

	if (fpindex > fpentries) {
		NV_ERROR(dev, "Bad flat panel table index\n");
		return -ENOENT;
	}

	/* nv4x cards need both a strap value and fpindex of 0xf to use DDC */
	if (lth.lvds_ver > 0x10)
4090
		bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf;
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113

	/*
	 * If either the strap or xlated fpindex value are 0xf there is no
	 * panel using a strap-derived bios mode present.  this condition
	 * includes, but is different from, the DDC panel indicator above
	 */
	if (fpstrapping == 0xf || fpindex == 0xf)
		return 0;

	bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen +
			    recordlen * fpindex + ofs;

	NV_TRACE(dev, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n",
		 ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1,
		 ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1,
		 ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10);

	return 0;
}

bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
4114
	struct nvbios *bios = &dev_priv->vbios;
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
	uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr];

	if (!mode)	/* just checking whether we can produce a mode */
		return bios->fp.mode_ptr;

	memset(mode, 0, sizeof(struct drm_display_mode));
	/*
	 * For version 1.0 (version in byte 0):
	 * bytes 1-2 are "panel type", including bits on whether Colour/mono,
	 * single/dual link, and type (TFT etc.)
	 * bytes 3-6 are bits per colour in RGBX
	 */
	mode->clock = ROM16(mode_entry[7]) * 10;
	/* bytes 9-10 is HActive */
	mode->hdisplay = ROM16(mode_entry[11]) + 1;
	/*
	 * bytes 13-14 is HValid Start
	 * bytes 15-16 is HValid End
	 */
	mode->hsync_start = ROM16(mode_entry[17]) + 1;
	mode->hsync_end = ROM16(mode_entry[19]) + 1;
	mode->htotal = ROM16(mode_entry[21]) + 1;
	/* bytes 23-24, 27-30 similarly, but vertical */
	mode->vdisplay = ROM16(mode_entry[25]) + 1;
	mode->vsync_start = ROM16(mode_entry[31]) + 1;
	mode->vsync_end = ROM16(mode_entry[33]) + 1;
	mode->vtotal = ROM16(mode_entry[35]) + 1;
	mode->flags |= (mode_entry[37] & 0x10) ?
			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
	mode->flags |= (mode_entry[37] & 0x1) ?
			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
	/*
	 * bytes 38-39 relate to spread spectrum settings
	 * bytes 40-43 are something to do with PWM
	 */

	mode->status = MODE_OK;
	mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED;
	drm_mode_set_name(mode);
	return bios->fp.mode_ptr;
}

int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit)
{
	/*
	 * The LVDS table header is (mostly) described in
	 * parse_lvds_manufacturer_table_header(): the BIT header additionally
	 * contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if
	 * straps are not being used for the panel, this specifies the frequency
	 * at which modes should be set up in the dual link style.
	 *
	 * Following the header, the BMP (ver 0xa) table has several records,
D
Daniel Mack 已提交
4167
	 * indexed by a separate xlat table, indexed in turn by the fp strap in
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
	 * EXTDEV_BOOT. Each record had a config byte, followed by 6 script
	 * numbers for use by INIT_SUB which controlled panel init and power,
	 * and finally a dword of ms to sleep between power off and on
	 * operations.
	 *
	 * In the BIT versions, the table following the header serves as an
	 * integrated config and xlat table: the records in the table are
	 * indexed by the FP strap nibble in EXTDEV_BOOT, and each record has
	 * two bytes - the first as a config byte, the second for indexing the
	 * fp mode table pointed to by the BIT 'D' table
	 *
	 * DDC is not used until after card init, so selecting the correct table
	 * entry and setting the dual link flag for EDID equipped panels,
	 * requiring tests against the native-mode pixel clock, cannot be done
	 * until later, when this function should be called with non-zero pxclk
	 */
	struct drm_nouveau_private *dev_priv = dev->dev_private;
4185
	struct nvbios *bios = &dev_priv->vbios;
4186 4187 4188
	int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0;
	struct lvdstableheader lth;
	uint16_t lvdsofs;
4189
	int ret, chip_version = bios->chip_version;
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259

	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
	if (ret)
		return ret;

	switch (lth.lvds_ver) {
	case 0x0a:	/* pre NV40 */
		lvdsmanufacturerindex = bios->data[
					bios->fp.fpxlatemanufacturertableptr +
					fpstrapping];

		/* we're done if this isn't the EDID panel case */
		if (!pxclk)
			break;

		if (chip_version < 0x25) {
			/* nv17 behaviour
			 *
			 * It seems the old style lvds script pointer is reused
			 * to select 18/24 bit colour depth for EDID panels.
			 */
			lvdsmanufacturerindex =
				(bios->legacy.lvds_single_a_script_ptr & 1) ?
									2 : 0;
			if (pxclk >= bios->fp.duallink_transition_clk)
				lvdsmanufacturerindex++;
		} else if (chip_version < 0x30) {
			/* nv28 behaviour (off-chip encoder)
			 *
			 * nv28 does a complex dance of first using byte 121 of
			 * the EDID to choose the lvdsmanufacturerindex, then
			 * later attempting to match the EDID manufacturer and
			 * product IDs in a table (signature 'pidt' (panel id
			 * table?)), setting an lvdsmanufacturerindex of 0 and
			 * an fp strap of the match index (or 0xf if none)
			 */
			lvdsmanufacturerindex = 0;
		} else {
			/* nv31, nv34 behaviour */
			lvdsmanufacturerindex = 0;
			if (pxclk >= bios->fp.duallink_transition_clk)
				lvdsmanufacturerindex = 2;
			if (pxclk >= 140000)
				lvdsmanufacturerindex = 3;
		}

		/*
		 * nvidia set the high nibble of (cr57=f, cr58) to
		 * lvdsmanufacturerindex in this case; we don't
		 */
		break;
	case 0x30:	/* NV4x */
	case 0x40:	/* G80/G90 */
		lvdsmanufacturerindex = fpstrapping;
		break;
	default:
		NV_ERROR(dev, "LVDS table revision not currently supported\n");
		return -ENOSYS;
	}

	lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex;
	switch (lth.lvds_ver) {
	case 0x0a:
		bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1;
		bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2;
		bios->fp.dual_link = bios->data[lvdsofs] & 4;
		bios->fp.link_c_increment = bios->data[lvdsofs] & 8;
		*if_is_24bit = bios->data[lvdsofs] & 16;
		break;
	case 0x30:
B
Ben Skeggs 已提交
4260
	case 0x40:
4261 4262 4263 4264 4265 4266
		/*
		 * No sign of the "power off for reset" or "reset for panel
		 * on" bits, but it's safer to assume we should
		 */
		bios->fp.power_off_for_reset = true;
		bios->fp.reset_after_pclk_change = true;
B
Ben Skeggs 已提交
4267

4268 4269
		/*
		 * It's ok lvdsofs is wrong for nv4x edid case; dual_link is
B
Ben Skeggs 已提交
4270
		 * over-written, and if_is_24bit isn't used
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
		 */
		bios->fp.dual_link = bios->data[lvdsofs] & 1;
		bios->fp.if_is_24bit = bios->data[lvdsofs] & 2;
		bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4];
		bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10;
		break;
	}

	/* set dual_link flag for EDID case */
	if (pxclk && (chip_version < 0x25 || chip_version > 0x28))
		bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk);

	*dl = bios->fp.dual_link;

	return 0;
}

4288 4289 4290 4291 4292 4293 4294
/* BIT 'U'/'d' table encoder subtables have hashes matching them to
 * a particular set of encoders.
 *
 * This function returns true if a particular DCB entry matches.
 */
bool
bios_encoder_match(struct dcb_entry *dcb, u32 hash)
4295
{
4296 4297 4298 4299 4300 4301 4302 4303
	if ((hash & 0x000000f0) != (dcb->location << 4))
		return false;
	if ((hash & 0x0000000f) != dcb->type)
		return false;
	if (!(hash & (dcb->or << 16)))
		return false;

	switch (dcb->type) {
4304 4305 4306
	case OUTPUT_TMDS:
	case OUTPUT_LVDS:
	case OUTPUT_DP:
4307 4308 4309
		if (hash & 0x00c00000) {
			if (!(hash & (dcb->sorconf.link << 22)))
				return false;
4310
		}
4311 4312
	default:
		return true;
4313 4314 4315 4316
	}
}

int
4317 4318
nouveau_bios_run_display_table(struct drm_device *dev, u16 type, int pclk,
			       struct dcb_entry *dcbent, int crtc)
4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
{
	/*
	 * The display script table is located by the BIT 'U' table.
	 *
	 * It contains an array of pointers to various tables describing
	 * a particular output type.  The first 32-bits of the output
	 * tables contains similar information to a DCB entry, and is
	 * used to decide whether that particular table is suitable for
	 * the output you want to access.
	 *
	 * The "record header length" field here seems to indicate the
	 * offset of the first configuration entry in the output tables.
	 * This is 10 on most cards I've seen, but 12 has been witnessed
	 * on DP cards, and there's another script pointer within the
	 * header.
	 *
	 * offset + 0   ( 8 bits): version
	 * offset + 1   ( 8 bits): header length
	 * offset + 2   ( 8 bits): record length
	 * offset + 3   ( 8 bits): number of records
	 * offset + 4   ( 8 bits): record header length
	 * offset + 5   (16 bits): pointer to first output script table
	 */

	struct drm_nouveau_private *dev_priv = dev->dev_private;
4344
	struct nvbios *bios = &dev_priv->vbios;
4345 4346 4347
	uint8_t *table = &bios->data[bios->display.script_table_ptr];
	uint8_t *otable = NULL;
	uint16_t script;
4348
	int i;
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397

	if (!bios->display.script_table_ptr) {
		NV_ERROR(dev, "No pointer to output script table\n");
		return 1;
	}

	/*
	 * Nothing useful has been in any of the pre-2.0 tables I've seen,
	 * so until they are, we really don't need to care.
	 */
	if (table[0] < 0x20)
		return 1;

	if (table[0] != 0x20 && table[0] != 0x21) {
		NV_ERROR(dev, "Output script table version 0x%02x unknown\n",
			 table[0]);
		return 1;
	}

	/*
	 * The output script tables describing a particular output type
	 * look as follows:
	 *
	 * offset + 0   (32 bits): output this table matches (hash of DCB)
	 * offset + 4   ( 8 bits): unknown
	 * offset + 5   ( 8 bits): number of configurations
	 * offset + 6   (16 bits): pointer to some script
	 * offset + 8   (16 bits): pointer to some script
	 *
	 * headerlen == 10
	 * offset + 10           : configuration 0
	 *
	 * headerlen == 12
	 * offset + 10           : pointer to some script
	 * offset + 12           : configuration 0
	 *
	 * Each config entry is as follows:
	 *
	 * offset + 0   (16 bits): unknown, assumed to be a match value
	 * offset + 2   (16 bits): pointer to script table (clock set?)
	 * offset + 4   (16 bits): pointer to script table (reset?)
	 *
	 * There doesn't appear to be a count value to say how many
	 * entries exist in each script table, instead, a 0 value in
	 * the first 16-bit word seems to indicate both the end of the
	 * list and the default entry.  The second 16-bit word in the
	 * script tables is a pointer to the script to execute.
	 */

4398
	NV_DEBUG_KMS(dev, "Searching for output entry for %d %d %d\n",
4399
			dcbent->type, dcbent->location, dcbent->or);
4400
	for (i = 0; i < table[3]; i++) {
4401
		otable = ROMPTR(dev, table[table[1] + (i * table[2])]);
4402 4403 4404 4405
		if (otable && bios_encoder_match(dcbent, ROM32(otable[0])))
			break;
	}

4406
	if (!otable) {
4407
		NV_DEBUG_KMS(dev, "failed to match any output table\n");
4408 4409 4410
		return 1;
	}

4411
	if (pclk < -2 || pclk > 0) {
4412 4413
		/* Try to find matching script table entry */
		for (i = 0; i < otable[5]; i++) {
4414
			if (ROM16(otable[table[4] + i*6]) == type)
4415 4416 4417 4418 4419 4420
				break;
		}

		if (i == otable[5]) {
			NV_ERROR(dev, "Table 0x%04x not found for %d/%d, "
				      "using first\n",
4421
				 type, dcbent->type, dcbent->or);
4422 4423 4424 4425
			i = 0;
		}
	}

4426
	if (pclk == 0) {
4427 4428
		script = ROM16(otable[6]);
		if (!script) {
4429
			NV_DEBUG_KMS(dev, "output script 0 not found\n");
4430 4431 4432
			return 1;
		}

4433
		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 0\n", script);
4434
		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4435
	} else
4436
	if (pclk == -1) {
4437 4438
		script = ROM16(otable[8]);
		if (!script) {
4439
			NV_DEBUG_KMS(dev, "output script 1 not found\n");
4440 4441 4442
			return 1;
		}

4443
		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 1\n", script);
4444
		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4445
	} else
4446
	if (pclk == -2) {
4447 4448 4449 4450 4451
		if (table[4] >= 12)
			script = ROM16(otable[10]);
		else
			script = 0;
		if (!script) {
4452
			NV_DEBUG_KMS(dev, "output script 2 not found\n");
4453 4454 4455
			return 1;
		}

4456
		NV_DEBUG_KMS(dev, "0x%04X: parsing output script 2\n", script);
4457
		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4458
	} else
4459
	if (pclk > 0) {
4460 4461
		script = ROM16(otable[table[4] + i*6 + 2]);
		if (script)
4462
			script = clkcmptable(bios, script, pclk);
4463
		if (!script) {
4464
			NV_DEBUG_KMS(dev, "clock script 0 not found\n");
4465 4466 4467
			return 1;
		}

4468
		NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 0\n", script);
4469
		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4470
	} else
4471
	if (pclk < 0) {
4472 4473
		script = ROM16(otable[table[4] + i*6 + 4]);
		if (script)
4474
			script = clkcmptable(bios, script, -pclk);
4475
		if (!script) {
4476
			NV_DEBUG_KMS(dev, "clock script 1 not found\n");
4477 4478 4479
			return 1;
		}

4480
		NV_DEBUG_KMS(dev, "0x%04X: parsing clock script 1\n", script);
4481
		nouveau_bios_run_init_table(dev, script, dcbent, crtc);
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
	}

	return 0;
}


int run_tmds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, int pxclk)
{
	/*
	 * the pxclk parameter is in kHz
	 *
	 * This runs the TMDS regs setting code found on BIT bios cards
	 *
	 * For ffs(or) == 1 use the first table, for ffs(or) == 2 and
	 * ffs(or) == 3, use the second.
	 */

	struct drm_nouveau_private *dev_priv = dev->dev_private;
4500 4501
	struct nvbios *bios = &dev_priv->vbios;
	int cv = bios->chip_version;
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	uint16_t clktable = 0, scriptptr;
	uint32_t sel_clk_binding, sel_clk;

	/* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */
	if (cv >= 0x17 && cv != 0x1a && cv != 0x20 &&
	    dcbent->location != DCB_LOC_ON_CHIP)
		return 0;

	switch (ffs(dcbent->or)) {
	case 1:
		clktable = bios->tmds.output0_script_ptr;
		break;
	case 2:
	case 3:
		clktable = bios->tmds.output1_script_ptr;
		break;
	}

	if (!clktable) {
		NV_ERROR(dev, "Pixel clock comparison table not found\n");
		return -EINVAL;
	}

	scriptptr = clkcmptable(bios, clktable, pxclk);

	if (!scriptptr) {
		NV_ERROR(dev, "TMDS output init script not found\n");
		return -ENOENT;
	}

	/* don't let script change pll->head binding */
	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
	run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000);
	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);

	return 0;
}

4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
struct pll_mapping {
	u8  type;
	u32 reg;
};

static struct pll_mapping nv04_pll_mapping[] = {
	{ PLL_CORE  , NV_PRAMDAC_NVPLL_COEFF },
	{ PLL_MEMORY, NV_PRAMDAC_MPLL_COEFF },
	{ PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
	{ PLL_VPLL1 , NV_RAMDAC_VPLL2 },
	{}
};

static struct pll_mapping nv40_pll_mapping[] = {
	{ PLL_CORE  , 0x004000 },
	{ PLL_MEMORY, 0x004020 },
	{ PLL_VPLL0 , NV_PRAMDAC_VPLL_COEFF },
	{ PLL_VPLL1 , NV_RAMDAC_VPLL2 },
	{}
};

static struct pll_mapping nv50_pll_mapping[] = {
	{ PLL_CORE  , 0x004028 },
	{ PLL_SHADER, 0x004020 },
	{ PLL_UNK03 , 0x004000 },
	{ PLL_MEMORY, 0x004008 },
	{ PLL_UNK40 , 0x00e810 },
	{ PLL_UNK41 , 0x00e818 },
	{ PLL_UNK42 , 0x00e824 },
	{ PLL_VPLL0 , 0x614100 },
	{ PLL_VPLL1 , 0x614900 },
	{}
};

static struct pll_mapping nv84_pll_mapping[] = {
	{ PLL_CORE  , 0x004028 },
	{ PLL_SHADER, 0x004020 },
	{ PLL_MEMORY, 0x004008 },
M
Martin Peres 已提交
4579
	{ PLL_VDEC  , 0x004030 },
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
	{ PLL_UNK41 , 0x00e818 },
	{ PLL_VPLL0 , 0x614100 },
	{ PLL_VPLL1 , 0x614900 },
	{}
};

u32
get_pll_register(struct drm_device *dev, enum pll_types type)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nvbios *bios = &dev_priv->vbios;
	struct pll_mapping *map;
	int i;

	if (dev_priv->card_type < NV_40)
		map = nv04_pll_mapping;
	else
	if (dev_priv->card_type < NV_50)
		map = nv40_pll_mapping;
	else {
		u8 *plim = &bios->data[bios->pll_limit_tbl_ptr];

4602
		if (plim[0] >= 0x30) {
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
			u8 *entry = plim + plim[1];
			for (i = 0; i < plim[3]; i++, entry += plim[2]) {
				if (entry[0] == type)
					return ROM32(entry[3]);
			}

			return 0;
		}

		if (dev_priv->chipset == 0x50)
			map = nv50_pll_mapping;
		else
			map = nv84_pll_mapping;
	}

	while (map->reg) {
		if (map->type == type)
			return map->reg;
		map++;
	}

	return 0;
}

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
int get_pll_limits(struct drm_device *dev, uint32_t limit_match, struct pll_lims *pll_lim)
{
	/*
	 * PLL limits table
	 *
	 * Version 0x10: NV30, NV31
	 * One byte header (version), one record of 24 bytes
	 * Version 0x11: NV36 - Not implemented
	 * Seems to have same record style as 0x10, but 3 records rather than 1
	 * Version 0x20: Found on Geforce 6 cards
	 * Trivial 4 byte BIT header. 31 (0x1f) byte record length
	 * Version 0x21: Found on Geforce 7, 8 and some Geforce 6 cards
	 * 5 byte header, fifth byte of unknown purpose. 35 (0x23) byte record
	 * length in general, some (integrated) have an extra configuration byte
	 * Version 0x30: Found on Geforce 8, separates the register mapping
	 * from the limits tables.
	 */

	struct drm_nouveau_private *dev_priv = dev->dev_private;
4646 4647
	struct nvbios *bios = &dev_priv->vbios;
	int cv = bios->chip_version, pllindex = 0;
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
	uint8_t pll_lim_ver = 0, headerlen = 0, recordlen = 0, entries = 0;
	uint32_t crystal_strap_mask, crystal_straps;

	if (!bios->pll_limit_tbl_ptr) {
		if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 ||
		    cv >= 0x40) {
			NV_ERROR(dev, "Pointer to PLL limits table invalid\n");
			return -EINVAL;
		}
	} else
		pll_lim_ver = bios->data[bios->pll_limit_tbl_ptr];

	crystal_strap_mask = 1 << 6;
	/* open coded dev->twoHeads test */
	if (cv > 0x10 && cv != 0x15 && cv != 0x1a && cv != 0x20)
		crystal_strap_mask |= 1 << 22;
	crystal_straps = nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) &
							crystal_strap_mask;

	switch (pll_lim_ver) {
	/*
	 * We use version 0 to indicate a pre limit table bios (single stage
	 * pll) and load the hard coded limits instead.
	 */
	case 0:
		break;
	case 0x10:
	case 0x11:
		/*
		 * Strictly v0x11 has 3 entries, but the last two don't seem
		 * to get used.
		 */
		headerlen = 1;
		recordlen = 0x18;
		entries = 1;
		pllindex = 0;
		break;
	case 0x20:
	case 0x21:
	case 0x30:
	case 0x40:
		headerlen = bios->data[bios->pll_limit_tbl_ptr + 1];
		recordlen = bios->data[bios->pll_limit_tbl_ptr + 2];
		entries = bios->data[bios->pll_limit_tbl_ptr + 3];
		break;
	default:
		NV_ERROR(dev, "PLL limits table revision 0x%X not currently "
				"supported\n", pll_lim_ver);
		return -ENOSYS;
	}

	/* initialize all members to zero */
	memset(pll_lim, 0, sizeof(struct pll_lims));

4702 4703 4704 4705 4706
	/* if we were passed a type rather than a register, figure
	 * out the register and store it
	 */
	if (limit_match > PLL_MAX)
		pll_lim->reg = limit_match;
4707
	else {
4708
		pll_lim->reg = get_pll_register(dev, limit_match);
4709 4710 4711
		if (!pll_lim->reg)
			return -ENOENT;
	}
4712

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	if (pll_lim_ver == 0x10 || pll_lim_ver == 0x11) {
		uint8_t *pll_rec = &bios->data[bios->pll_limit_tbl_ptr + headerlen + recordlen * pllindex];

		pll_lim->vco1.minfreq = ROM32(pll_rec[0]);
		pll_lim->vco1.maxfreq = ROM32(pll_rec[4]);
		pll_lim->vco2.minfreq = ROM32(pll_rec[8]);
		pll_lim->vco2.maxfreq = ROM32(pll_rec[12]);
		pll_lim->vco1.min_inputfreq = ROM32(pll_rec[16]);
		pll_lim->vco2.min_inputfreq = ROM32(pll_rec[20]);
		pll_lim->vco1.max_inputfreq = pll_lim->vco2.max_inputfreq = INT_MAX;

		/* these values taken from nv30/31/36 */
		pll_lim->vco1.min_n = 0x1;
		if (cv == 0x36)
			pll_lim->vco1.min_n = 0x5;
		pll_lim->vco1.max_n = 0xff;
		pll_lim->vco1.min_m = 0x1;
		pll_lim->vco1.max_m = 0xd;
		pll_lim->vco2.min_n = 0x4;
		/*
		 * On nv30, 31, 36 (i.e. all cards with two stage PLLs with this
		 * table version (apart from nv35)), N2 is compared to
		 * maxN2 (0x46) and 10 * maxM2 (0x4), so set maxN2 to 0x28 and
		 * save a comparison
		 */
		pll_lim->vco2.max_n = 0x28;
		if (cv == 0x30 || cv == 0x35)
			/* only 5 bits available for N2 on nv30/35 */
			pll_lim->vco2.max_n = 0x1f;
		pll_lim->vco2.min_m = 0x1;
		pll_lim->vco2.max_m = 0x4;
		pll_lim->max_log2p = 0x7;
		pll_lim->max_usable_log2p = 0x6;
	} else if (pll_lim_ver == 0x20 || pll_lim_ver == 0x21) {
		uint16_t plloffs = bios->pll_limit_tbl_ptr + headerlen;
		uint8_t *pll_rec;
		int i;

		/*
		 * First entry is default match, if nothing better. warn if
		 * reg field nonzero
		 */
		if (ROM32(bios->data[plloffs]))
			NV_WARN(dev, "Default PLL limit entry has non-zero "
				       "register field\n");

		for (i = 1; i < entries; i++)
4760
			if (ROM32(bios->data[plloffs + recordlen * i]) == pll_lim->reg) {
4761 4762 4763 4764
				pllindex = i;
				break;
			}

4765 4766 4767 4768 4769 4770
		if ((dev_priv->card_type >= NV_50) && (pllindex == 0)) {
			NV_ERROR(dev, "Register 0x%08x not found in PLL "
				 "limits table", pll_lim->reg);
			return -ENOENT;
		}

4771 4772 4773
		pll_rec = &bios->data[plloffs + recordlen * pllindex];

		BIOSLOG(bios, "Loading PLL limits for reg 0x%08x\n",
4774
			pllindex ? pll_lim->reg : 0);
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823

		/*
		 * Frequencies are stored in tables in MHz, kHz are more
		 * useful, so we convert.
		 */

		/* What output frequencies can each VCO generate? */
		pll_lim->vco1.minfreq = ROM16(pll_rec[4]) * 1000;
		pll_lim->vco1.maxfreq = ROM16(pll_rec[6]) * 1000;
		pll_lim->vco2.minfreq = ROM16(pll_rec[8]) * 1000;
		pll_lim->vco2.maxfreq = ROM16(pll_rec[10]) * 1000;

		/* What input frequencies they accept (past the m-divider)? */
		pll_lim->vco1.min_inputfreq = ROM16(pll_rec[12]) * 1000;
		pll_lim->vco2.min_inputfreq = ROM16(pll_rec[14]) * 1000;
		pll_lim->vco1.max_inputfreq = ROM16(pll_rec[16]) * 1000;
		pll_lim->vco2.max_inputfreq = ROM16(pll_rec[18]) * 1000;

		/* What values are accepted as multiplier and divider? */
		pll_lim->vco1.min_n = pll_rec[20];
		pll_lim->vco1.max_n = pll_rec[21];
		pll_lim->vco1.min_m = pll_rec[22];
		pll_lim->vco1.max_m = pll_rec[23];
		pll_lim->vco2.min_n = pll_rec[24];
		pll_lim->vco2.max_n = pll_rec[25];
		pll_lim->vco2.min_m = pll_rec[26];
		pll_lim->vco2.max_m = pll_rec[27];

		pll_lim->max_usable_log2p = pll_lim->max_log2p = pll_rec[29];
		if (pll_lim->max_log2p > 0x7)
			/* pll decoding in nv_hw.c assumes never > 7 */
			NV_WARN(dev, "Max log2 P value greater than 7 (%d)\n",
				pll_lim->max_log2p);
		if (cv < 0x60)
			pll_lim->max_usable_log2p = 0x6;
		pll_lim->log2p_bias = pll_rec[30];

		if (recordlen > 0x22)
			pll_lim->refclk = ROM32(pll_rec[31]);

		if (recordlen > 0x23 && pll_rec[35])
			NV_WARN(dev,
				"Bits set in PLL configuration byte (%x)\n",
				pll_rec[35]);

		/* C51 special not seen elsewhere */
		if (cv == 0x51 && !pll_lim->refclk) {
			uint32_t sel_clk = bios_rd32(bios, NV_PRAMDAC_SEL_CLK);

4824 4825
			if ((pll_lim->reg == NV_PRAMDAC_VPLL_COEFF && sel_clk & 0x20) ||
			    (pll_lim->reg == NV_RAMDAC_VPLL2 && sel_clk & 0x80)) {
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
				if (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_CHIP_ID_INDEX) < 0xa3)
					pll_lim->refclk = 200000;
				else
					pll_lim->refclk = 25000;
			}
		}
	} else if (pll_lim_ver == 0x30) { /* ver 0x30 */
		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
		uint8_t *record = NULL;
		int i;

		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
4838
			pll_lim->reg);
4839 4840

		for (i = 0; i < entries; i++, entry += recordlen) {
4841
			if (ROM32(entry[3]) == pll_lim->reg) {
4842 4843 4844 4845 4846 4847 4848
				record = &bios->data[ROM16(entry[1])];
				break;
			}
		}

		if (!record) {
			NV_ERROR(dev, "Register 0x%08x not found in PLL "
4849
				 "limits table", pll_lim->reg);
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
			return -ENOENT;
		}

		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
		pll_lim->vco2.minfreq = ROM16(record[4]) * 1000;
		pll_lim->vco2.maxfreq = ROM16(record[6]) * 1000;
		pll_lim->vco1.min_inputfreq = ROM16(record[8]) * 1000;
		pll_lim->vco2.min_inputfreq = ROM16(record[10]) * 1000;
		pll_lim->vco1.max_inputfreq = ROM16(record[12]) * 1000;
		pll_lim->vco2.max_inputfreq = ROM16(record[14]) * 1000;
		pll_lim->vco1.min_n = record[16];
		pll_lim->vco1.max_n = record[17];
		pll_lim->vco1.min_m = record[18];
		pll_lim->vco1.max_m = record[19];
		pll_lim->vco2.min_n = record[20];
		pll_lim->vco2.max_n = record[21];
		pll_lim->vco2.min_m = record[22];
		pll_lim->vco2.max_m = record[23];
		pll_lim->max_usable_log2p = pll_lim->max_log2p = record[25];
		pll_lim->log2p_bias = record[27];
		pll_lim->refclk = ROM32(record[28]);
	} else if (pll_lim_ver) { /* ver 0x40 */
		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
		uint8_t *record = NULL;
		int i;

		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
4878
			pll_lim->reg);
4879 4880

		for (i = 0; i < entries; i++, entry += recordlen) {
4881
			if (ROM32(entry[3]) == pll_lim->reg) {
4882 4883 4884 4885 4886 4887 4888
				record = &bios->data[ROM16(entry[1])];
				break;
			}
		}

		if (!record) {
			NV_ERROR(dev, "Register 0x%08x not found in PLL "
4889
				 "limits table", pll_lim->reg);
4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
			return -ENOENT;
		}

		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
		pll_lim->vco1.min_inputfreq = ROM16(record[4]) * 1000;
		pll_lim->vco1.max_inputfreq = ROM16(record[6]) * 1000;
		pll_lim->vco1.min_m = record[8];
		pll_lim->vco1.max_m = record[9];
		pll_lim->vco1.min_n = record[10];
		pll_lim->vco1.max_n = record[11];
		pll_lim->min_p = record[12];
		pll_lim->max_p = record[13];
4903
		pll_lim->refclk = ROM16(entry[9]) * 1000;
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951
	}

	/*
	 * By now any valid limit table ought to have set a max frequency for
	 * vco1, so if it's zero it's either a pre limit table bios, or one
	 * with an empty limit table (seen on nv18)
	 */
	if (!pll_lim->vco1.maxfreq) {
		pll_lim->vco1.minfreq = bios->fminvco;
		pll_lim->vco1.maxfreq = bios->fmaxvco;
		pll_lim->vco1.min_inputfreq = 0;
		pll_lim->vco1.max_inputfreq = INT_MAX;
		pll_lim->vco1.min_n = 0x1;
		pll_lim->vco1.max_n = 0xff;
		pll_lim->vco1.min_m = 0x1;
		if (crystal_straps == 0) {
			/* nv05 does this, nv11 doesn't, nv10 unknown */
			if (cv < 0x11)
				pll_lim->vco1.min_m = 0x7;
			pll_lim->vco1.max_m = 0xd;
		} else {
			if (cv < 0x11)
				pll_lim->vco1.min_m = 0x8;
			pll_lim->vco1.max_m = 0xe;
		}
		if (cv < 0x17 || cv == 0x1a || cv == 0x20)
			pll_lim->max_log2p = 4;
		else
			pll_lim->max_log2p = 5;
		pll_lim->max_usable_log2p = pll_lim->max_log2p;
	}

	if (!pll_lim->refclk)
		switch (crystal_straps) {
		case 0:
			pll_lim->refclk = 13500;
			break;
		case (1 << 6):
			pll_lim->refclk = 14318;
			break;
		case (1 << 22):
			pll_lim->refclk = 27000;
			break;
		case (1 << 22 | 1 << 6):
			pll_lim->refclk = 25000;
			break;
		}

4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
	NV_DEBUG(dev, "pll.vco1.minfreq: %d\n", pll_lim->vco1.minfreq);
	NV_DEBUG(dev, "pll.vco1.maxfreq: %d\n", pll_lim->vco1.maxfreq);
	NV_DEBUG(dev, "pll.vco1.min_inputfreq: %d\n", pll_lim->vco1.min_inputfreq);
	NV_DEBUG(dev, "pll.vco1.max_inputfreq: %d\n", pll_lim->vco1.max_inputfreq);
	NV_DEBUG(dev, "pll.vco1.min_n: %d\n", pll_lim->vco1.min_n);
	NV_DEBUG(dev, "pll.vco1.max_n: %d\n", pll_lim->vco1.max_n);
	NV_DEBUG(dev, "pll.vco1.min_m: %d\n", pll_lim->vco1.min_m);
	NV_DEBUG(dev, "pll.vco1.max_m: %d\n", pll_lim->vco1.max_m);
	if (pll_lim->vco2.maxfreq) {
		NV_DEBUG(dev, "pll.vco2.minfreq: %d\n", pll_lim->vco2.minfreq);
		NV_DEBUG(dev, "pll.vco2.maxfreq: %d\n", pll_lim->vco2.maxfreq);
		NV_DEBUG(dev, "pll.vco2.min_inputfreq: %d\n", pll_lim->vco2.min_inputfreq);
		NV_DEBUG(dev, "pll.vco2.max_inputfreq: %d\n", pll_lim->vco2.max_inputfreq);
		NV_DEBUG(dev, "pll.vco2.min_n: %d\n", pll_lim->vco2.min_n);
		NV_DEBUG(dev, "pll.vco2.max_n: %d\n", pll_lim->vco2.max_n);
		NV_DEBUG(dev, "pll.vco2.min_m: %d\n", pll_lim->vco2.min_m);
		NV_DEBUG(dev, "pll.vco2.max_m: %d\n", pll_lim->vco2.max_m);
	}
	if (!pll_lim->max_p) {
		NV_DEBUG(dev, "pll.max_log2p: %d\n", pll_lim->max_log2p);
		NV_DEBUG(dev, "pll.log2p_bias: %d\n", pll_lim->log2p_bias);
	} else {
		NV_DEBUG(dev, "pll.min_p: %d\n", pll_lim->min_p);
		NV_DEBUG(dev, "pll.max_p: %d\n", pll_lim->max_p);
	}
	NV_DEBUG(dev, "pll.refclk: %d\n", pll_lim->refclk);
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991

	return 0;
}

static void parse_bios_version(struct drm_device *dev, struct nvbios *bios, uint16_t offset)
{
	/*
	 * offset + 0  (8 bits): Micro version
	 * offset + 1  (8 bits): Minor version
	 * offset + 2  (8 bits): Chip version
	 * offset + 3  (8 bits): Major version
	 */

	bios->major_version = bios->data[offset + 3];
4992
	bios->chip_version = bios->data[offset + 2];
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
	NV_TRACE(dev, "Bios version %02x.%02x.%02x.%02x\n",
		 bios->data[offset + 3], bios->data[offset + 2],
		 bios->data[offset + 1], bios->data[offset]);
}

static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset)
{
	/*
	 * Parses the init table segment for pointers used in script execution.
	 *
	 * offset + 0  (16 bits): init script tables pointer
	 * offset + 2  (16 bits): macro index table pointer
	 * offset + 4  (16 bits): macro table pointer
	 * offset + 6  (16 bits): condition table pointer
	 * offset + 8  (16 bits): io condition table pointer
	 * offset + 10 (16 bits): io flag condition table pointer
	 * offset + 12 (16 bits): init function table pointer
	 */

	bios->init_script_tbls_ptr = ROM16(bios->data[offset]);
	bios->macro_index_tbl_ptr = ROM16(bios->data[offset + 2]);
	bios->macro_tbl_ptr = ROM16(bios->data[offset + 4]);
	bios->condition_tbl_ptr = ROM16(bios->data[offset + 6]);
	bios->io_condition_tbl_ptr = ROM16(bios->data[offset + 8]);
	bios->io_flag_condition_tbl_ptr = ROM16(bios->data[offset + 10]);
	bios->init_function_tbl_ptr = ROM16(bios->data[offset + 12]);
}

static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * Parses the load detect values for g80 cards.
	 *
	 * offset + 0 (16 bits): loadval table pointer
	 */

	uint16_t load_table_ptr;
	uint8_t version, headerlen, entrylen, num_entries;

	if (bitentry->length != 3) {
		NV_ERROR(dev, "Do not understand BIT A table\n");
		return -EINVAL;
	}

	load_table_ptr = ROM16(bios->data[bitentry->offset]);

	if (load_table_ptr == 0x0) {
5040
		NV_DEBUG(dev, "Pointer to BIT loadval table invalid\n");
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
		return -EINVAL;
	}

	version = bios->data[load_table_ptr];

	if (version != 0x10) {
		NV_ERROR(dev, "BIT loadval table version %d.%d not supported\n",
			 version >> 4, version & 0xF);
		return -ENOSYS;
	}

	headerlen = bios->data[load_table_ptr + 1];
	entrylen = bios->data[load_table_ptr + 2];
	num_entries = bios->data[load_table_ptr + 3];

	if (headerlen != 4 || entrylen != 4 || num_entries != 2) {
		NV_ERROR(dev, "Do not understand BIT loadval table\n");
		return -EINVAL;
	}

	/* First entry is normal dac, 2nd tv-out perhaps? */
5062
	bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff;
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185

	return 0;
}

static int parse_bit_C_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * offset + 8  (16 bits): PLL limits table pointer
	 *
	 * There's more in here, but that's unknown.
	 */

	if (bitentry->length < 10) {
		NV_ERROR(dev, "Do not understand BIT C table\n");
		return -EINVAL;
	}

	bios->pll_limit_tbl_ptr = ROM16(bios->data[bitentry->offset + 8]);

	return 0;
}

static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * Parses the flat panel table segment that the bit entry points to.
	 * Starting at bitentry->offset:
	 *
	 * offset + 0  (16 bits): ??? table pointer - seems to have 18 byte
	 * records beginning with a freq.
	 * offset + 2  (16 bits): mode table pointer
	 */

	if (bitentry->length != 4) {
		NV_ERROR(dev, "Do not understand BIT display table\n");
		return -EINVAL;
	}

	bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]);

	return 0;
}

static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * Parses the init table segment that the bit entry points to.
	 *
	 * See parse_script_table_pointers for layout
	 */

	if (bitentry->length < 14) {
		NV_ERROR(dev, "Do not understand init table\n");
		return -EINVAL;
	}

	parse_script_table_pointers(bios, bitentry->offset);

	if (bitentry->length >= 16)
		bios->some_script_ptr = ROM16(bios->data[bitentry->offset + 14]);
	if (bitentry->length >= 18)
		bios->init96_tbl_ptr = ROM16(bios->data[bitentry->offset + 16]);

	return 0;
}

static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * BIT 'i' (info?) table
	 *
	 * offset + 0  (32 bits): BIOS version dword (as in B table)
	 * offset + 5  (8  bits): BIOS feature byte (same as for BMP?)
	 * offset + 13 (16 bits): pointer to table containing DAC load
	 * detection comparison values
	 *
	 * There's other things in the table, purpose unknown
	 */

	uint16_t daccmpoffset;
	uint8_t dacver, dacheaderlen;

	if (bitentry->length < 6) {
		NV_ERROR(dev, "BIT i table too short for needed information\n");
		return -EINVAL;
	}

	parse_bios_version(dev, bios, bitentry->offset);

	/*
	 * bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's
	 * Quadro identity crisis), other bits possibly as for BMP feature byte
	 */
	bios->feature_byte = bios->data[bitentry->offset + 5];
	bios->is_mobile = bios->feature_byte & FEATURE_MOBILE;

	if (bitentry->length < 15) {
		NV_WARN(dev, "BIT i table not long enough for DAC load "
			       "detection comparison table\n");
		return -EINVAL;
	}

	daccmpoffset = ROM16(bios->data[bitentry->offset + 13]);

	/* doesn't exist on g80 */
	if (!daccmpoffset)
		return 0;

	/*
	 * The first value in the table, following the header, is the
	 * comparison value, the second entry is a comparison value for
	 * TV load detection.
	 */

	dacver = bios->data[daccmpoffset];
	dacheaderlen = bios->data[daccmpoffset + 1];

	if (dacver != 0x00 && dacver != 0x10) {
		NV_WARN(dev, "DAC load detection comparison table version "
			       "%d.%d not known\n", dacver >> 4, dacver & 0xf);
		return -ENOSYS;
	}

5186 5187
	bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]);
	bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]);
5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235

	return 0;
}

static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * Parses the LVDS table segment that the bit entry points to.
	 * Starting at bitentry->offset:
	 *
	 * offset + 0  (16 bits): LVDS strap xlate table pointer
	 */

	if (bitentry->length != 2) {
		NV_ERROR(dev, "Do not understand BIT LVDS table\n");
		return -EINVAL;
	}

	/*
	 * No idea if it's still called the LVDS manufacturer table, but
	 * the concept's close enough.
	 */
	bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]);

	return 0;
}

static int
parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios,
		      struct bit_entry *bitentry)
{
	/*
	 * offset + 2  (8  bits): number of options in an
	 * 	INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set
	 * offset + 3  (16 bits): pointer to strap xlate table for RAM
	 * 	restrict option selection
	 *
	 * There's a bunch of bits in this table other than the RAM restrict
	 * stuff that we don't use - their use currently unknown
	 */

	/*
	 * Older bios versions don't have a sufficiently long table for
	 * what we want
	 */
	if (bitentry->length < 0x5)
		return 0;

5236
	if (bitentry->version < 2) {
5237 5238
		bios->ram_restrict_group_count = bios->data[bitentry->offset + 2];
		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]);
5239
	} else {
5240 5241
		bios->ram_restrict_group_count = bios->data[bitentry->offset + 0];
		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]);
5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
	}

	return 0;
}

static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * Parses the pointer to the TMDS table
	 *
	 * Starting at bitentry->offset:
	 *
	 * offset + 0  (16 bits): TMDS table pointer
	 *
	 * The TMDS table is typically found just before the DCB table, with a
	 * characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being
	 * length?)
	 *
	 * At offset +7 is a pointer to a script, which I don't know how to
	 * run yet.
	 * At offset +9 is a pointer to another script, likewise
	 * Offset +11 has a pointer to a table where the first word is a pxclk
	 * frequency and the second word a pointer to a script, which should be
	 * run if the comparison pxclk frequency is less than the pxclk desired.
	 * This repeats for decreasing comparison frequencies
	 * Offset +13 has a pointer to a similar table
	 * The selection of table (and possibly +7/+9 script) is dictated by
	 * "or" from the DCB.
	 */

	uint16_t tmdstableptr, script1, script2;

	if (bitentry->length != 2) {
		NV_ERROR(dev, "Do not understand BIT TMDS table\n");
		return -EINVAL;
	}

	tmdstableptr = ROM16(bios->data[bitentry->offset]);
5280
	if (!tmdstableptr) {
5281 5282 5283 5284
		NV_ERROR(dev, "Pointer to TMDS table invalid\n");
		return -EINVAL;
	}

5285 5286 5287
	NV_INFO(dev, "TMDS table version %d.%d\n",
		bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf);

5288
	/* nv50+ has v2.0, but we don't parse it atm */
5289
	if (bios->data[tmdstableptr] != 0x11)
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
		return -ENOSYS;

	/*
	 * These two scripts are odd: they don't seem to get run even when
	 * they are not stubbed.
	 */
	script1 = ROM16(bios->data[tmdstableptr + 7]);
	script2 = ROM16(bios->data[tmdstableptr + 9]);
	if (bios->data[script1] != 'q' || bios->data[script2] != 'q')
		NV_WARN(dev, "TMDS table script pointers not stubbed\n");

	bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]);
	bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]);

	return 0;
}

static int
parse_bit_U_tbl_entry(struct drm_device *dev, struct nvbios *bios,
		      struct bit_entry *bitentry)
{
	/*
	 * Parses the pointer to the G80 output script tables
	 *
	 * Starting at bitentry->offset:
	 *
	 * offset + 0  (16 bits): output script table pointer
	 */

	uint16_t outputscripttableptr;

	if (bitentry->length != 3) {
		NV_ERROR(dev, "Do not understand BIT U table\n");
		return -EINVAL;
	}

	outputscripttableptr = ROM16(bios->data[bitentry->offset]);
	bios->display.script_table_ptr = outputscripttableptr;
	return 0;
}

struct bit_table {
	const char id;
	int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *);
};

#define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry })

5338 5339 5340 5341 5342 5343 5344
int
bit_table(struct drm_device *dev, u8 id, struct bit_entry *bit)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nvbios *bios = &dev_priv->vbios;
	u8 entries, *entry;

5345 5346 5347
	if (bios->type != NVBIOS_BIT)
		return -ENODEV;

5348 5349 5350 5351 5352 5353 5354 5355
	entries = bios->data[bios->offset + 10];
	entry   = &bios->data[bios->offset + 12];
	while (entries--) {
		if (entry[0] == id) {
			bit->id = entry[0];
			bit->version = entry[1];
			bit->length = ROM16(entry[2]);
			bit->offset = ROM16(entry[4]);
5356
			bit->data = ROMPTR(dev, entry[4]);
5357 5358 5359 5360 5361 5362 5363 5364 5365
			return 0;
		}

		entry += bios->data[bios->offset + 9];
	}

	return -ENOENT;
}

5366 5367 5368 5369 5370 5371 5372
static int
parse_bit_table(struct nvbios *bios, const uint16_t bitoffset,
		struct bit_table *table)
{
	struct drm_device *dev = bios->dev;
	struct bit_entry bitentry;

5373
	if (bit_table(dev, table->id, &bitentry) == 0)
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
		return table->parse_fn(dev, bios, &bitentry);

	NV_INFO(dev, "BIT table '%c' not found\n", table->id);
	return -ENOSYS;
}

static int
parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset)
{
	int ret;

	/*
	 * The only restriction on parsing order currently is having 'i' first
	 * for use of bios->*_version or bios->feature_byte while parsing;
	 * functions shouldn't be actually *doing* anything apart from pulling
	 * data from the image into the bios struct, thus no interdependencies
	 */
	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i));
	if (ret) /* info? */
		return ret;
	if (bios->major_version >= 0x60) /* g80+ */
		parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A));
	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('C', C));
	if (ret)
		return ret;
	parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display));
	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init));
	if (ret)
		return ret;
	parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */
	parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds));
	parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds));
	parse_bit_table(bios, bitoffset, &BIT_TABLE('U', U));

	return 0;
}

static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset)
{
	/*
	 * Parses the BMP structure for useful things, but does not act on them
	 *
	 * offset +   5: BMP major version
	 * offset +   6: BMP minor version
	 * offset +   9: BMP feature byte
	 * offset +  10: BCD encoded BIOS version
	 *
	 * offset +  18: init script table pointer (for bios versions < 5.10h)
	 * offset +  20: extra init script table pointer (for bios
	 * versions < 5.10h)
	 *
	 * offset +  24: memory init table pointer (used on early bios versions)
	 * offset +  26: SDR memory sequencing setup data table
	 * offset +  28: DDR memory sequencing setup data table
	 *
	 * offset +  54: index of I2C CRTC pair to use for CRT output
	 * offset +  55: index of I2C CRTC pair to use for TV output
	 * offset +  56: index of I2C CRTC pair to use for flat panel output
	 * offset +  58: write CRTC index for I2C pair 0
	 * offset +  59: read CRTC index for I2C pair 0
	 * offset +  60: write CRTC index for I2C pair 1
	 * offset +  61: read CRTC index for I2C pair 1
	 *
	 * offset +  67: maximum internal PLL frequency (single stage PLL)
	 * offset +  71: minimum internal PLL frequency (single stage PLL)
	 *
	 * offset +  75: script table pointers, as described in
	 * parse_script_table_pointers
	 *
	 * offset +  89: TMDS single link output A table pointer
	 * offset +  91: TMDS single link output B table pointer
	 * offset +  95: LVDS single link output A table pointer
	 * offset + 105: flat panel timings table pointer
	 * offset + 107: flat panel strapping translation table pointer
	 * offset + 117: LVDS manufacturer panel config table pointer
	 * offset + 119: LVDS manufacturer strapping translation table pointer
	 *
	 * offset + 142: PLL limits table pointer
	 *
	 * offset + 156: minimum pixel clock for LVDS dual link
	 */

	uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor;
	uint16_t bmplength;
	uint16_t legacy_scripts_offset, legacy_i2c_offset;

	/* load needed defaults in case we can't parse this info */
5461
	bios->digital_min_front_porch = 0x4b;
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
	bios->fmaxvco = 256000;
	bios->fminvco = 128000;
	bios->fp.duallink_transition_clk = 90000;

	bmp_version_major = bmp[5];
	bmp_version_minor = bmp[6];

	NV_TRACE(dev, "BMP version %d.%d\n",
		 bmp_version_major, bmp_version_minor);

	/*
	 * Make sure that 0x36 is blank and can't be mistaken for a DCB
	 * pointer on early versions
	 */
	if (bmp_version_major < 5)
		*(uint16_t *)&bios->data[0x36] = 0;

	/*
	 * Seems that the minor version was 1 for all major versions prior
	 * to 5. Version 6 could theoretically exist, but I suspect BIT
	 * happened instead.
	 */
	if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) {
		NV_ERROR(dev, "You have an unsupported BMP version. "
				"Please send in your bios\n");
		return -ENOSYS;
	}

	if (bmp_version_major == 0)
		/* nothing that's currently useful in this version */
		return 0;
	else if (bmp_version_major == 1)
		bmplength = 44; /* exact for 1.01 */
	else if (bmp_version_major == 2)
		bmplength = 48; /* exact for 2.01 */
	else if (bmp_version_major == 3)
		bmplength = 54;
		/* guessed - mem init tables added in this version */
	else if (bmp_version_major == 4 || bmp_version_minor < 0x1)
		/* don't know if 5.0 exists... */
		bmplength = 62;
		/* guessed - BMP I2C indices added in version 4*/
	else if (bmp_version_minor < 0x6)
		bmplength = 67; /* exact for 5.01 */
	else if (bmp_version_minor < 0x10)
		bmplength = 75; /* exact for 5.06 */
	else if (bmp_version_minor == 0x10)
		bmplength = 89; /* exact for 5.10h */
	else if (bmp_version_minor < 0x14)
		bmplength = 118; /* exact for 5.11h */
	else if (bmp_version_minor < 0x24)
		/*
		 * Not sure of version where pll limits came in;
		 * certainly exist by 0x24 though.
		 */
		/* length not exact: this is long enough to get lvds members */
		bmplength = 123;
	else if (bmp_version_minor < 0x27)
		/*
		 * Length not exact: this is long enough to get pll limit
		 * member
		 */
		bmplength = 144;
	else
		/*
		 * Length not exact: this is long enough to get dual link
		 * transition clock.
		 */
		bmplength = 158;

	/* checksum */
	if (nv_cksum(bmp, 8)) {
		NV_ERROR(dev, "Bad BMP checksum\n");
		return -EINVAL;
	}

	/*
	 * Bit 4 seems to indicate either a mobile bios or a quadro card --
	 * mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl
	 * (not nv10gl), bit 5 that the flat panel tables are present, and
	 * bit 6 a tv bios.
	 */
	bios->feature_byte = bmp[9];

	parse_bios_version(dev, bios, offset + 10);

	if (bmp_version_major < 5 || bmp_version_minor < 0x10)
		bios->old_style_init = true;
	legacy_scripts_offset = 18;
	if (bmp_version_major < 2)
		legacy_scripts_offset -= 4;
	bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]);
	bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]);

	if (bmp_version_major > 2) {	/* appears in BMP 3 */
		bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]);
		bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]);
		bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]);
	}

	legacy_i2c_offset = 0x48;	/* BMP version 2 & 3 */
	if (bmplength > 61)
		legacy_i2c_offset = offset + 54;
	bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset];
	bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1];
	bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2];

	if (bmplength > 74) {
		bios->fmaxvco = ROM32(bmp[67]);
		bios->fminvco = ROM32(bmp[71]);
	}
	if (bmplength > 88)
		parse_script_table_pointers(bios, offset + 75);
	if (bmplength > 94) {
		bios->tmds.output0_script_ptr = ROM16(bmp[89]);
		bios->tmds.output1_script_ptr = ROM16(bmp[91]);
		/*
		 * Never observed in use with lvds scripts, but is reused for
		 * 18/24 bit panel interface default for EDID equipped panels
		 * (if_is_24bit not set directly to avoid any oscillation).
		 */
		bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]);
	}
	if (bmplength > 108) {
		bios->fp.fptablepointer = ROM16(bmp[105]);
		bios->fp.fpxlatetableptr = ROM16(bmp[107]);
		bios->fp.xlatwidth = 1;
	}
	if (bmplength > 120) {
		bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]);
		bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]);
	}
	if (bmplength > 143)
		bios->pll_limit_tbl_ptr = ROM16(bmp[142]);

	if (bmplength > 157)
		bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10;

	return 0;
}

static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len)
{
	int i, j;

	for (i = 0; i <= (n - len); i++) {
		for (j = 0; j < len; j++)
			if (data[i + j] != str[j])
				break;
		if (j == len)
			return i;
	}

	return 0;
}

5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
void *
dcb_table(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	u8 *dcb = NULL;

	if (dev_priv->card_type > NV_04)
		dcb = ROMPTR(dev, dev_priv->vbios.data[0x36]);
	if (!dcb) {
		NV_WARNONCE(dev, "No DCB data found in VBIOS\n");
		return NULL;
	}

	if (dcb[0] >= 0x41) {
		NV_WARNONCE(dev, "DCB version 0x%02x unknown\n", dcb[0]);
		return NULL;
	} else
	if (dcb[0] >= 0x30) {
		if (ROM32(dcb[6]) == 0x4edcbdcb)
			return dcb;
	} else
	if (dcb[0] >= 0x20) {
		if (ROM32(dcb[4]) == 0x4edcbdcb)
			return dcb;
	} else
	if (dcb[0] >= 0x15) {
		if (!memcmp(&dcb[-7], "DEV_REC", 7))
			return dcb;
	} else {
		/*
		 * v1.4 (some NV15/16, NV11+) seems the same as v1.5, but
		 * always has the same single (crt) entry, even when tv-out
		 * present, so the conclusion is this version cannot really
		 * be used.
		 *
		 * v1.2 tables (some NV6/10, and NV15+) normally have the
		 * same 5 entries, which are not specific to the card and so
		 * no use.
		 *
		 * v1.2 does have an I2C table that read_dcb_i2c_table can
		 * handle, but cards exist (nv11 in #14821) with a bad i2c
		 * table pointer, so use the indices parsed in
		 * parse_bmp_structure.
		 *
		 * v1.1 (NV5+, maybe some NV4) is entirely unhelpful
		 */
		NV_WARNONCE(dev, "No useful DCB data in VBIOS\n");
		return NULL;
	}

	NV_WARNONCE(dev, "DCB header validation failed\n");
	return NULL;
}

5672
void *
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
dcb_outp(struct drm_device *dev, u8 idx)
{
	u8 *dcb = dcb_table(dev);
	if (dcb && dcb[0] >= 0x30) {
		if (idx < dcb[2])
			return dcb + dcb[1] + (idx * dcb[3]);
	} else
	if (dcb && dcb[0] >= 0x20) {
		u8 *i2c = ROMPTR(dev, dcb[2]);
		u8 *ent = dcb + 8 + (idx * 8);
		if (i2c && ent < i2c)
			return ent;
	} else
	if (dcb && dcb[0] >= 0x15) {
		u8 *i2c = ROMPTR(dev, dcb[2]);
		u8 *ent = dcb + 4 + (idx * 10);
		if (i2c && ent < i2c)
			return ent;
	}

	return NULL;
}

int
dcb_outp_foreach(struct drm_device *dev, void *data,
		 int (*exec)(struct drm_device *, void *, int idx, u8 *outp))
{
	int ret, idx = -1;
	u8 *outp = NULL;
	while ((outp = dcb_outp(dev, ++idx))) {
		if (ROM32(outp[0]) == 0x00000000)
			break; /* seen on an NV11 with DCB v1.5 */
		if (ROM32(outp[0]) == 0xffffffff)
			break; /* seen on an NV17 with DCB v2.0 */

		if ((outp[0] & 0x0f) == OUTPUT_UNUSED)
			continue;
		if ((outp[0] & 0x0f) == OUTPUT_EOL)
			break;

		ret = exec(dev, data, idx, outp);
		if (ret)
			return ret;
	}

	return 0;
}

5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
u8 *
dcb_conntab(struct drm_device *dev)
{
	u8 *dcb = dcb_table(dev);
	if (dcb && dcb[0] >= 0x30 && dcb[1] >= 0x16) {
		u8 *conntab = ROMPTR(dev, dcb[0x14]);
		if (conntab && conntab[0] >= 0x30 && conntab[0] <= 0x40)
			return conntab;
	}
	return NULL;
}

u8 *
dcb_conn(struct drm_device *dev, u8 idx)
{
	u8 *conntab = dcb_conntab(dev);
	if (conntab && idx < conntab[2])
		return conntab + conntab[1] + (idx * conntab[3]);
	return NULL;
}

5742
static struct dcb_entry *new_dcb_entry(struct dcb_table *dcb)
5743 5744 5745 5746 5747 5748 5749 5750 5751
{
	struct dcb_entry *entry = &dcb->entry[dcb->entries];

	memset(entry, 0, sizeof(struct dcb_entry));
	entry->index = dcb->entries++;

	return entry;
}

5752 5753
static void fabricate_dcb_output(struct dcb_table *dcb, int type, int i2c,
				 int heads, int or)
5754 5755 5756
{
	struct dcb_entry *entry = new_dcb_entry(dcb);

5757
	entry->type = type;
5758 5759
	entry->i2c_index = i2c;
	entry->heads = heads;
5760 5761 5762
	if (type != OUTPUT_ANALOG)
		entry->location = !DCB_LOC_ON_CHIP; /* ie OFF CHIP */
	entry->or = or;
5763 5764 5765
}

static bool
5766
parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb,
5767 5768 5769 5770 5771
		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
{
	entry->type = conn & 0xf;
	entry->i2c_index = (conn >> 4) & 0xf;
	entry->heads = (conn >> 8) & 0xf;
5772
	entry->connector = (conn >> 12) & 0xf;
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
	entry->bus = (conn >> 16) & 0xf;
	entry->location = (conn >> 20) & 0x3;
	entry->or = (conn >> 24) & 0xf;

	switch (entry->type) {
	case OUTPUT_ANALOG:
		/*
		 * Although the rest of a CRT conf dword is usually
		 * zeros, mac biosen have stuff there so we must mask
		 */
5783
		entry->crtconf.maxfreq = (dcb->version < 0x30) ?
5784 5785 5786 5787 5788 5789 5790 5791
					 (conf & 0xffff) * 10 :
					 (conf & 0xff) * 10000;
		break;
	case OUTPUT_LVDS:
		{
		uint32_t mask;
		if (conf & 0x1)
			entry->lvdsconf.use_straps_for_mode = true;
5792
		if (dcb->version < 0x22) {
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
			mask = ~0xd;
			/*
			 * The laptop in bug 14567 lies and claims to not use
			 * straps when it does, so assume all DCB 2.0 laptops
			 * use straps, until a broken EDID using one is produced
			 */
			entry->lvdsconf.use_straps_for_mode = true;
			/*
			 * Both 0x4 and 0x8 show up in v2.0 tables; assume they
			 * mean the same thing (probably wrong, but might work)
			 */
			if (conf & 0x4 || conf & 0x8)
				entry->lvdsconf.use_power_scripts = true;
		} else {
5807 5808 5809
			mask = ~0x7;
			if (conf & 0x2)
				entry->lvdsconf.use_acpi_for_edid = true;
5810 5811
			if (conf & 0x4)
				entry->lvdsconf.use_power_scripts = true;
5812
			entry->lvdsconf.sor.link = (conf & 0x00000030) >> 4;
5813 5814 5815 5816 5817 5818
		}
		if (conf & mask) {
			/*
			 * Until we even try to use these on G8x, it's
			 * useless reporting unknown bits.  They all are.
			 */
5819
			if (dcb->version >= 0x40)
5820 5821 5822 5823 5824 5825 5826 5827 5828
				break;

			NV_ERROR(dev, "Unknown LVDS configuration bits, "
				      "please report\n");
		}
		break;
		}
	case OUTPUT_TV:
	{
5829
		if (dcb->version >= 0x30)
5830 5831 5832 5833 5834 5835 5836 5837
			entry->tvconf.has_component_output = conf & (0x8 << 4);
		else
			entry->tvconf.has_component_output = false;

		break;
	}
	case OUTPUT_DP:
		entry->dpconf.sor.link = (conf & 0x00000030) >> 4;
5838 5839 5840 5841 5842 5843 5844 5845
		switch ((conf & 0x00e00000) >> 21) {
		case 0:
			entry->dpconf.link_bw = 162000;
			break;
		default:
			entry->dpconf.link_bw = 270000;
			break;
		}
5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858
		switch ((conf & 0x0f000000) >> 24) {
		case 0xf:
			entry->dpconf.link_nr = 4;
			break;
		case 0x3:
			entry->dpconf.link_nr = 2;
			break;
		default:
			entry->dpconf.link_nr = 1;
			break;
		}
		break;
	case OUTPUT_TMDS:
5859 5860
		if (dcb->version >= 0x40)
			entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4;
5861 5862
		else if (dcb->version >= 0x30)
			entry->tmdsconf.slave_addr = (conf & 0x00000700) >> 8;
5863 5864
		else if (dcb->version >= 0x22)
			entry->tmdsconf.slave_addr = (conf & 0x00000070) >> 4;
5865

5866
		break;
5867
	case OUTPUT_EOL:
5868
		/* weird g80 mobile type that "nv" treats as a terminator */
5869
		dcb->entries--;
5870
		return false;
5871 5872
	default:
		break;
5873 5874
	}

5875 5876 5877 5878 5879 5880 5881 5882 5883 5884
	if (dcb->version < 0x40) {
		/* Normal entries consist of a single bit, but dual link has
		 * the next most significant bit set too
		 */
		entry->duallink_possible =
			((1 << (ffs(entry->or) - 1)) * 3 == entry->or);
	} else {
		entry->duallink_possible = (entry->sorconf.link == 3);
	}

5885 5886 5887 5888 5889 5890 5891 5892
	/* unsure what DCB version introduces this, 3.0? */
	if (conf & 0x100000)
		entry->i2c_upper_default = true;

	return true;
}

static bool
5893
parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb,
5894 5895
		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
{
5896 5897 5898 5899 5900 5901 5902 5903 5904
	switch (conn & 0x0000000f) {
	case 0:
		entry->type = OUTPUT_ANALOG;
		break;
	case 1:
		entry->type = OUTPUT_TV;
		break;
	case 2:
	case 4:
5905
		if (conn & 0x10)
5906
			entry->type = OUTPUT_LVDS;
5907 5908 5909 5910 5911
		else
			entry->type = OUTPUT_TMDS;
		break;
	case 3:
		entry->type = OUTPUT_LVDS;
5912 5913 5914 5915
		break;
	default:
		NV_ERROR(dev, "Unknown DCB type %d\n", conn & 0x0000000f);
		return false;
5916
	}
5917 5918 5919 5920 5921 5922

	entry->i2c_index = (conn & 0x0003c000) >> 14;
	entry->heads = ((conn & 0x001c0000) >> 18) + 1;
	entry->or = entry->heads; /* same as heads, hopefully safe enough */
	entry->location = (conn & 0x01e00000) >> 21;
	entry->bus = (conn & 0x0e000000) >> 25;
5923 5924 5925 5926 5927 5928
	entry->duallink_possible = false;

	switch (entry->type) {
	case OUTPUT_ANALOG:
		entry->crtconf.maxfreq = (conf & 0xffff) * 10;
		break;
5929 5930
	case OUTPUT_TV:
		entry->tvconf.has_component_output = false;
5931
		break;
5932
	case OUTPUT_LVDS:
5933
		if ((conn & 0x00003f00) >> 8 != 0x10)
5934 5935 5936 5937
			entry->lvdsconf.use_straps_for_mode = true;
		entry->lvdsconf.use_power_scripts = true;
		break;
	default:
5938 5939 5940 5941 5942 5943 5944
		break;
	}

	return true;
}

static
5945
void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb)
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
{
	/*
	 * DCB v2.0 lists each output combination separately.
	 * Here we merge compatible entries to have fewer outputs, with
	 * more options
	 */

	int i, newentries = 0;

	for (i = 0; i < dcb->entries; i++) {
		struct dcb_entry *ient = &dcb->entry[i];
		int j;

		for (j = i + 1; j < dcb->entries; j++) {
			struct dcb_entry *jent = &dcb->entry[j];

			if (jent->type == 100) /* already merged entry */
				continue;

			/* merge heads field when all other fields the same */
			if (jent->i2c_index == ient->i2c_index &&
			    jent->type == ient->type &&
			    jent->location == ient->location &&
			    jent->or == ient->or) {
				NV_TRACE(dev, "Merging DCB entries %d and %d\n",
					 i, j);
				ient->heads |= jent->heads;
				jent->type = 100; /* dummy value */
			}
		}
	}

	/* Compact entries merged into others out of dcb */
	for (i = 0; i < dcb->entries; i++) {
		if (dcb->entry[i].type == 100)
			continue;

		if (newentries != i) {
			dcb->entry[newentries] = dcb->entry[i];
			dcb->entry[newentries].index = newentries;
		}
		newentries++;
	}

	dcb->entries = newentries;
}

B
Ben Skeggs 已提交
5993 5994 5995
static bool
apply_dcb_encoder_quirks(struct drm_device *dev, int idx, u32 *conn, u32 *conf)
{
5996 5997 5998
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct dcb_table *dcb = &dev_priv->vbios.dcb;

B
Ben Skeggs 已提交
5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
	/* Dell Precision M6300
	 *   DCB entry 2: 02025312 00000010
	 *   DCB entry 3: 02026312 00000020
	 *
	 * Identical, except apparently a different connector on a
	 * different SOR link.  Not a clue how we're supposed to know
	 * which one is in use if it even shares an i2c line...
	 *
	 * Ignore the connector on the second SOR link to prevent
	 * nasty problems until this is sorted (assuming it's not a
	 * VBIOS bug).
	 */
6011
	if (nv_match_device(dev, 0x040d, 0x1028, 0x019b)) {
B
Ben Skeggs 已提交
6012 6013 6014 6015
		if (*conn == 0x02026312 && *conf == 0x00000020)
			return false;
	}

6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
	/* GeForce3 Ti 200
	 *
	 * DCB reports an LVDS output that should be TMDS:
	 *   DCB entry 1: f2005014 ffffffff
	 */
	if (nv_match_device(dev, 0x0201, 0x1462, 0x8851)) {
		if (*conn == 0xf2005014 && *conf == 0xffffffff) {
			fabricate_dcb_output(dcb, OUTPUT_TMDS, 1, 1, 1);
			return false;
		}
	}

6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
	/* XFX GT-240X-YA
	 *
	 * So many things wrong here, replace the entire encoder table..
	 */
	if (nv_match_device(dev, 0x0ca3, 0x1682, 0x3003)) {
		if (idx == 0) {
			*conn = 0x02001300; /* VGA, connector 1 */
			*conf = 0x00000028;
		} else
		if (idx == 1) {
			*conn = 0x01010312; /* DVI, connector 0 */
			*conf = 0x00020030;
		} else
		if (idx == 2) {
			*conn = 0x01010310; /* VGA, connector 0 */
			*conf = 0x00000028;
		} else
		if (idx == 3) {
			*conn = 0x02022362; /* HDMI, connector 2 */
			*conf = 0x00020010;
		} else {
			*conn = 0x0000000e; /* EOL */
			*conf = 0x00000000;
		}
	}

6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084
	/* Some other twisted XFX board (rhbz#694914)
	 *
	 * The DVI/VGA encoder combo that's supposed to represent the
	 * DVI-I connector actually point at two different ones, and
	 * the HDMI connector ends up paired with the VGA instead.
	 *
	 * Connector table is missing anything for VGA at all, pointing it
	 * an invalid conntab entry 2 so we figure it out ourself.
	 */
	if (nv_match_device(dev, 0x0615, 0x1682, 0x2605)) {
		if (idx == 0) {
			*conn = 0x02002300; /* VGA, connector 2 */
			*conf = 0x00000028;
		} else
		if (idx == 1) {
			*conn = 0x01010312; /* DVI, connector 0 */
			*conf = 0x00020030;
		} else
		if (idx == 2) {
			*conn = 0x04020310; /* VGA, connector 0 */
			*conf = 0x00000028;
		} else
		if (idx == 3) {
			*conn = 0x02021322; /* HDMI, connector 1 */
			*conf = 0x00020010;
		} else {
			*conn = 0x0000000e; /* EOL */
			*conf = 0x00000000;
		}
	}

B
Ben Skeggs 已提交
6085 6086 6087
	return true;
}

6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
static void
fabricate_dcb_encoder_table(struct drm_device *dev, struct nvbios *bios)
{
	struct dcb_table *dcb = &bios->dcb;
	int all_heads = (nv_two_heads(dev) ? 3 : 1);

#ifdef __powerpc__
	/* Apple iMac G4 NV17 */
	if (of_machine_is_compatible("PowerMac4,5")) {
		fabricate_dcb_output(dcb, OUTPUT_TMDS, 0, all_heads, 1);
		fabricate_dcb_output(dcb, OUTPUT_ANALOG, 1, all_heads, 2);
		return;
	}
#endif

	/* Make up some sane defaults */
6104 6105
	fabricate_dcb_output(dcb, OUTPUT_ANALOG,
			     bios->legacy.i2c_indices.crt, 1, 1);
6106 6107

	if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0)
6108 6109
		fabricate_dcb_output(dcb, OUTPUT_TV,
				     bios->legacy.i2c_indices.tv,
6110 6111 6112 6113
				     all_heads, 0);

	else if (bios->tmds.output0_script_ptr ||
		 bios->tmds.output1_script_ptr)
6114 6115
		fabricate_dcb_output(dcb, OUTPUT_TMDS,
				     bios->legacy.i2c_indices.panel,
6116 6117 6118
				     all_heads, 1);
}

6119
static int
6120
parse_dcb_entry(struct drm_device *dev, void *data, int idx, u8 *outp)
6121
{
6122
	struct drm_nouveau_private *dev_priv = dev->dev_private;
6123 6124 6125 6126
	struct dcb_table *dcb = &dev_priv->vbios.dcb;
	u32 conf = (dcb->version >= 0x20) ? ROM32(outp[4]) : ROM32(outp[6]);
	u32 conn = ROM32(outp[0]);
	bool ret;
6127

6128 6129
	if (apply_dcb_encoder_quirks(dev, idx, &conn, &conf)) {
		struct dcb_entry *entry = new_dcb_entry(dcb);
6130

6131
		NV_TRACEWARN(dev, "DCB outp %02d: %08x %08x\n", idx, conn, conf);
6132

6133 6134 6135 6136 6137 6138
		if (dcb->version >= 0x20)
			ret = parse_dcb20_entry(dev, dcb, conn, conf, entry);
		else
			ret = parse_dcb15_entry(dev, dcb, conn, conf, entry);
		if (!ret)
			return 1; /* stop parsing */
6139 6140 6141 6142 6143 6144 6145 6146

		/* Ignore the I2C index for on-chip TV-out, as there
		 * are cards with bogus values (nv31m in bug 23212),
		 * and it's otherwise useless.
		 */
		if (entry->type == OUTPUT_TV &&
		    entry->location == DCB_LOC_ON_CHIP)
			entry->i2c_index = 0x0f;
6147
	}
6148

6149 6150
	return 0;
}
6151

6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
static void
dcb_fake_connectors(struct nvbios *bios)
{
	struct dcb_table *dcbt = &bios->dcb;
	u8 map[16] = { };
	int i, idx = 0;

	/* heuristic: if we ever get a non-zero connector field, assume
	 * that all the indices are valid and we don't need fake them.
	 */
	for (i = 0; i < dcbt->entries; i++) {
		if (dcbt->entry[i].connector)
			return;
	}

	/* no useful connector info available, we need to make it up
	 * ourselves.  the rule here is: anything on the same i2c bus
	 * is considered to be on the same connector.  any output
	 * without an associated i2c bus is assigned its own unique
	 * connector index.
	 */
	for (i = 0; i < dcbt->entries; i++) {
		u8 i2c = dcbt->entry[i].i2c_index;
		if (i2c == 0x0f) {
			dcbt->entry[i].connector = idx++;
		} else {
			if (!map[i2c])
				map[i2c] = ++idx;
			dcbt->entry[i].connector = map[i2c] - 1;
		}
	}

	/* if we created more than one connector, destroy the connector
	 * table - just in case it has random, rather than stub, entries.
	 */
	if (i > 1) {
		u8 *conntab = dcb_conntab(bios->dev);
		if (conntab)
			conntab[0] = 0x00;
	}
}

6194 6195 6196 6197
static int
parse_dcb_table(struct drm_device *dev, struct nvbios *bios)
{
	struct dcb_table *dcb = &bios->dcb;
6198 6199
	u8 *dcbt, *conn;
	int idx;
6200 6201 6202 6203 6204 6205 6206

	dcbt = dcb_table(dev);
	if (!dcbt) {
		/* handle pre-DCB boards */
		if (bios->type == NVBIOS_BMP) {
			fabricate_dcb_encoder_table(dev, bios);
			return 0;
6207 6208
		}

6209 6210
		return -EINVAL;
	}
6211

6212
	NV_TRACE(dev, "DCB version %d.%d\n", dcbt[0] >> 4, dcbt[0] & 0xf);
6213

6214 6215
	dcb->version = dcbt[0];
	dcb_outp_foreach(dev, NULL, parse_dcb_entry);
6216 6217 6218 6219 6220

	/*
	 * apart for v2.1+ not being known for requiring merging, this
	 * guarantees dcbent->index is the index of the entry in the rom image
	 */
6221
	if (dcb->version < 0x21)
6222 6223
		merge_like_dcb_entries(dev, dcb);

6224 6225 6226
	if (!dcb->entries)
		return -ENXIO;

6227 6228 6229 6230 6231 6232 6233 6234 6235
	/* dump connector table entries to log, if any exist */
	idx = -1;
	while ((conn = dcb_conn(dev, ++idx))) {
		if (conn[0] != 0xff) {
			NV_TRACE(dev, "DCB conn %02d: ", idx);
			if (dcb_conntab(dev)[3] < 4)
				printk("%04x\n", ROM16(conn[0]));
			else
				printk("%08x\n", ROM32(conn[0]));
6236 6237
		}
	}
6238 6239
	dcb_fake_connectors(bios);
	return 0;
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314
}

static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry)
{
	/*
	 * The header following the "HWSQ" signature has the number of entries,
	 * and the entry size
	 *
	 * An entry consists of a dword to write to the sequencer control reg
	 * (0x00001304), followed by the ucode bytes, written sequentially,
	 * starting at reg 0x00001400
	 */

	uint8_t bytes_to_write;
	uint16_t hwsq_entry_offset;
	int i;

	if (bios->data[hwsq_offset] <= entry) {
		NV_ERROR(dev, "Too few entries in HW sequencer table for "
				"requested entry\n");
		return -ENOENT;
	}

	bytes_to_write = bios->data[hwsq_offset + 1];

	if (bytes_to_write != 36) {
		NV_ERROR(dev, "Unknown HW sequencer entry size\n");
		return -EINVAL;
	}

	NV_TRACE(dev, "Loading NV17 power sequencing microcode\n");

	hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write;

	/* set sequencer control */
	bios_wr32(bios, 0x00001304, ROM32(bios->data[hwsq_entry_offset]));
	bytes_to_write -= 4;

	/* write ucode */
	for (i = 0; i < bytes_to_write; i += 4)
		bios_wr32(bios, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4]));

	/* twiddle NV_PBUS_DEBUG_4 */
	bios_wr32(bios, NV_PBUS_DEBUG_4, bios_rd32(bios, NV_PBUS_DEBUG_4) | 0x18);

	return 0;
}

static int load_nv17_hw_sequencer_ucode(struct drm_device *dev,
					struct nvbios *bios)
{
	/*
	 * BMP based cards, from NV17, need a microcode loading to correctly
	 * control the GPIO etc for LVDS panels
	 *
	 * BIT based cards seem to do this directly in the init scripts
	 *
	 * The microcode entries are found by the "HWSQ" signature.
	 */

	const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' };
	const int sz = sizeof(hwsq_signature);
	int hwsq_offset;

	hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz);
	if (!hwsq_offset)
		return 0;

	/* always use entry 0? */
	return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0);
}

uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
6315
	struct nvbios *bios = &dev_priv->vbios;
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
	const uint8_t edid_sig[] = {
			0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 };
	uint16_t offset = 0;
	uint16_t newoffset;
	int searchlen = NV_PROM_SIZE;

	if (bios->fp.edid)
		return bios->fp.edid;

	while (searchlen) {
		newoffset = findstr(&bios->data[offset], searchlen,
								edid_sig, 8);
		if (!newoffset)
			return NULL;
		offset += newoffset;
		if (!nv_cksum(&bios->data[offset], EDID1_LEN))
			break;

		searchlen -= offset;
		offset++;
	}

	NV_TRACE(dev, "Found EDID in BIOS\n");

	return bios->fp.edid = &bios->data[offset];
}

void
nouveau_bios_run_init_table(struct drm_device *dev, uint16_t table,
6345
			    struct dcb_entry *dcbent, int crtc)
6346 6347
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
6348
	struct nvbios *bios = &dev_priv->vbios;
6349 6350
	struct init_exec iexec = { true, false };

6351
	spin_lock_bh(&bios->lock);
6352
	bios->display.output = dcbent;
6353
	bios->display.crtc = crtc;
6354 6355
	parse_init_table(bios, table, &iexec);
	bios->display.output = NULL;
6356
	spin_unlock_bh(&bios->lock);
6357 6358
}

6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
void
nouveau_bios_init_exec(struct drm_device *dev, uint16_t table)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nvbios *bios = &dev_priv->vbios;
	struct init_exec iexec = { true, false };

	parse_init_table(bios, table, &iexec);
}

6369 6370 6371
static bool NVInitVBIOS(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
6372
	struct nvbios *bios = &dev_priv->vbios;
6373 6374

	memset(bios, 0, sizeof(struct nvbios));
6375
	spin_lock_init(&bios->lock);
6376 6377
	bios->dev = dev;

6378
	return bios_shadow(dev);
6379 6380 6381 6382 6383
}

static int nouveau_parse_vbios_struct(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
6384
	struct nvbios *bios = &dev_priv->vbios;
6385 6386 6387 6388 6389 6390 6391 6392
	const uint8_t bit_signature[] = { 0xff, 0xb8, 'B', 'I', 'T' };
	const uint8_t bmp_signature[] = { 0xff, 0x7f, 'N', 'V', 0x0 };
	int offset;

	offset = findstr(bios->data, bios->length,
					bit_signature, sizeof(bit_signature));
	if (offset) {
		NV_TRACE(dev, "BIT BIOS found\n");
6393 6394
		bios->type = NVBIOS_BIT;
		bios->offset = offset;
6395 6396 6397 6398 6399 6400 6401
		return parse_bit_structure(bios, offset + 6);
	}

	offset = findstr(bios->data, bios->length,
					bmp_signature, sizeof(bmp_signature));
	if (offset) {
		NV_TRACE(dev, "BMP BIOS found\n");
6402 6403
		bios->type = NVBIOS_BMP;
		bios->offset = offset;
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
		return parse_bmp_structure(dev, bios, offset);
	}

	NV_ERROR(dev, "No known BIOS signature found\n");
	return -ENODEV;
}

int
nouveau_run_vbios_init(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
6415
	struct nvbios *bios = &dev_priv->vbios;
6416 6417
	int i, ret = 0;

6418 6419
	/* Reset the BIOS head to 0. */
	bios->state.crtchead = 0;
6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444

	if (bios->major_version < 5)	/* BMP only */
		load_nv17_hw_sequencer_ucode(dev, bios);

	if (bios->execute) {
		bios->fp.last_script_invoc = 0;
		bios->fp.lvds_init_run = false;
	}

	parse_init_tables(bios);

	/*
	 * Runs some additional script seen on G8x VBIOSen.  The VBIOS'
	 * parser will run this right after the init tables, the binary
	 * driver appears to run it at some point later.
	 */
	if (bios->some_script_ptr) {
		struct init_exec iexec = {true, false};

		NV_INFO(dev, "Parsing VBIOS init table at offset 0x%04X\n",
			bios->some_script_ptr);
		parse_init_table(bios, bios->some_script_ptr, &iexec);
	}

	if (dev_priv->card_type >= NV_50) {
6445
		for (i = 0; i < bios->dcb.entries; i++) {
6446 6447
			nouveau_bios_run_display_table(dev, 0, 0,
						       &bios->dcb.entry[i], -1);
6448 6449 6450 6451 6452 6453
		}
	}

	return ret;
}

6454 6455 6456 6457 6458 6459
static bool
nouveau_bios_posted(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	unsigned htotal;

6460
	if (dev_priv->card_type >= NV_50) {
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471
		if (NVReadVgaCrtc(dev, 0, 0x00) == 0 &&
		    NVReadVgaCrtc(dev, 0, 0x1a) == 0)
			return false;
		return true;
	}

	htotal  = NVReadVgaCrtc(dev, 0, 0x06);
	htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x01) << 8;
	htotal |= (NVReadVgaCrtc(dev, 0, 0x07) & 0x20) << 4;
	htotal |= (NVReadVgaCrtc(dev, 0, 0x25) & 0x01) << 10;
	htotal |= (NVReadVgaCrtc(dev, 0, 0x41) & 0x01) << 11;
6472

6473 6474 6475
	return (htotal != 0);
}

6476 6477 6478 6479
int
nouveau_bios_init(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
6480
	struct nvbios *bios = &dev_priv->vbios;
6481 6482 6483 6484 6485 6486 6487 6488 6489
	int ret;

	if (!NVInitVBIOS(dev))
		return -ENODEV;

	ret = nouveau_parse_vbios_struct(dev);
	if (ret)
		return ret;

6490 6491 6492 6493
	ret = nouveau_i2c_init(dev);
	if (ret)
		return ret;

6494 6495 6496 6497
	ret = nouveau_mxm_init(dev);
	if (ret)
		return ret;

6498
	ret = parse_dcb_table(dev, bios);
6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
	if (ret)
		return ret;

	if (!bios->major_version)	/* we don't run version 0 bios */
		return 0;

	/* init script execution disabled */
	bios->execute = false;

	/* ... unless card isn't POSTed already */
6509
	if (!nouveau_bios_posted(dev)) {
6510 6511
		NV_INFO(dev, "Adaptor not initialised, "
			"running VBIOS init tables.\n");
6512 6513
		bios->execute = true;
	}
6514 6515
	if (nouveau_force_post)
		bios->execute = true;
6516 6517

	ret = nouveau_run_vbios_init(dev);
6518
	if (ret)
6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
		return ret;

	/* feature_byte on BMP is poor, but init always sets CR4B */
	if (bios->major_version < 5)
		bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40;

	/* all BIT systems need p_f_m_t for digital_min_front_porch */
	if (bios->is_mobile || bios->major_version >= 5)
		ret = parse_fp_mode_table(dev, bios);

	/* allow subsequent scripts to execute */
	bios->execute = true;

	return 0;
}

void
nouveau_bios_takedown(struct drm_device *dev)
{
6538 6539
	struct drm_nouveau_private *dev_priv = dev->dev_private;

6540
	nouveau_mxm_fini(dev);
6541
	nouveau_i2c_fini(dev);
6542 6543

	kfree(dev_priv->vbios.data);
6544
}