nouveau_bios.c 167.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Copyright 2005-2006 Erik Waling
 * Copyright 2006 Stephane Marchesin
 * Copyright 2007-2009 Stuart Bennett
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
 * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "drmP.h"
#define NV_DEBUG_NOTRACE
#include "nouveau_drv.h"
#include "nouveau_hw.h"

/* these defines are made up */
#define NV_CIO_CRE_44_HEADA 0x0
#define NV_CIO_CRE_44_HEADB 0x3
#define FEATURE_MOBILE 0x10	/* also FEATURE_QUADRO for BMP */
#define LEGACY_I2C_CRT 0x80
#define LEGACY_I2C_PANEL 0x81
#define LEGACY_I2C_TV 0x82

#define EDID1_LEN 128

#define BIOSLOG(sip, fmt, arg...) NV_DEBUG(sip->dev, fmt, ##arg)
#define LOG_OLD_VALUE(x)

#define ROM16(x) le16_to_cpu(*(uint16_t *)&(x))
#define ROM32(x) le32_to_cpu(*(uint32_t *)&(x))

struct init_exec {
	bool execute;
	bool repeat;
};

static bool nv_cksum(const uint8_t *data, unsigned int length)
{
	/*
	 * There's a few checksums in the BIOS, so here's a generic checking
	 * function.
	 */
	int i;
	uint8_t sum = 0;

	for (i = 0; i < length; i++)
		sum += data[i];

	if (sum)
		return true;

	return false;
}

static int
score_vbios(struct drm_device *dev, const uint8_t *data, const bool writeable)
{
	if (!(data[0] == 0x55 && data[1] == 0xAA)) {
		NV_TRACEWARN(dev, "... BIOS signature not found\n");
		return 0;
	}

	if (nv_cksum(data, data[2] * 512)) {
		NV_TRACEWARN(dev, "... BIOS checksum invalid\n");
		/* if a ro image is somewhat bad, it's probably all rubbish */
		return writeable ? 2 : 1;
	} else
		NV_TRACE(dev, "... appears to be valid\n");

	return 3;
}

static void load_vbios_prom(struct drm_device *dev, uint8_t *data)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	uint32_t pci_nv_20, save_pci_nv_20;
	int pcir_ptr;
	int i;

	if (dev_priv->card_type >= NV_50)
		pci_nv_20 = 0x88050;
	else
		pci_nv_20 = NV_PBUS_PCI_NV_20;

	/* enable ROM access */
	save_pci_nv_20 = nvReadMC(dev, pci_nv_20);
	nvWriteMC(dev, pci_nv_20,
		  save_pci_nv_20 & ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED);

	/* bail if no rom signature */
	if (nv_rd08(dev, NV_PROM_OFFSET) != 0x55 ||
	    nv_rd08(dev, NV_PROM_OFFSET + 1) != 0xaa)
		goto out;

	/* additional check (see note below) - read PCI record header */
	pcir_ptr = nv_rd08(dev, NV_PROM_OFFSET + 0x18) |
		   nv_rd08(dev, NV_PROM_OFFSET + 0x19) << 8;
	if (nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr) != 'P' ||
	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 1) != 'C' ||
	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 2) != 'I' ||
	    nv_rd08(dev, NV_PROM_OFFSET + pcir_ptr + 3) != 'R')
		goto out;

	/* on some 6600GT/6800LE prom reads are messed up.  nvclock alleges a
	 * a good read may be obtained by waiting or re-reading (cargocult: 5x)
	 * each byte.  we'll hope pramin has something usable instead
	 */
	for (i = 0; i < NV_PROM_SIZE; i++)
		data[i] = nv_rd08(dev, NV_PROM_OFFSET + i);

out:
	/* disable ROM access */
	nvWriteMC(dev, pci_nv_20,
		  save_pci_nv_20 | NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED);
}

static void load_vbios_pramin(struct drm_device *dev, uint8_t *data)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	uint32_t old_bar0_pramin = 0;
	int i;

	if (dev_priv->card_type >= NV_50) {
		uint32_t vbios_vram = (nv_rd32(dev, 0x619f04) & ~0xff) << 8;

		if (!vbios_vram)
			vbios_vram = (nv_rd32(dev, 0x1700) << 16) + 0xf0000;

		old_bar0_pramin = nv_rd32(dev, 0x1700);
		nv_wr32(dev, 0x1700, vbios_vram >> 16);
	}

	/* bail if no rom signature */
	if (nv_rd08(dev, NV_PRAMIN_OFFSET) != 0x55 ||
	    nv_rd08(dev, NV_PRAMIN_OFFSET + 1) != 0xaa)
		goto out;

	for (i = 0; i < NV_PROM_SIZE; i++)
		data[i] = nv_rd08(dev, NV_PRAMIN_OFFSET + i);

out:
	if (dev_priv->card_type >= NV_50)
		nv_wr32(dev, 0x1700, old_bar0_pramin);
}

static void load_vbios_pci(struct drm_device *dev, uint8_t *data)
{
	void __iomem *rom = NULL;
	size_t rom_len;
	int ret;

	ret = pci_enable_rom(dev->pdev);
	if (ret)
		return;

	rom = pci_map_rom(dev->pdev, &rom_len);
	if (!rom)
		goto out;
	memcpy_fromio(data, rom, rom_len);
	pci_unmap_rom(dev->pdev, rom);

out:
	pci_disable_rom(dev->pdev);
}

struct methods {
	const char desc[8];
	void (*loadbios)(struct drm_device *, uint8_t *);
	const bool rw;
};

static struct methods nv04_methods[] = {
	{ "PROM", load_vbios_prom, false },
	{ "PRAMIN", load_vbios_pramin, true },
	{ "PCIROM", load_vbios_pci, true },
};

static struct methods nv50_methods[] = {
	{ "PRAMIN", load_vbios_pramin, true },
	{ "PROM", load_vbios_prom, false },
	{ "PCIROM", load_vbios_pci, true },
};

198 199
#define METHODCNT 3

200 201 202
static bool NVShadowVBIOS(struct drm_device *dev, uint8_t *data)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
203 204
	struct methods *methods;
	int i;
205
	int testscore = 3;
206
	int scores[METHODCNT];
207 208

	if (nouveau_vbios) {
209 210 211
		methods = nv04_methods;
		for (i = 0; i < METHODCNT; i++)
			if (!strcasecmp(nouveau_vbios, methods[i].desc))
212 213
				break;

214
		if (i < METHODCNT) {
215
			NV_INFO(dev, "Attempting to use BIOS image from %s\n",
216
				methods[i].desc);
217

218 219
			methods[i].loadbios(dev, data);
			if (score_vbios(dev, data, methods[i].rw))
220 221 222 223 224 225 226 227 228 229 230
				return true;
		}

		NV_ERROR(dev, "VBIOS source \'%s\' invalid\n", nouveau_vbios);
	}

	if (dev_priv->card_type < NV_50)
		methods = nv04_methods;
	else
		methods = nv50_methods;

231
	for (i = 0; i < METHODCNT; i++) {
232
		NV_TRACE(dev, "Attempting to load BIOS image from %s\n",
233
			 methods[i].desc);
234
		data[0] = data[1] = 0;	/* avoid reuse of previous image */
235 236 237
		methods[i].loadbios(dev, data);
		scores[i] = score_vbios(dev, data, methods[i].rw);
		if (scores[i] == testscore)
238 239 240 241
			return true;
	}

	while (--testscore > 0) {
242 243
		for (i = 0; i < METHODCNT; i++) {
			if (scores[i] == testscore) {
244
				NV_TRACE(dev, "Using BIOS image from %s\n",
245 246
					 methods[i].desc);
				methods[i].loadbios(dev, data);
247 248 249 250 251 252 253 254 255 256 257 258
				return true;
			}
		}
	}

	NV_ERROR(dev, "No valid BIOS image found\n");
	return false;
}

struct init_tbl_entry {
	char *name;
	uint8_t id;
259
	int (*handler)(struct nvbios *, uint16_t, struct init_exec *);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
};

struct bit_entry {
	uint8_t id[2];
	uint16_t length;
	uint16_t offset;
};

static int parse_init_table(struct nvbios *, unsigned int, struct init_exec *);

#define MACRO_INDEX_SIZE	2
#define MACRO_SIZE		8
#define CONDITION_SIZE		12
#define IO_FLAG_CONDITION_SIZE	9
#define IO_CONDITION_SIZE	5
#define MEM_INIT_SIZE		66

static void still_alive(void)
{
#if 0
	sync();
	msleep(2);
#endif
}

static uint32_t
munge_reg(struct nvbios *bios, uint32_t reg)
{
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	struct dcb_entry *dcbent = bios->display.output;

	if (dev_priv->card_type < NV_50)
		return reg;

	if (reg & 0x40000000) {
		BUG_ON(!dcbent);

		reg += (ffs(dcbent->or) - 1) * 0x800;
		if ((reg & 0x20000000) && !(dcbent->sorconf.link & 1))
			reg += 0x00000080;
	}

	reg &= ~0x60000000;
	return reg;
}

static int
valid_reg(struct nvbios *bios, uint32_t reg)
{
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	struct drm_device *dev = bios->dev;

	/* C51 has misaligned regs on purpose. Marvellous */
313
	if (reg & 0x2 ||
314
	    (reg & 0x1 && dev_priv->vbios.chip_version != 0x51))
315 316 317
		NV_ERROR(dev, "======= misaligned reg 0x%08X =======\n", reg);

	/* warn on C51 regs that haven't been verified accessible in tracing */
318
	if (reg & 0x1 && dev_priv->vbios.chip_version == 0x51 &&
319 320 321 322
	    reg != 0x130d && reg != 0x1311 && reg != 0x60081d)
		NV_WARN(dev, "=== C51 misaligned reg 0x%08X not verified ===\n",
			reg);

323 324 325
	if (reg >= (8*1024*1024)) {
		NV_ERROR(dev, "=== reg 0x%08x out of mapped bounds ===\n", reg);
		return 0;
326
	}
327 328

	return 1;
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
}

static bool
valid_idx_port(struct nvbios *bios, uint16_t port)
{
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	struct drm_device *dev = bios->dev;

	/*
	 * If adding more ports here, the read/write functions below will need
	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
	 * used for the port in question
	 */
	if (dev_priv->card_type < NV_50) {
		if (port == NV_CIO_CRX__COLOR)
			return true;
		if (port == NV_VIO_SRX)
			return true;
	} else {
		if (port == NV_CIO_CRX__COLOR)
			return true;
	}

	NV_ERROR(dev, "========== unknown indexed io port 0x%04X ==========\n",
		 port);

	return false;
}

static bool
valid_port(struct nvbios *bios, uint16_t port)
{
	struct drm_device *dev = bios->dev;

	/*
	 * If adding more ports here, the read/write functions below will need
	 * updating so that the correct mmio range (PRMCIO, PRMDIO, PRMVIO) is
	 * used for the port in question
	 */
	if (port == NV_VIO_VSE2)
		return true;

	NV_ERROR(dev, "========== unknown io port 0x%04X ==========\n", port);

	return false;
}

static uint32_t
bios_rd32(struct nvbios *bios, uint32_t reg)
{
	uint32_t data;

	reg = munge_reg(bios, reg);
	if (!valid_reg(bios, reg))
		return 0;

	/*
	 * C51 sometimes uses regs with bit0 set in the address. For these
	 * cases there should exist a translation in a BIOS table to an IO
	 * port address which the BIOS uses for accessing the reg
	 *
	 * These only seem to appear for the power control regs to a flat panel,
	 * and the GPIO regs at 0x60081*.  In C51 mmio traces the normal regs
	 * for 0x1308 and 0x1310 are used - hence the mask below.  An S3
	 * suspend-resume mmio trace from a C51 will be required to see if this
	 * is true for the power microcode in 0x14.., or whether the direct IO
	 * port access method is needed
	 */
	if (reg & 0x1)
		reg &= ~0x1;

	data = nv_rd32(bios->dev, reg);

	BIOSLOG(bios, "	Read:  Reg: 0x%08X, Data: 0x%08X\n", reg, data);

	return data;
}

static void
bios_wr32(struct nvbios *bios, uint32_t reg, uint32_t data)
{
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;

	reg = munge_reg(bios, reg);
	if (!valid_reg(bios, reg))
		return;

	/* see note in bios_rd32 */
	if (reg & 0x1)
		reg &= 0xfffffffe;

	LOG_OLD_VALUE(bios_rd32(bios, reg));
	BIOSLOG(bios, "	Write: Reg: 0x%08X, Data: 0x%08X\n", reg, data);

423
	if (dev_priv->vbios.execute) {
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
		still_alive();
		nv_wr32(bios->dev, reg, data);
	}
}

static uint8_t
bios_idxprt_rd(struct nvbios *bios, uint16_t port, uint8_t index)
{
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	struct drm_device *dev = bios->dev;
	uint8_t data;

	if (!valid_idx_port(bios, port))
		return 0;

	if (dev_priv->card_type < NV_50) {
		if (port == NV_VIO_SRX)
			data = NVReadVgaSeq(dev, bios->state.crtchead, index);
		else	/* assume NV_CIO_CRX__COLOR */
			data = NVReadVgaCrtc(dev, bios->state.crtchead, index);
	} else {
		uint32_t data32;

		data32 = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
		data = (data32 >> ((index & 3) << 3)) & 0xff;
	}

	BIOSLOG(bios, "	Indexed IO read:  Port: 0x%04X, Index: 0x%02X, "
		      "Head: 0x%02X, Data: 0x%02X\n",
		port, index, bios->state.crtchead, data);
	return data;
}

static void
bios_idxprt_wr(struct nvbios *bios, uint16_t port, uint8_t index, uint8_t data)
{
	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	struct drm_device *dev = bios->dev;

	if (!valid_idx_port(bios, port))
		return;

	/*
	 * The current head is maintained in the nvbios member  state.crtchead.
	 * We trap changes to CR44 and update the head variable and hence the
	 * register set written.
	 * As CR44 only exists on CRTC0, we update crtchead to head0 in advance
	 * of the write, and to head1 after the write
	 */
	if (port == NV_CIO_CRX__COLOR && index == NV_CIO_CRE_44 &&
	    data != NV_CIO_CRE_44_HEADB)
		bios->state.crtchead = 0;

	LOG_OLD_VALUE(bios_idxprt_rd(bios, port, index));
	BIOSLOG(bios, "	Indexed IO write: Port: 0x%04X, Index: 0x%02X, "
		      "Head: 0x%02X, Data: 0x%02X\n",
		port, index, bios->state.crtchead, data);

	if (bios->execute && dev_priv->card_type < NV_50) {
		still_alive();
		if (port == NV_VIO_SRX)
			NVWriteVgaSeq(dev, bios->state.crtchead, index, data);
		else	/* assume NV_CIO_CRX__COLOR */
			NVWriteVgaCrtc(dev, bios->state.crtchead, index, data);
	} else
	if (bios->execute) {
		uint32_t data32, shift = (index & 3) << 3;

		still_alive();

		data32  = bios_rd32(bios, NV50_PDISPLAY_VGACRTC(index & ~3));
		data32 &= ~(0xff << shift);
		data32 |= (data << shift);
		bios_wr32(bios, NV50_PDISPLAY_VGACRTC(index & ~3), data32);
	}

	if (port == NV_CIO_CRX__COLOR &&
	    index == NV_CIO_CRE_44 && data == NV_CIO_CRE_44_HEADB)
		bios->state.crtchead = 1;
}

static uint8_t
bios_port_rd(struct nvbios *bios, uint16_t port)
{
	uint8_t data, head = bios->state.crtchead;

	if (!valid_port(bios, port))
		return 0;

	data = NVReadPRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port);

	BIOSLOG(bios, "	IO read:  Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
		port, head, data);

	return data;
}

static void
bios_port_wr(struct nvbios *bios, uint16_t port, uint8_t data)
{
	int head = bios->state.crtchead;

	if (!valid_port(bios, port))
		return;

	LOG_OLD_VALUE(bios_port_rd(bios, port));
	BIOSLOG(bios, "	IO write: Port: 0x%04X, Head: 0x%02X, Data: 0x%02X\n",
		port, head, data);

	if (!bios->execute)
		return;

	still_alive();
	NVWritePRMVIO(bios->dev, head, NV_PRMVIO0_OFFSET + port, data);
}

static bool
io_flag_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
{
	/*
	 * The IO flag condition entry has 2 bytes for the CRTC port; 1 byte
	 * for the CRTC index; 1 byte for the mask to apply to the value
	 * retrieved from the CRTC; 1 byte for the shift right to apply to the
	 * masked CRTC value; 2 bytes for the offset to the flag array, to
	 * which the shifted value is added; 1 byte for the mask applied to the
	 * value read from the flag array; and 1 byte for the value to compare
	 * against the masked byte from the flag table.
	 */

	uint16_t condptr = bios->io_flag_condition_tbl_ptr + cond * IO_FLAG_CONDITION_SIZE;
	uint16_t crtcport = ROM16(bios->data[condptr]);
	uint8_t crtcindex = bios->data[condptr + 2];
	uint8_t mask = bios->data[condptr + 3];
	uint8_t shift = bios->data[condptr + 4];
	uint16_t flagarray = ROM16(bios->data[condptr + 5]);
	uint8_t flagarraymask = bios->data[condptr + 7];
	uint8_t cmpval = bios->data[condptr + 8];
	uint8_t data;

	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
		      "Shift: 0x%02X, FlagArray: 0x%04X, FAMask: 0x%02X, "
		      "Cmpval: 0x%02X\n",
		offset, crtcport, crtcindex, mask, shift, flagarray, flagarraymask, cmpval);

	data = bios_idxprt_rd(bios, crtcport, crtcindex);

	data = bios->data[flagarray + ((data & mask) >> shift)];
	data &= flagarraymask;

	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
		offset, data, cmpval);

	return (data == cmpval);
}

static bool
bios_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
{
	/*
	 * The condition table entry has 4 bytes for the address of the
	 * register to check, 4 bytes for a mask to apply to the register and
	 * 4 for a test comparison value
	 */

	uint16_t condptr = bios->condition_tbl_ptr + cond * CONDITION_SIZE;
	uint32_t reg = ROM32(bios->data[condptr]);
	uint32_t mask = ROM32(bios->data[condptr + 4]);
	uint32_t cmpval = ROM32(bios->data[condptr + 8]);
	uint32_t data;

	BIOSLOG(bios, "0x%04X: Cond: 0x%02X, Reg: 0x%08X, Mask: 0x%08X\n",
		offset, cond, reg, mask);

	data = bios_rd32(bios, reg) & mask;

	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
		offset, data, cmpval);

	return (data == cmpval);
}

static bool
io_condition_met(struct nvbios *bios, uint16_t offset, uint8_t cond)
{
	/*
	 * The IO condition entry has 2 bytes for the IO port address; 1 byte
	 * for the index to write to io_port; 1 byte for the mask to apply to
	 * the byte read from io_port+1; and 1 byte for the value to compare
	 * against the masked byte.
	 */

	uint16_t condptr = bios->io_condition_tbl_ptr + cond * IO_CONDITION_SIZE;
	uint16_t io_port = ROM16(bios->data[condptr]);
	uint8_t port_index = bios->data[condptr + 2];
	uint8_t mask = bios->data[condptr + 3];
	uint8_t cmpval = bios->data[condptr + 4];

	uint8_t data = bios_idxprt_rd(bios, io_port, port_index) & mask;

	BIOSLOG(bios, "0x%04X: Checking if 0x%02X equals 0x%02X\n",
		offset, data, cmpval);

	return (data == cmpval);
}

static int
nv50_pll_set(struct drm_device *dev, uint32_t reg, uint32_t clk)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	uint32_t reg0 = nv_rd32(dev, reg + 0);
	uint32_t reg1 = nv_rd32(dev, reg + 4);
	struct nouveau_pll_vals pll;
	struct pll_lims pll_limits;
	int ret;

	ret = get_pll_limits(dev, reg, &pll_limits);
	if (ret)
		return ret;

	clk = nouveau_calc_pll_mnp(dev, &pll_limits, clk, &pll);
	if (!clk)
		return -ERANGE;

	reg0 = (reg0 & 0xfff8ffff) | (pll.log2P << 16);
	reg1 = (reg1 & 0xffff0000) | (pll.N1 << 8) | pll.M1;

650
	if (dev_priv->vbios.execute) {
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
		still_alive();
		nv_wr32(dev, reg + 4, reg1);
		nv_wr32(dev, reg + 0, reg0);
	}

	return 0;
}

static int
setPLL(struct nvbios *bios, uint32_t reg, uint32_t clk)
{
	struct drm_device *dev = bios->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	/* clk in kHz */
	struct pll_lims pll_lim;
	struct nouveau_pll_vals pllvals;
	int ret;

	if (dev_priv->card_type >= NV_50)
		return nv50_pll_set(dev, reg, clk);

	/* high regs (such as in the mac g5 table) are not -= 4 */
	ret = get_pll_limits(dev, reg > 0x405c ? reg : reg - 4, &pll_lim);
	if (ret)
		return ret;

	clk = nouveau_calc_pll_mnp(dev, &pll_lim, clk, &pllvals);
	if (!clk)
		return -ERANGE;

	if (bios->execute) {
		still_alive();
		nouveau_hw_setpll(dev, reg, &pllvals);
	}

	return 0;
}

static int dcb_entry_idx_from_crtchead(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
692
	struct nvbios *bios = &dev_priv->vbios;
693 694 695 696 697 698 699 700 701 702

	/*
	 * For the results of this function to be correct, CR44 must have been
	 * set (using bios_idxprt_wr to set crtchead), CR58 set for CR57 = 0,
	 * and the DCB table parsed, before the script calling the function is
	 * run.  run_digital_op_script is example of how to do such setup
	 */

	uint8_t dcb_entry = NVReadVgaCrtc5758(dev, bios->state.crtchead, 0);

703
	if (dcb_entry > bios->dcb.entries) {
704 705 706 707 708 709 710 711 712 713 714 715
		NV_ERROR(dev, "CR58 doesn't have a valid DCB entry currently "
				"(%02X)\n", dcb_entry);
		dcb_entry = 0x7f;	/* unused / invalid marker */
	}

	return dcb_entry;
}

static struct nouveau_i2c_chan *
init_i2c_device_find(struct drm_device *dev, int i2c_index)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
716
	struct dcb_table *dcb = &dev_priv->vbios.dcb;
717 718 719 720

	if (i2c_index == 0xff) {
		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
		int idx = dcb_entry_idx_from_crtchead(dev), shift = 0;
721
		int default_indices = dcb->i2c_default_indices;
722

723
		if (idx != 0x7f && dcb->entry[idx].i2c_upper_default)
724 725 726 727 728
			shift = 4;

		i2c_index = (default_indices >> shift) & 0xf;
	}
	if (i2c_index == 0x80)	/* g80+ */
729
		i2c_index = dcb->i2c_default_indices & 0xf;
730 731 732 733

	return nouveau_i2c_find(dev, i2c_index);
}

734 735
static uint32_t
get_tmds_index_reg(struct drm_device *dev, uint8_t mlv)
736 737 738 739 740 741 742 743 744 745 746 747
{
	/*
	 * For mlv < 0x80, it is an index into a table of TMDS base addresses.
	 * For mlv == 0x80 use the "or" value of the dcb_entry indexed by
	 * CR58 for CR57 = 0 to index a table of offsets to the basic
	 * 0x6808b0 address.
	 * For mlv == 0x81 use the "or" value of the dcb_entry indexed by
	 * CR58 for CR57 = 0 to index a table of offsets to the basic
	 * 0x6808b0 address, and then flip the offset by 8.
	 */

	struct drm_nouveau_private *dev_priv = dev->dev_private;
748
	struct nvbios *bios = &dev_priv->vbios;
749 750 751 752 753 754 755 756 757 758 759 760
	const int pramdac_offset[13] = {
		0, 0, 0x8, 0, 0x2000, 0, 0, 0, 0x2008, 0, 0, 0, 0x2000 };
	const uint32_t pramdac_table[4] = {
		0x6808b0, 0x6808b8, 0x6828b0, 0x6828b8 };

	if (mlv >= 0x80) {
		int dcb_entry, dacoffset;

		/* note: dcb_entry_idx_from_crtchead needs pre-script set-up */
		dcb_entry = dcb_entry_idx_from_crtchead(dev);
		if (dcb_entry == 0x7f)
			return 0;
761
		dacoffset = pramdac_offset[bios->dcb.entry[dcb_entry].or];
762 763 764 765
		if (mlv == 0x81)
			dacoffset ^= 8;
		return 0x6808b0 + dacoffset;
	} else {
766
		if (mlv >= ARRAY_SIZE(pramdac_table)) {
767 768 769 770 771 772 773 774
			NV_ERROR(dev, "Magic Lookup Value too big (%02X)\n",
									mlv);
			return 0;
		}
		return pramdac_table[mlv];
	}
}

775
static int
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
init_io_restrict_prog(struct nvbios *bios, uint16_t offset,
		      struct init_exec *iexec)
{
	/*
	 * INIT_IO_RESTRICT_PROG   opcode: 0x32 ('2')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): CRTC port
	 * offset + 3  (8  bit): CRTC index
	 * offset + 4  (8  bit): mask
	 * offset + 5  (8  bit): shift
	 * offset + 6  (8  bit): count
	 * offset + 7  (32 bit): register
	 * offset + 11 (32 bit): configuration 1
	 * ...
	 *
	 * Starting at offset + 11 there are "count" 32 bit values.
	 * To find out which value to use read index "CRTC index" on "CRTC
	 * port", AND this value with "mask" and then bit shift right "shift"
	 * bits.  Read the appropriate value using this index and write to
	 * "register"
	 */

	uint16_t crtcport = ROM16(bios->data[offset + 1]);
	uint8_t crtcindex = bios->data[offset + 3];
	uint8_t mask = bios->data[offset + 4];
	uint8_t shift = bios->data[offset + 5];
	uint8_t count = bios->data[offset + 6];
	uint32_t reg = ROM32(bios->data[offset + 7]);
	uint8_t config;
	uint32_t configval;
807
	int len = 11 + count * 4;
808 809

	if (!iexec->execute)
810
		return len;
811 812 813 814 815 816 817 818 819 820

	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
		offset, crtcport, crtcindex, mask, shift, count, reg);

	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
	if (config > count) {
		NV_ERROR(bios->dev,
			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
			 offset, config, count);
821
		return 0;
822 823 824 825 826 827 828 829
	}

	configval = ROM32(bios->data[offset + 11 + config * 4]);

	BIOSLOG(bios, "0x%04X: Writing config %02X\n", offset, config);

	bios_wr32(bios, reg, configval);

830
	return len;
831 832
}

833
static int
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
init_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_REPEAT   opcode: 0x33 ('3')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): count
	 *
	 * Execute script following this opcode up to INIT_REPEAT_END
	 * "count" times
	 */

	uint8_t count = bios->data[offset + 1];
	uint8_t i;

	/* no iexec->execute check by design */

	BIOSLOG(bios, "0x%04X: Repeating following segment %d times\n",
		offset, count);

	iexec->repeat = true;

	/*
	 * count - 1, as the script block will execute once when we leave this
	 * opcode -- this is compatible with bios behaviour as:
	 * a) the block is always executed at least once, even if count == 0
	 * b) the bios interpreter skips to the op following INIT_END_REPEAT,
	 * while we don't
	 */
	for (i = 0; i < count - 1; i++)
		parse_init_table(bios, offset + 2, iexec);

	iexec->repeat = false;

868
	return 2;
869 870
}

871
static int
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
init_io_restrict_pll(struct nvbios *bios, uint16_t offset,
		     struct init_exec *iexec)
{
	/*
	 * INIT_IO_RESTRICT_PLL   opcode: 0x34 ('4')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): CRTC port
	 * offset + 3  (8  bit): CRTC index
	 * offset + 4  (8  bit): mask
	 * offset + 5  (8  bit): shift
	 * offset + 6  (8  bit): IO flag condition index
	 * offset + 7  (8  bit): count
	 * offset + 8  (32 bit): register
	 * offset + 12 (16 bit): frequency 1
	 * ...
	 *
	 * Starting at offset + 12 there are "count" 16 bit frequencies (10kHz).
	 * Set PLL register "register" to coefficients for frequency n,
	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
	 * "mask" and shifted right by "shift".
	 *
	 * If "IO flag condition index" > 0, and condition met, double
	 * frequency before setting it.
	 */

	uint16_t crtcport = ROM16(bios->data[offset + 1]);
	uint8_t crtcindex = bios->data[offset + 3];
	uint8_t mask = bios->data[offset + 4];
	uint8_t shift = bios->data[offset + 5];
	int8_t io_flag_condition_idx = bios->data[offset + 6];
	uint8_t count = bios->data[offset + 7];
	uint32_t reg = ROM32(bios->data[offset + 8]);
	uint8_t config;
	uint16_t freq;
907
	int len = 12 + count * 2;
908 909

	if (!iexec->execute)
910
		return len;
911 912 913 914 915 916 917 918 919 920 921 922

	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
		      "Shift: 0x%02X, IO Flag Condition: 0x%02X, "
		      "Count: 0x%02X, Reg: 0x%08X\n",
		offset, crtcport, crtcindex, mask, shift,
		io_flag_condition_idx, count, reg);

	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
	if (config > count) {
		NV_ERROR(bios->dev,
			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
			 offset, config, count);
923
		return 0;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
	}

	freq = ROM16(bios->data[offset + 12 + config * 2]);

	if (io_flag_condition_idx > 0) {
		if (io_flag_condition_met(bios, offset, io_flag_condition_idx)) {
			BIOSLOG(bios, "0x%04X: Condition fulfilled -- "
				      "frequency doubled\n", offset);
			freq *= 2;
		} else
			BIOSLOG(bios, "0x%04X: Condition not fulfilled -- "
				      "frequency unchanged\n", offset);
	}

	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %d0kHz\n",
		offset, reg, config, freq);

	setPLL(bios, reg, freq * 10);

943
	return len;
944 945
}

946
static int
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
init_end_repeat(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_END_REPEAT   opcode: 0x36 ('6')
	 *
	 * offset      (8 bit): opcode
	 *
	 * Marks the end of the block for INIT_REPEAT to repeat
	 */

	/* no iexec->execute check by design */

	/*
	 * iexec->repeat flag necessary to go past INIT_END_REPEAT opcode when
	 * we're not in repeat mode
	 */
	if (iexec->repeat)
964
		return 0;
965

966
	return 1;
967 968
}

969
static int
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
init_copy(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_COPY   opcode: 0x37 ('7')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (8  bit): shift
	 * offset + 6  (8  bit): srcmask
	 * offset + 7  (16 bit): CRTC port
	 * offset + 9  (8 bit): CRTC index
	 * offset + 10  (8 bit): mask
	 *
	 * Read index "CRTC index" on "CRTC port", AND with "mask", OR with
	 * (REGVAL("register") >> "shift" & "srcmask") and write-back to CRTC
	 * port
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint8_t shift = bios->data[offset + 5];
	uint8_t srcmask = bios->data[offset + 6];
	uint16_t crtcport = ROM16(bios->data[offset + 7]);
	uint8_t crtcindex = bios->data[offset + 9];
	uint8_t mask = bios->data[offset + 10];
	uint32_t data;
	uint8_t crtcdata;

	if (!iexec->execute)
998
		return 11;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%02X, "
		      "Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X\n",
		offset, reg, shift, srcmask, crtcport, crtcindex, mask);

	data = bios_rd32(bios, reg);

	if (shift < 0x80)
		data >>= shift;
	else
		data <<= (0x100 - shift);

	data &= srcmask;

	crtcdata  = bios_idxprt_rd(bios, crtcport, crtcindex) & mask;
	crtcdata |= (uint8_t)data;
	bios_idxprt_wr(bios, crtcport, crtcindex, crtcdata);

1017
	return 11;
1018 1019
}

1020
static int
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
init_not(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_NOT   opcode: 0x38 ('8')
	 *
	 * offset      (8  bit): opcode
	 *
	 * Invert the current execute / no-execute condition (i.e. "else")
	 */
	if (iexec->execute)
		BIOSLOG(bios, "0x%04X: ------ Skipping following commands  ------\n", offset);
	else
		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", offset);

	iexec->execute = !iexec->execute;
1036
	return 1;
1037 1038
}

1039
static int
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
init_io_flag_condition(struct nvbios *bios, uint16_t offset,
		       struct init_exec *iexec)
{
	/*
	 * INIT_IO_FLAG_CONDITION   opcode: 0x39 ('9')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): condition number
	 *
	 * Check condition "condition number" in the IO flag condition table.
	 * If condition not met skip subsequent opcodes until condition is
	 * inverted (INIT_NOT), or we hit INIT_RESUME
	 */

	uint8_t cond = bios->data[offset + 1];

	if (!iexec->execute)
1057
		return 2;
1058 1059 1060 1061 1062 1063 1064 1065

	if (io_flag_condition_met(bios, offset, cond))
		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
	else {
		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
		iexec->execute = false;
	}

1066
	return 2;
1067 1068
}

1069
static int
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
init_idx_addr_latched(struct nvbios *bios, uint16_t offset,
		      struct init_exec *iexec)
{
	/*
	 * INIT_INDEX_ADDRESS_LATCHED   opcode: 0x49 ('I')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): control register
	 * offset + 5  (32 bit): data register
	 * offset + 9  (32 bit): mask
	 * offset + 13 (32 bit): data
	 * offset + 17 (8  bit): count
	 * offset + 18 (8  bit): address 1
	 * offset + 19 (8  bit): data 1
	 * ...
	 *
	 * For each of "count" address and data pairs, write "data n" to
	 * "data register", read the current value of "control register",
	 * and write it back once ANDed with "mask", ORed with "data",
	 * and ORed with "address n"
	 */

	uint32_t controlreg = ROM32(bios->data[offset + 1]);
	uint32_t datareg = ROM32(bios->data[offset + 5]);
	uint32_t mask = ROM32(bios->data[offset + 9]);
	uint32_t data = ROM32(bios->data[offset + 13]);
	uint8_t count = bios->data[offset + 17];
1097
	int len = 18 + count * 2;
1098 1099 1100 1101
	uint32_t value;
	int i;

	if (!iexec->execute)
1102
		return len;
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

	BIOSLOG(bios, "0x%04X: ControlReg: 0x%08X, DataReg: 0x%08X, "
		      "Mask: 0x%08X, Data: 0x%08X, Count: 0x%02X\n",
		offset, controlreg, datareg, mask, data, count);

	for (i = 0; i < count; i++) {
		uint8_t instaddress = bios->data[offset + 18 + i * 2];
		uint8_t instdata = bios->data[offset + 19 + i * 2];

		BIOSLOG(bios, "0x%04X: Address: 0x%02X, Data: 0x%02X\n",
			offset, instaddress, instdata);

		bios_wr32(bios, datareg, instdata);
		value  = bios_rd32(bios, controlreg) & mask;
		value |= data;
		value |= instaddress;
		bios_wr32(bios, controlreg, value);
	}

1122
	return len;
1123 1124
}

1125
static int
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
init_io_restrict_pll2(struct nvbios *bios, uint16_t offset,
		      struct init_exec *iexec)
{
	/*
	 * INIT_IO_RESTRICT_PLL2   opcode: 0x4A ('J')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): CRTC port
	 * offset + 3  (8  bit): CRTC index
	 * offset + 4  (8  bit): mask
	 * offset + 5  (8  bit): shift
	 * offset + 6  (8  bit): count
	 * offset + 7  (32 bit): register
	 * offset + 11 (32 bit): frequency 1
	 * ...
	 *
	 * Starting at offset + 11 there are "count" 32 bit frequencies (kHz).
	 * Set PLL register "register" to coefficients for frequency n,
	 * selected by reading index "CRTC index" of "CRTC port" ANDed with
	 * "mask" and shifted right by "shift".
	 */

	uint16_t crtcport = ROM16(bios->data[offset + 1]);
	uint8_t crtcindex = bios->data[offset + 3];
	uint8_t mask = bios->data[offset + 4];
	uint8_t shift = bios->data[offset + 5];
	uint8_t count = bios->data[offset + 6];
	uint32_t reg = ROM32(bios->data[offset + 7]);
1154
	int len = 11 + count * 4;
1155 1156 1157 1158
	uint8_t config;
	uint32_t freq;

	if (!iexec->execute)
1159
		return len;
1160 1161 1162 1163 1164 1165

	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
		      "Shift: 0x%02X, Count: 0x%02X, Reg: 0x%08X\n",
		offset, crtcport, crtcindex, mask, shift, count, reg);

	if (!reg)
1166
		return len;
1167 1168 1169 1170 1171 1172

	config = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) >> shift;
	if (config > count) {
		NV_ERROR(bios->dev,
			 "0x%04X: Config 0x%02X exceeds maximal bound 0x%02X\n",
			 offset, config, count);
1173
		return 0;
1174 1175 1176 1177 1178 1179 1180 1181 1182
	}

	freq = ROM32(bios->data[offset + 11 + config * 4]);

	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Config: 0x%02X, Freq: %dkHz\n",
		offset, reg, config, freq);

	setPLL(bios, reg, freq);

1183
	return len;
1184 1185
}

1186
static int
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
init_pll2(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_PLL2   opcode: 0x4B ('K')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (32 bit): freq
	 *
	 * Set PLL register "register" to coefficients for frequency "freq"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint32_t freq = ROM32(bios->data[offset + 5]);

	if (!iexec->execute)
1203
		return 9;
1204 1205 1206 1207 1208

	BIOSLOG(bios, "0x%04X: Reg: 0x%04X, Freq: %dkHz\n",
		offset, reg, freq);

	setPLL(bios, reg, freq);
1209
	return 9;
1210 1211
}

1212
static int
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
init_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_I2C_BYTE   opcode: 0x4C ('L')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): DCB I2C table entry index
	 * offset + 2  (8 bit): I2C slave address
	 * offset + 3  (8 bit): count
	 * offset + 4  (8 bit): I2C register 1
	 * offset + 5  (8 bit): mask 1
	 * offset + 6  (8 bit): data 1
	 * ...
	 *
	 * For each of "count" registers given by "I2C register n" on the device
	 * addressed by "I2C slave address" on the I2C bus given by
	 * "DCB I2C table entry index", read the register, AND the result with
	 * "mask n" and OR it with "data n" before writing it back to the device
	 */

	uint8_t i2c_index = bios->data[offset + 1];
	uint8_t i2c_address = bios->data[offset + 2];
	uint8_t count = bios->data[offset + 3];
1236
	int len = 4 + count * 3;
1237 1238 1239 1240 1241
	struct nouveau_i2c_chan *chan;
	struct i2c_msg msg;
	int i;

	if (!iexec->execute)
1242
		return len;
1243 1244 1245 1246 1247 1248 1249

	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
		      "Count: 0x%02X\n",
		offset, i2c_index, i2c_address, count);

	chan = init_i2c_device_find(bios->dev, i2c_index);
	if (!chan)
1250
		return 0;
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

	for (i = 0; i < count; i++) {
		uint8_t i2c_reg = bios->data[offset + 4 + i * 3];
		uint8_t mask = bios->data[offset + 5 + i * 3];
		uint8_t data = bios->data[offset + 6 + i * 3];
		uint8_t value;

		msg.addr = i2c_address;
		msg.flags = I2C_M_RD;
		msg.len = 1;
		msg.buf = &value;
		if (i2c_transfer(&chan->adapter, &msg, 1) != 1)
1263
			return 0;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Value: 0x%02X, "
			      "Mask: 0x%02X, Data: 0x%02X\n",
			offset, i2c_reg, value, mask, data);

		value = (value & mask) | data;

		if (bios->execute) {
			msg.addr = i2c_address;
			msg.flags = 0;
			msg.len = 1;
			msg.buf = &value;
			if (i2c_transfer(&chan->adapter, &msg, 1) != 1)
1277
				return 0;
1278 1279 1280
		}
	}

1281
	return len;
1282 1283
}

1284
static int
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
init_zm_i2c_byte(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_I2C_BYTE   opcode: 0x4D ('M')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): DCB I2C table entry index
	 * offset + 2  (8 bit): I2C slave address
	 * offset + 3  (8 bit): count
	 * offset + 4  (8 bit): I2C register 1
	 * offset + 5  (8 bit): data 1
	 * ...
	 *
	 * For each of "count" registers given by "I2C register n" on the device
	 * addressed by "I2C slave address" on the I2C bus given by
	 * "DCB I2C table entry index", set the register to "data n"
	 */

	uint8_t i2c_index = bios->data[offset + 1];
	uint8_t i2c_address = bios->data[offset + 2];
	uint8_t count = bios->data[offset + 3];
1306
	int len = 4 + count * 2;
1307 1308 1309 1310 1311
	struct nouveau_i2c_chan *chan;
	struct i2c_msg msg;
	int i;

	if (!iexec->execute)
1312
		return len;
1313 1314 1315 1316 1317 1318 1319

	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
		      "Count: 0x%02X\n",
		offset, i2c_index, i2c_address, count);

	chan = init_i2c_device_find(bios->dev, i2c_index);
	if (!chan)
1320
		return 0;
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

	for (i = 0; i < count; i++) {
		uint8_t i2c_reg = bios->data[offset + 4 + i * 2];
		uint8_t data = bios->data[offset + 5 + i * 2];

		BIOSLOG(bios, "0x%04X: I2CReg: 0x%02X, Data: 0x%02X\n",
			offset, i2c_reg, data);

		if (bios->execute) {
			msg.addr = i2c_address;
			msg.flags = 0;
			msg.len = 1;
			msg.buf = &data;
			if (i2c_transfer(&chan->adapter, &msg, 1) != 1)
1335
				return 0;
1336 1337 1338
		}
	}

1339
	return len;
1340 1341
}

1342
static int
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
init_zm_i2c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_I2C   opcode: 0x4E ('N')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): DCB I2C table entry index
	 * offset + 2  (8 bit): I2C slave address
	 * offset + 3  (8 bit): count
	 * offset + 4  (8 bit): data 1
	 * ...
	 *
	 * Send "count" bytes ("data n") to the device addressed by "I2C slave
	 * address" on the I2C bus given by "DCB I2C table entry index"
	 */

	uint8_t i2c_index = bios->data[offset + 1];
	uint8_t i2c_address = bios->data[offset + 2];
	uint8_t count = bios->data[offset + 3];
1362
	int len = 4 + count;
1363 1364 1365 1366 1367 1368
	struct nouveau_i2c_chan *chan;
	struct i2c_msg msg;
	uint8_t data[256];
	int i;

	if (!iexec->execute)
1369
		return len;
1370 1371 1372 1373 1374 1375 1376

	BIOSLOG(bios, "0x%04X: DCBI2CIndex: 0x%02X, I2CAddress: 0x%02X, "
		      "Count: 0x%02X\n",
		offset, i2c_index, i2c_address, count);

	chan = init_i2c_device_find(bios->dev, i2c_index);
	if (!chan)
1377
		return 0;
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

	for (i = 0; i < count; i++) {
		data[i] = bios->data[offset + 4 + i];

		BIOSLOG(bios, "0x%04X: Data: 0x%02X\n", offset, data[i]);
	}

	if (bios->execute) {
		msg.addr = i2c_address;
		msg.flags = 0;
		msg.len = count;
		msg.buf = data;
		if (i2c_transfer(&chan->adapter, &msg, 1) != 1)
1391
			return 0;
1392 1393
	}

1394
	return len;
1395 1396
}

1397
static int
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
init_tmds(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_TMDS   opcode: 0x4F ('O')	(non-canon name)
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): magic lookup value
	 * offset + 2  (8 bit): TMDS address
	 * offset + 3  (8 bit): mask
	 * offset + 4  (8 bit): data
	 *
	 * Read the data reg for TMDS address "TMDS address", AND it with mask
	 * and OR it with data, then write it back
	 * "magic lookup value" determines which TMDS base address register is
	 * used -- see get_tmds_index_reg()
	 */

	uint8_t mlv = bios->data[offset + 1];
	uint32_t tmdsaddr = bios->data[offset + 2];
	uint8_t mask = bios->data[offset + 3];
	uint8_t data = bios->data[offset + 4];
	uint32_t reg, value;

	if (!iexec->execute)
1422
		return 5;
1423 1424 1425 1426 1427 1428 1429

	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, TMDSAddr: 0x%02X, "
		      "Mask: 0x%02X, Data: 0x%02X\n",
		offset, mlv, tmdsaddr, mask, data);

	reg = get_tmds_index_reg(bios->dev, mlv);
	if (!reg)
1430
		return 0;
1431 1432 1433 1434 1435 1436 1437

	bios_wr32(bios, reg,
		  tmdsaddr | NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE);
	value = (bios_rd32(bios, reg + 4) & mask) | data;
	bios_wr32(bios, reg + 4, value);
	bios_wr32(bios, reg, tmdsaddr);

1438
	return 5;
1439 1440
}

1441
static int
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
init_zm_tmds_group(struct nvbios *bios, uint16_t offset,
		   struct init_exec *iexec)
{
	/*
	 * INIT_ZM_TMDS_GROUP   opcode: 0x50 ('P')	(non-canon name)
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): magic lookup value
	 * offset + 2  (8 bit): count
	 * offset + 3  (8 bit): addr 1
	 * offset + 4  (8 bit): data 1
	 * ...
	 *
	 * For each of "count" TMDS address and data pairs write "data n" to
	 * "addr n".  "magic lookup value" determines which TMDS base address
	 * register is used -- see get_tmds_index_reg()
	 */

	uint8_t mlv = bios->data[offset + 1];
	uint8_t count = bios->data[offset + 2];
1462
	int len = 3 + count * 2;
1463 1464 1465 1466
	uint32_t reg;
	int i;

	if (!iexec->execute)
1467
		return len;
1468 1469 1470 1471 1472 1473

	BIOSLOG(bios, "0x%04X: MagicLookupValue: 0x%02X, Count: 0x%02X\n",
		offset, mlv, count);

	reg = get_tmds_index_reg(bios->dev, mlv);
	if (!reg)
1474
		return 0;
1475 1476 1477 1478 1479 1480 1481 1482 1483

	for (i = 0; i < count; i++) {
		uint8_t tmdsaddr = bios->data[offset + 3 + i * 2];
		uint8_t tmdsdata = bios->data[offset + 4 + i * 2];

		bios_wr32(bios, reg + 4, tmdsdata);
		bios_wr32(bios, reg, tmdsaddr);
	}

1484
	return len;
1485 1486
}

1487
static int
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
init_cr_idx_adr_latch(struct nvbios *bios, uint16_t offset,
		      struct init_exec *iexec)
{
	/*
	 * INIT_CR_INDEX_ADDRESS_LATCHED   opcode: 0x51 ('Q')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): CRTC index1
	 * offset + 2  (8 bit): CRTC index2
	 * offset + 3  (8 bit): baseaddr
	 * offset + 4  (8 bit): count
	 * offset + 5  (8 bit): data 1
	 * ...
	 *
	 * For each of "count" address and data pairs, write "baseaddr + n" to
	 * "CRTC index1" and "data n" to "CRTC index2"
	 * Once complete, restore initial value read from "CRTC index1"
	 */
	uint8_t crtcindex1 = bios->data[offset + 1];
	uint8_t crtcindex2 = bios->data[offset + 2];
	uint8_t baseaddr = bios->data[offset + 3];
	uint8_t count = bios->data[offset + 4];
1510
	int len = 5 + count;
1511 1512 1513 1514
	uint8_t oldaddr, data;
	int i;

	if (!iexec->execute)
1515
		return len;
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

	BIOSLOG(bios, "0x%04X: Index1: 0x%02X, Index2: 0x%02X, "
		      "BaseAddr: 0x%02X, Count: 0x%02X\n",
		offset, crtcindex1, crtcindex2, baseaddr, count);

	oldaddr = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex1);

	for (i = 0; i < count; i++) {
		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1,
				     baseaddr + i);
		data = bios->data[offset + 5 + i];
		bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex2, data);
	}

	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex1, oldaddr);

1532
	return len;
1533 1534
}

1535
static int
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
init_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_CR   opcode: 0x52 ('R')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (8  bit): CRTC index
	 * offset + 2  (8  bit): mask
	 * offset + 3  (8  bit): data
	 *
	 * Assign the value of at "CRTC index" ANDed with mask and ORed with
	 * data back to "CRTC index"
	 */

	uint8_t crtcindex = bios->data[offset + 1];
	uint8_t mask = bios->data[offset + 2];
	uint8_t data = bios->data[offset + 3];
	uint8_t value;

	if (!iexec->execute)
1556
		return 4;
1557 1558 1559 1560 1561 1562 1563 1564

	BIOSLOG(bios, "0x%04X: Index: 0x%02X, Mask: 0x%02X, Data: 0x%02X\n",
		offset, crtcindex, mask, data);

	value  = bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, crtcindex) & mask;
	value |= data;
	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, value);

1565
	return 4;
1566 1567
}

1568
static int
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
init_zm_cr(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_CR   opcode: 0x53 ('S')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): CRTC index
	 * offset + 2  (8 bit): value
	 *
	 * Assign "value" to CRTC register with index "CRTC index".
	 */

	uint8_t crtcindex = ROM32(bios->data[offset + 1]);
	uint8_t data = bios->data[offset + 2];

	if (!iexec->execute)
1585
		return 3;
1586 1587 1588

	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, crtcindex, data);

1589
	return 3;
1590 1591
}

1592
static int
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
init_zm_cr_group(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_CR_GROUP   opcode: 0x54 ('T')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): count
	 * offset + 2  (8 bit): CRTC index 1
	 * offset + 3  (8 bit): value 1
	 * ...
	 *
	 * For "count", assign "value n" to CRTC register with index
	 * "CRTC index n".
	 */

	uint8_t count = bios->data[offset + 1];
1609
	int len = 2 + count * 2;
1610 1611 1612
	int i;

	if (!iexec->execute)
1613
		return len;
1614 1615 1616 1617

	for (i = 0; i < count; i++)
		init_zm_cr(bios, offset + 2 + 2 * i - 1, iexec);

1618
	return len;
1619 1620
}

1621
static int
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
init_condition_time(struct nvbios *bios, uint16_t offset,
		    struct init_exec *iexec)
{
	/*
	 * INIT_CONDITION_TIME   opcode: 0x56 ('V')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): condition number
	 * offset + 2  (8 bit): retries / 50
	 *
	 * Check condition "condition number" in the condition table.
	 * Bios code then sleeps for 2ms if the condition is not met, and
	 * repeats up to "retries" times, but on one C51 this has proved
	 * insufficient.  In mmiotraces the driver sleeps for 20ms, so we do
	 * this, and bail after "retries" times, or 2s, whichever is less.
	 * If still not met after retries, clear execution flag for this table.
	 */

	uint8_t cond = bios->data[offset + 1];
	uint16_t retries = bios->data[offset + 2] * 50;
	unsigned cnt;

	if (!iexec->execute)
1645
		return 3;
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

	if (retries > 100)
		retries = 100;

	BIOSLOG(bios, "0x%04X: Condition: 0x%02X, Retries: 0x%02X\n",
		offset, cond, retries);

	if (!bios->execute) /* avoid 2s delays when "faking" execution */
		retries = 1;

	for (cnt = 0; cnt < retries; cnt++) {
		if (bios_condition_met(bios, offset, cond)) {
			BIOSLOG(bios, "0x%04X: Condition met, continuing\n",
								offset);
			break;
		} else {
			BIOSLOG(bios, "0x%04X: "
				"Condition not met, sleeping for 20ms\n",
								offset);
			msleep(20);
		}
	}

	if (!bios_condition_met(bios, offset, cond)) {
		NV_WARN(bios->dev,
			"0x%04X: Condition still not met after %dms, "
			"skipping following opcodes\n", offset, 20 * retries);
		iexec->execute = false;
	}

1676
	return 3;
1677 1678
}

1679
static int
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
init_zm_reg_sequence(struct nvbios *bios, uint16_t offset,
		     struct init_exec *iexec)
{
	/*
	 * INIT_ZM_REG_SEQUENCE   opcode: 0x58 ('X')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): base register
	 * offset + 5  (8  bit): count
	 * offset + 6  (32 bit): value 1
	 * ...
	 *
	 * Starting at offset + 6 there are "count" 32 bit values.
	 * For "count" iterations set "base register" + 4 * current_iteration
	 * to "value current_iteration"
	 */

	uint32_t basereg = ROM32(bios->data[offset + 1]);
	uint32_t count = bios->data[offset + 5];
1699
	int len = 6 + count * 4;
1700 1701 1702
	int i;

	if (!iexec->execute)
1703
		return len;
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

	BIOSLOG(bios, "0x%04X: BaseReg: 0x%08X, Count: 0x%02X\n",
		offset, basereg, count);

	for (i = 0; i < count; i++) {
		uint32_t reg = basereg + i * 4;
		uint32_t data = ROM32(bios->data[offset + 6 + i * 4]);

		bios_wr32(bios, reg, data);
	}

1715
	return len;
1716 1717
}

1718
static int
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
init_sub_direct(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_SUB_DIRECT   opcode: 0x5B ('[')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): subroutine offset (in bios)
	 *
	 * Calls a subroutine that will execute commands until INIT_DONE
	 * is found.
	 */

	uint16_t sub_offset = ROM16(bios->data[offset + 1]);

	if (!iexec->execute)
1734
		return 3;
1735 1736 1737 1738 1739 1740 1741 1742

	BIOSLOG(bios, "0x%04X: Executing subroutine at 0x%04X\n",
		offset, sub_offset);

	parse_init_table(bios, sub_offset, iexec);

	BIOSLOG(bios, "0x%04X: End of 0x%04X subroutine\n", offset, sub_offset);

1743
	return 3;
1744 1745
}

1746
static int
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
init_copy_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_COPY_NV_REG   opcode: 0x5F ('_')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): src reg
	 * offset + 5  (8  bit): shift
	 * offset + 6  (32 bit): src mask
	 * offset + 10 (32 bit): xor
	 * offset + 14 (32 bit): dst reg
	 * offset + 18 (32 bit): dst mask
	 *
	 * Shift REGVAL("src reg") right by (signed) "shift", AND result with
	 * "src mask", then XOR with "xor". Write this OR'd with
	 * (REGVAL("dst reg") AND'd with "dst mask") to "dst reg"
	 */

	uint32_t srcreg = *((uint32_t *)(&bios->data[offset + 1]));
	uint8_t shift = bios->data[offset + 5];
	uint32_t srcmask = *((uint32_t *)(&bios->data[offset + 6]));
	uint32_t xor = *((uint32_t *)(&bios->data[offset + 10]));
	uint32_t dstreg = *((uint32_t *)(&bios->data[offset + 14]));
	uint32_t dstmask = *((uint32_t *)(&bios->data[offset + 18]));
	uint32_t srcvalue, dstvalue;

	if (!iexec->execute)
1774
		return 22;
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792

	BIOSLOG(bios, "0x%04X: SrcReg: 0x%08X, Shift: 0x%02X, SrcMask: 0x%08X, "
		      "Xor: 0x%08X, DstReg: 0x%08X, DstMask: 0x%08X\n",
		offset, srcreg, shift, srcmask, xor, dstreg, dstmask);

	srcvalue = bios_rd32(bios, srcreg);

	if (shift < 0x80)
		srcvalue >>= shift;
	else
		srcvalue <<= (0x100 - shift);

	srcvalue = (srcvalue & srcmask) ^ xor;

	dstvalue = bios_rd32(bios, dstreg) & dstmask;

	bios_wr32(bios, dstreg, dstvalue | srcvalue);

1793
	return 22;
1794 1795
}

1796
static int
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
init_zm_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_INDEX_IO   opcode: 0x62 ('b')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): CRTC port
	 * offset + 3  (8  bit): CRTC index
	 * offset + 4  (8  bit): data
	 *
	 * Write "data" to index "CRTC index" of "CRTC port"
	 */
	uint16_t crtcport = ROM16(bios->data[offset + 1]);
	uint8_t crtcindex = bios->data[offset + 3];
	uint8_t data = bios->data[offset + 4];

	if (!iexec->execute)
1814
		return 5;
1815 1816 1817

	bios_idxprt_wr(bios, crtcport, crtcindex, data);

1818
	return 5;
1819 1820
}

1821
static int
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
init_compute_mem(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_COMPUTE_MEM   opcode: 0x63 ('c')
	 *
	 * offset      (8 bit): opcode
	 *
	 * This opcode is meant to set NV_PFB_CFG0 (0x100200) appropriately so
	 * that the hardware can correctly calculate how much VRAM it has
	 * (and subsequently report that value in NV_PFB_CSTATUS (0x10020C))
	 *
	 * The implementation of this opcode in general consists of two parts:
	 * 1) determination of the memory bus width
	 * 2) determination of how many of the card's RAM pads have ICs attached
	 *
	 * 1) is done by a cunning combination of writes to offsets 0x1c and
	 * 0x3c in the framebuffer, and seeing whether the written values are
	 * read back correctly. This then affects bits 4-7 of NV_PFB_CFG0
	 *
	 * 2) is done by a cunning combination of writes to an offset slightly
	 * less than the maximum memory reported by NV_PFB_CSTATUS, then seeing
	 * if the test pattern can be read back. This then affects bits 12-15 of
	 * NV_PFB_CFG0
	 *
	 * In this context a "cunning combination" may include multiple reads
	 * and writes to varying locations, often alternating the test pattern
	 * and 0, doubtless to make sure buffers are filled, residual charges
	 * on tracks are removed etc.
	 *
	 * Unfortunately, the "cunning combination"s mentioned above, and the
	 * changes to the bits in NV_PFB_CFG0 differ with nearly every bios
	 * trace I have.
	 *
	 * Therefore, we cheat and assume the value of NV_PFB_CFG0 with which
	 * we started was correct, and use that instead
	 */

	/* no iexec->execute check by design */

	/*
	 * This appears to be a NOP on G8x chipsets, both io logs of the VBIOS
	 * and kmmio traces of the binary driver POSTing the card show nothing
	 * being done for this opcode.  why is it still listed in the table?!
	 */

	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;

1869
	if (dev_priv->card_type >= NV_40)
1870
		return 1;
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887

	/*
	 * On every card I've seen, this step gets done for us earlier in
	 * the init scripts
	uint8_t crdata = bios_idxprt_rd(dev, NV_VIO_SRX, 0x01);
	bios_idxprt_wr(dev, NV_VIO_SRX, 0x01, crdata | 0x20);
	 */

	/*
	 * This also has probably been done in the scripts, but an mmio trace of
	 * s3 resume shows nvidia doing it anyway (unlike the NV_VIO_SRX write)
	 */
	bios_wr32(bios, NV_PFB_REFCTRL, NV_PFB_REFCTRL_VALID_1);

	/* write back the saved configuration value */
	bios_wr32(bios, NV_PFB_CFG0, bios->state.saved_nv_pfb_cfg0);

1888
	return 1;
1889 1890
}

1891
static int
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
init_reset(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_RESET   opcode: 0x65 ('e')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (32 bit): value1
	 * offset + 9  (32 bit): value2
	 *
	 * Assign "value1" to "register", then assign "value2" to "register"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint32_t value1 = ROM32(bios->data[offset + 5]);
	uint32_t value2 = ROM32(bios->data[offset + 9]);
	uint32_t pci_nv_19, pci_nv_20;

	/* no iexec->execute check by design */

	pci_nv_19 = bios_rd32(bios, NV_PBUS_PCI_NV_19);
	bios_wr32(bios, NV_PBUS_PCI_NV_19, 0);
	bios_wr32(bios, reg, value1);

	udelay(10);

	bios_wr32(bios, reg, value2);
	bios_wr32(bios, NV_PBUS_PCI_NV_19, pci_nv_19);

	pci_nv_20 = bios_rd32(bios, NV_PBUS_PCI_NV_20);
	pci_nv_20 &= ~NV_PBUS_PCI_NV_20_ROM_SHADOW_ENABLED;	/* 0xfffffffe */
	bios_wr32(bios, NV_PBUS_PCI_NV_20, pci_nv_20);

1925
	return 13;
1926 1927
}

1928
static int
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
init_configure_mem(struct nvbios *bios, uint16_t offset,
		   struct init_exec *iexec)
{
	/*
	 * INIT_CONFIGURE_MEM   opcode: 0x66 ('f')
	 *
	 * offset      (8 bit): opcode
	 *
	 * Equivalent to INIT_DONE on bios version 3 or greater.
	 * For early bios versions, sets up the memory registers, using values
	 * taken from the memory init table
	 */

	/* no iexec->execute check by design */

	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
	uint16_t seqtbloffs = bios->legacy.sdr_seq_tbl_ptr, meminitdata = meminitoffs + 6;
	uint32_t reg, data;

	if (bios->major_version > 2)
1949
		return 0;
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

	bios_idxprt_wr(bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX, bios_idxprt_rd(
		       bios, NV_VIO_SRX, NV_VIO_SR_CLOCK_INDEX) | 0x20);

	if (bios->data[meminitoffs] & 1)
		seqtbloffs = bios->legacy.ddr_seq_tbl_ptr;

	for (reg = ROM32(bios->data[seqtbloffs]);
	     reg != 0xffffffff;
	     reg = ROM32(bios->data[seqtbloffs += 4])) {

		switch (reg) {
		case NV_PFB_PRE:
			data = NV_PFB_PRE_CMD_PRECHARGE;
			break;
		case NV_PFB_PAD:
			data = NV_PFB_PAD_CKE_NORMAL;
			break;
		case NV_PFB_REF:
			data = NV_PFB_REF_CMD_REFRESH;
			break;
		default:
			data = ROM32(bios->data[meminitdata]);
			meminitdata += 4;
			if (data == 0xffffffff)
				continue;
		}

		bios_wr32(bios, reg, data);
	}

1981
	return 1;
1982 1983
}

1984
static int
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
init_configure_clk(struct nvbios *bios, uint16_t offset,
		   struct init_exec *iexec)
{
	/*
	 * INIT_CONFIGURE_CLK   opcode: 0x67 ('g')
	 *
	 * offset      (8 bit): opcode
	 *
	 * Equivalent to INIT_DONE on bios version 3 or greater.
	 * For early bios versions, sets up the NVClk and MClk PLLs, using
	 * values taken from the memory init table
	 */

	/* no iexec->execute check by design */

	uint16_t meminitoffs = bios->legacy.mem_init_tbl_ptr + MEM_INIT_SIZE * (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_SCRATCH4__INDEX) >> 4);
	int clock;

	if (bios->major_version > 2)
2004
		return 0;
2005 2006 2007 2008 2009 2010 2011 2012 2013

	clock = ROM16(bios->data[meminitoffs + 4]) * 10;
	setPLL(bios, NV_PRAMDAC_NVPLL_COEFF, clock);

	clock = ROM16(bios->data[meminitoffs + 2]) * 10;
	if (bios->data[meminitoffs] & 1) /* DDR */
		clock *= 2;
	setPLL(bios, NV_PRAMDAC_MPLL_COEFF, clock);

2014
	return 1;
2015 2016
}

2017
static int
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
init_configure_preinit(struct nvbios *bios, uint16_t offset,
		       struct init_exec *iexec)
{
	/*
	 * INIT_CONFIGURE_PREINIT   opcode: 0x68 ('h')
	 *
	 * offset      (8 bit): opcode
	 *
	 * Equivalent to INIT_DONE on bios version 3 or greater.
	 * For early bios versions, does early init, loading ram and crystal
	 * configuration from straps into CR3C
	 */

	/* no iexec->execute check by design */

	uint32_t straps = bios_rd32(bios, NV_PEXTDEV_BOOT_0);
	uint8_t cr3c = ((straps << 2) & 0xf0) | (straps & (1 << 6));

	if (bios->major_version > 2)
2037
		return 0;
2038 2039 2040 2041

	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR,
			     NV_CIO_CRE_SCRATCH4__INDEX, cr3c);

2042
	return 1;
2043 2044
}

2045
static int
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
init_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_IO   opcode: 0x69 ('i')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): CRTC port
	 * offset + 3  (8  bit): mask
	 * offset + 4  (8  bit): data
	 *
	 * Assign ((IOVAL("crtc port") & "mask") | "data") to "crtc port"
	 */

	struct drm_nouveau_private *dev_priv = bios->dev->dev_private;
	uint16_t crtcport = ROM16(bios->data[offset + 1]);
	uint8_t mask = bios->data[offset + 3];
	uint8_t data = bios->data[offset + 4];

	if (!iexec->execute)
2065
		return 5;
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Mask: 0x%02X, Data: 0x%02X\n",
		offset, crtcport, mask, data);

	/*
	 * I have no idea what this does, but NVIDIA do this magic sequence
	 * in the places where this INIT_IO happens..
	 */
	if (dev_priv->card_type >= NV_50 && crtcport == 0x3c3 && data == 1) {
		int i;

		bios_wr32(bios, 0x614100, (bios_rd32(
			  bios, 0x614100) & 0x0fffffff) | 0x00800000);

		bios_wr32(bios, 0x00e18c, bios_rd32(
			  bios, 0x00e18c) | 0x00020000);

		bios_wr32(bios, 0x614900, (bios_rd32(
			  bios, 0x614900) & 0x0fffffff) | 0x00800000);

		bios_wr32(bios, 0x000200, bios_rd32(
			  bios, 0x000200) & ~0x40000000);

		mdelay(10);

		bios_wr32(bios, 0x00e18c, bios_rd32(
			  bios, 0x00e18c) & ~0x00020000);

		bios_wr32(bios, 0x000200, bios_rd32(
			  bios, 0x000200) | 0x40000000);

		bios_wr32(bios, 0x614100, 0x00800018);
		bios_wr32(bios, 0x614900, 0x00800018);

		mdelay(10);

		bios_wr32(bios, 0x614100, 0x10000018);
		bios_wr32(bios, 0x614900, 0x10000018);

		for (i = 0; i < 3; i++)
			bios_wr32(bios, 0x614280 + (i*0x800), bios_rd32(
				  bios, 0x614280 + (i*0x800)) & 0xf0f0f0f0);

		for (i = 0; i < 2; i++)
			bios_wr32(bios, 0x614300 + (i*0x800), bios_rd32(
				  bios, 0x614300 + (i*0x800)) & 0xfffff0f0);

		for (i = 0; i < 3; i++)
			bios_wr32(bios, 0x614380 + (i*0x800), bios_rd32(
				  bios, 0x614380 + (i*0x800)) & 0xfffff0f0);

		for (i = 0; i < 2; i++)
			bios_wr32(bios, 0x614200 + (i*0x800), bios_rd32(
				  bios, 0x614200 + (i*0x800)) & 0xfffffff0);

		for (i = 0; i < 2; i++)
			bios_wr32(bios, 0x614108 + (i*0x800), bios_rd32(
				  bios, 0x614108 + (i*0x800)) & 0x0fffffff);
2124
		return 5;
2125 2126 2127 2128
	}

	bios_port_wr(bios, crtcport, (bios_port_rd(bios, crtcport) & mask) |
									data);
2129
	return 5;
2130 2131
}

2132
static int
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
init_sub(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_SUB   opcode: 0x6B ('k')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): script number
	 *
	 * Execute script number "script number", as a subroutine
	 */

	uint8_t sub = bios->data[offset + 1];

	if (!iexec->execute)
2147
		return 2;
2148 2149 2150 2151 2152 2153 2154 2155 2156

	BIOSLOG(bios, "0x%04X: Calling script %d\n", offset, sub);

	parse_init_table(bios,
			 ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]),
			 iexec);

	BIOSLOG(bios, "0x%04X: End of script %d\n", offset, sub);

2157
	return 2;
2158 2159
}

2160
static int
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
init_ram_condition(struct nvbios *bios, uint16_t offset,
		   struct init_exec *iexec)
{
	/*
	 * INIT_RAM_CONDITION   opcode: 0x6D ('m')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): mask
	 * offset + 2  (8 bit): cmpval
	 *
	 * Test if (NV_PFB_BOOT_0 & "mask") equals "cmpval".
	 * If condition not met skip subsequent opcodes until condition is
	 * inverted (INIT_NOT), or we hit INIT_RESUME
	 */

	uint8_t mask = bios->data[offset + 1];
	uint8_t cmpval = bios->data[offset + 2];
	uint8_t data;

	if (!iexec->execute)
2181
		return 3;
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

	data = bios_rd32(bios, NV_PFB_BOOT_0) & mask;

	BIOSLOG(bios, "0x%04X: Checking if 0x%08X equals 0x%08X\n",
		offset, data, cmpval);

	if (data == cmpval)
		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
	else {
		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
		iexec->execute = false;
	}

2195
	return 3;
2196 2197
}

2198
static int
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
init_nv_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_NV_REG   opcode: 0x6E ('n')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (32 bit): mask
	 * offset + 9  (32 bit): data
	 *
	 * Assign ((REGVAL("register") & "mask") | "data") to "register"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint32_t mask = ROM32(bios->data[offset + 5]);
	uint32_t data = ROM32(bios->data[offset + 9]);

	if (!iexec->execute)
2217
		return 13;
2218 2219 2220 2221 2222 2223

	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Mask: 0x%08X, Data: 0x%08X\n",
		offset, reg, mask, data);

	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | data);

2224
	return 13;
2225 2226
}

2227
static int
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
init_macro(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_MACRO   opcode: 0x6F ('o')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): macro number
	 *
	 * Look up macro index "macro number" in the macro index table.
	 * The macro index table entry has 1 byte for the index in the macro
	 * table, and 1 byte for the number of times to repeat the macro.
	 * The macro table entry has 4 bytes for the register address and
	 * 4 bytes for the value to write to that register
	 */

	uint8_t macro_index_tbl_idx = bios->data[offset + 1];
	uint16_t tmp = bios->macro_index_tbl_ptr + (macro_index_tbl_idx * MACRO_INDEX_SIZE);
	uint8_t macro_tbl_idx = bios->data[tmp];
	uint8_t count = bios->data[tmp + 1];
	uint32_t reg, data;
	int i;

	if (!iexec->execute)
2251
		return 2;
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265

	BIOSLOG(bios, "0x%04X: Macro: 0x%02X, MacroTableIndex: 0x%02X, "
		      "Count: 0x%02X\n",
		offset, macro_index_tbl_idx, macro_tbl_idx, count);

	for (i = 0; i < count; i++) {
		uint16_t macroentryptr = bios->macro_tbl_ptr + (macro_tbl_idx + i) * MACRO_SIZE;

		reg = ROM32(bios->data[macroentryptr]);
		data = ROM32(bios->data[macroentryptr + 4]);

		bios_wr32(bios, reg, data);
	}

2266
	return 2;
2267 2268
}

2269
static int
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
init_done(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_DONE   opcode: 0x71 ('q')
	 *
	 * offset      (8  bit): opcode
	 *
	 * End the current script
	 */

	/* mild retval abuse to stop parsing this table */
2281
	return 0;
2282 2283
}

2284
static int
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
init_resume(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_RESUME   opcode: 0x72 ('r')
	 *
	 * offset      (8  bit): opcode
	 *
	 * End the current execute / no-execute condition
	 */

	if (iexec->execute)
2296
		return 1;
2297 2298 2299 2300

	iexec->execute = true;
	BIOSLOG(bios, "0x%04X: ---- Executing following commands ----\n", offset);

2301
	return 1;
2302 2303
}

2304
static int
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
init_time(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_TIME   opcode: 0x74 ('t')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): time
	 *
	 * Sleep for "time" microseconds.
	 */

	unsigned time = ROM16(bios->data[offset + 1]);

	if (!iexec->execute)
2319
		return 3;
2320 2321 2322 2323 2324 2325 2326 2327 2328

	BIOSLOG(bios, "0x%04X: Sleeping for 0x%04X microseconds\n",
		offset, time);

	if (time < 1000)
		udelay(time);
	else
		msleep((time + 900) / 1000);

2329
	return 3;
2330 2331
}

2332
static int
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
init_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_CONDITION   opcode: 0x75 ('u')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): condition number
	 *
	 * Check condition "condition number" in the condition table.
	 * If condition not met skip subsequent opcodes until condition is
	 * inverted (INIT_NOT), or we hit INIT_RESUME
	 */

	uint8_t cond = bios->data[offset + 1];

	if (!iexec->execute)
2349
		return 2;
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359

	BIOSLOG(bios, "0x%04X: Condition: 0x%02X\n", offset, cond);

	if (bios_condition_met(bios, offset, cond))
		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
	else {
		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
		iexec->execute = false;
	}

2360
	return 2;
2361 2362
}

2363
static int
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
init_io_condition(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_IO_CONDITION  opcode: 0x76
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): condition number
	 *
	 * Check condition "condition number" in the io condition table.
	 * If condition not met skip subsequent opcodes until condition is
	 * inverted (INIT_NOT), or we hit INIT_RESUME
	 */

	uint8_t cond = bios->data[offset + 1];

	if (!iexec->execute)
2380
		return 2;
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390

	BIOSLOG(bios, "0x%04X: IO condition: 0x%02X\n", offset, cond);

	if (io_condition_met(bios, offset, cond))
		BIOSLOG(bios, "0x%04X: Condition fulfilled -- continuing to execute\n", offset);
	else {
		BIOSLOG(bios, "0x%04X: Condition not fulfilled -- skipping following commands\n", offset);
		iexec->execute = false;
	}

2391
	return 2;
2392 2393
}

2394
static int
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
init_index_io(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_INDEX_IO   opcode: 0x78 ('x')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (16 bit): CRTC port
	 * offset + 3  (8  bit): CRTC index
	 * offset + 4  (8  bit): mask
	 * offset + 5  (8  bit): data
	 *
	 * Read value at index "CRTC index" on "CRTC port", AND with "mask",
	 * OR with "data", write-back
	 */

	uint16_t crtcport = ROM16(bios->data[offset + 1]);
	uint8_t crtcindex = bios->data[offset + 3];
	uint8_t mask = bios->data[offset + 4];
	uint8_t data = bios->data[offset + 5];
	uint8_t value;

	if (!iexec->execute)
2417
		return 6;
2418 2419 2420 2421 2422 2423 2424 2425

	BIOSLOG(bios, "0x%04X: Port: 0x%04X, Index: 0x%02X, Mask: 0x%02X, "
		      "Data: 0x%02X\n",
		offset, crtcport, crtcindex, mask, data);

	value = (bios_idxprt_rd(bios, crtcport, crtcindex) & mask) | data;
	bios_idxprt_wr(bios, crtcport, crtcindex, value);

2426
	return 6;
2427 2428
}

2429
static int
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
init_pll(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_PLL   opcode: 0x79 ('y')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (16 bit): freq
	 *
	 * Set PLL register "register" to coefficients for frequency (10kHz)
	 * "freq"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint16_t freq = ROM16(bios->data[offset + 5]);

	if (!iexec->execute)
2447
		return 7;
2448 2449 2450 2451 2452

	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, Freq: %d0kHz\n", offset, reg, freq);

	setPLL(bios, reg, freq * 10);

2453
	return 7;
2454 2455
}

2456
static int
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
init_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_REG   opcode: 0x7A ('z')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (32 bit): value
	 *
	 * Assign "value" to "register"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint32_t value = ROM32(bios->data[offset + 5]);

	if (!iexec->execute)
2473
		return 9;
2474 2475 2476 2477 2478 2479

	if (reg == 0x000200)
		value |= 1;

	bios_wr32(bios, reg, value);

2480
	return 9;
2481 2482
}

2483
static int
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
init_ram_restrict_pll(struct nvbios *bios, uint16_t offset,
		      struct init_exec *iexec)
{
	/*
	 * INIT_RAM_RESTRICT_PLL   opcode: 0x87 ('')
	 *
	 * offset      (8 bit): opcode
	 * offset + 1  (8 bit): PLL type
	 * offset + 2 (32 bit): frequency 0
	 *
	 * Uses the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
	 * ram_restrict_table_ptr.  The value read from there is used to select
	 * a frequency from the table starting at 'frequency 0' to be
	 * programmed into the PLL corresponding to 'type'.
	 *
	 * The PLL limits table on cards using this opcode has a mapping of
	 * 'type' to the relevant registers.
	 */

	struct drm_device *dev = bios->dev;
	uint32_t strap = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) & 0x0000003c) >> 2;
	uint8_t index = bios->data[bios->ram_restrict_tbl_ptr + strap];
	uint8_t type = bios->data[offset + 1];
	uint32_t freq = ROM32(bios->data[offset + 2 + (index * 4)]);
	uint8_t *pll_limits = &bios->data[bios->pll_limit_tbl_ptr], *entry;
2509
	int len = 2 + bios->ram_restrict_group_count * 4;
2510 2511 2512
	int i;

	if (!iexec->execute)
2513
		return len;
2514 2515 2516

	if (!bios->pll_limit_tbl_ptr || (pll_limits[0] & 0xf0) != 0x30) {
		NV_ERROR(dev, "PLL limits table not version 3.x\n");
2517
		return len; /* deliberate, allow default clocks to remain */
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
	}

	entry = pll_limits + pll_limits[1];
	for (i = 0; i < pll_limits[3]; i++, entry += pll_limits[2]) {
		if (entry[0] == type) {
			uint32_t reg = ROM32(entry[3]);

			BIOSLOG(bios, "0x%04X: "
				      "Type %02x Reg 0x%08x Freq %dKHz\n",
				offset, type, reg, freq);

			setPLL(bios, reg, freq);
2530
			return len;
2531 2532 2533 2534
		}
	}

	NV_ERROR(dev, "PLL type 0x%02x not found in PLL limits table", type);
2535
	return len;
2536 2537
}

2538
static int
2539 2540 2541 2542 2543 2544 2545 2546 2547
init_8c(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_8C   opcode: 0x8C ('')
	 *
	 * NOP so far....
	 *
	 */

2548
	return 1;
2549 2550
}

2551
static int
2552 2553 2554 2555 2556 2557 2558 2559 2560
init_8d(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_8D   opcode: 0x8D ('')
	 *
	 * NOP so far....
	 *
	 */

2561
	return 1;
2562 2563
}

2564
static int
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
init_gpio(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_GPIO   opcode: 0x8E ('')
	 *
	 * offset      (8 bit): opcode
	 *
	 * Loop over all entries in the DCB GPIO table, and initialise
	 * each GPIO according to various values listed in each entry
	 */

	const uint32_t nv50_gpio_reg[4] = { 0xe104, 0xe108, 0xe280, 0xe284 };
	const uint32_t nv50_gpio_ctl[2] = { 0xe100, 0xe28c };
2578
	const uint8_t *gpio_table = &bios->data[bios->dcb.gpio_table_ptr];
2579 2580 2581
	const uint8_t *gpio_entry;
	int i;

2582 2583 2584
	if (!iexec->execute)
		return 1;

2585
	if (bios->dcb.version != 0x40) {
2586
		NV_ERROR(bios->dev, "DCB table not version 4.0\n");
2587
		return 0;
2588 2589
	}

2590
	if (!bios->dcb.gpio_table_ptr) {
2591
		NV_WARN(bios->dev, "Invalid pointer to INIT_8E table\n");
2592
		return 0;
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	}

	gpio_entry = gpio_table + gpio_table[1];
	for (i = 0; i < gpio_table[2]; i++, gpio_entry += gpio_table[3]) {
		uint32_t entry = ROM32(gpio_entry[0]), r, s, v;
		int line = (entry & 0x0000001f);

		BIOSLOG(bios, "0x%04X: Entry: 0x%08X\n", offset, entry);

		if ((entry & 0x0000ff00) == 0x0000ff00)
			continue;

		r = nv50_gpio_reg[line >> 3];
		s = (line & 0x07) << 2;
		v = bios_rd32(bios, r) & ~(0x00000003 << s);
		if (entry & 0x01000000)
			v |= (((entry & 0x60000000) >> 29) ^ 2) << s;
		else
			v |= (((entry & 0x18000000) >> 27) ^ 2) << s;
		bios_wr32(bios, r, v);

		r = nv50_gpio_ctl[line >> 4];
		s = (line & 0x0f);
		v = bios_rd32(bios, r) & ~(0x00010001 << s);
		switch ((entry & 0x06000000) >> 25) {
		case 1:
			v |= (0x00000001 << s);
			break;
		case 2:
			v |= (0x00010000 << s);
			break;
		default:
			break;
		}
		bios_wr32(bios, r, v);
	}

2630
	return 1;
2631 2632
}

2633
static int
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
init_ram_restrict_zm_reg_group(struct nvbios *bios, uint16_t offset,
			       struct init_exec *iexec)
{
	/*
	 * INIT_RAM_RESTRICT_ZM_REG_GROUP   opcode: 0x8F ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): reg
	 * offset + 5  (8  bit): regincrement
	 * offset + 6  (8  bit): count
	 * offset + 7  (32 bit): value 1,1
	 * ...
	 *
	 * Use the RAMCFG strap of PEXTDEV_BOOT as an index into the table at
	 * ram_restrict_table_ptr. The value read from here is 'n', and
	 * "value 1,n" gets written to "reg". This repeats "count" times and on
	 * each iteration 'm', "reg" increases by "regincrement" and
	 * "value m,n" is used. The extent of n is limited by a number read
	 * from the 'M' BIT table, herein called "blocklen"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint8_t regincrement = bios->data[offset + 5];
	uint8_t count = bios->data[offset + 6];
	uint32_t strap_ramcfg, data;
2659 2660 2661
	/* previously set by 'M' BIT table */
	uint16_t blocklen = bios->ram_restrict_group_count * 4;
	int len = 7 + count * blocklen;
2662 2663 2664 2665 2666
	uint8_t index;
	int i;


	if (!iexec->execute)
2667
		return len;
2668 2669 2670 2671 2672

	if (!blocklen) {
		NV_ERROR(bios->dev,
			 "0x%04X: Zero block length - has the M table "
			 "been parsed?\n", offset);
2673
		return 0;
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	}

	strap_ramcfg = (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 2) & 0xf;
	index = bios->data[bios->ram_restrict_tbl_ptr + strap_ramcfg];

	BIOSLOG(bios, "0x%04X: Reg: 0x%08X, RegIncrement: 0x%02X, "
		      "Count: 0x%02X, StrapRamCfg: 0x%02X, Index: 0x%02X\n",
		offset, reg, regincrement, count, strap_ramcfg, index);

	for (i = 0; i < count; i++) {
		data = ROM32(bios->data[offset + 7 + index * 4 + blocklen * i]);

		bios_wr32(bios, reg, data);

		reg += regincrement;
	}

2691
	return len;
2692 2693
}

2694
static int
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
init_copy_zm_reg(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_COPY_ZM_REG   opcode: 0x90 ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): src reg
	 * offset + 5  (32 bit): dst reg
	 *
	 * Put contents of "src reg" into "dst reg"
	 */

	uint32_t srcreg = ROM32(bios->data[offset + 1]);
	uint32_t dstreg = ROM32(bios->data[offset + 5]);

	if (!iexec->execute)
2711
		return 9;
2712 2713 2714

	bios_wr32(bios, dstreg, bios_rd32(bios, srcreg));

2715
	return 9;
2716 2717
}

2718
static int
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
init_zm_reg_group_addr_latched(struct nvbios *bios, uint16_t offset,
			       struct init_exec *iexec)
{
	/*
	 * INIT_ZM_REG_GROUP_ADDRESS_LATCHED   opcode: 0x91 ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): dst reg
	 * offset + 5  (8  bit): count
	 * offset + 6  (32 bit): data 1
	 * ...
	 *
	 * For each of "count" values write "data n" to "dst reg"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint8_t count = bios->data[offset + 5];
2736
	int len = 6 + count * 4;
2737 2738 2739
	int i;

	if (!iexec->execute)
2740
		return len;
2741 2742 2743 2744 2745 2746

	for (i = 0; i < count; i++) {
		uint32_t data = ROM32(bios->data[offset + 6 + 4 * i]);
		bios_wr32(bios, reg, data);
	}

2747
	return len;
2748 2749
}

2750
static int
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
init_reserved(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_RESERVED   opcode: 0x92 ('')
	 *
	 * offset      (8 bit): opcode
	 *
	 * Seemingly does nothing
	 */

2761
	return 1;
2762 2763
}

2764
static int
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
init_96(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_96   opcode: 0x96 ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): sreg
	 * offset + 5  (8  bit): sshift
	 * offset + 6  (8  bit): smask
	 * offset + 7  (8  bit): index
	 * offset + 8  (32 bit): reg
	 * offset + 12 (32 bit): mask
	 * offset + 16 (8  bit): shift
	 *
	 */

	uint16_t xlatptr = bios->init96_tbl_ptr + (bios->data[offset + 7] * 2);
	uint32_t reg = ROM32(bios->data[offset + 8]);
	uint32_t mask = ROM32(bios->data[offset + 12]);
	uint32_t val;

	val = bios_rd32(bios, ROM32(bios->data[offset + 1]));
	if (bios->data[offset + 5] < 0x80)
		val >>= bios->data[offset + 5];
	else
		val <<= (0x100 - bios->data[offset + 5]);
	val &= bios->data[offset + 6];

	val   = bios->data[ROM16(bios->data[xlatptr]) + val];
	val <<= bios->data[offset + 16];

	if (!iexec->execute)
2797
		return 17;
2798 2799

	bios_wr32(bios, reg, (bios_rd32(bios, reg) & mask) | val);
2800
	return 17;
2801 2802
}

2803
static int
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
init_97(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_97   opcode: 0x97 ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): register
	 * offset + 5  (32 bit): mask
	 * offset + 9  (32 bit): value
	 *
	 * Adds "value" to "register" preserving the fields specified
	 * by "mask"
	 */

	uint32_t reg = ROM32(bios->data[offset + 1]);
	uint32_t mask = ROM32(bios->data[offset + 5]);
	uint32_t add = ROM32(bios->data[offset + 9]);
	uint32_t val;

	val = bios_rd32(bios, reg);
	val = (val & mask) | ((val + add) & ~mask);

	if (!iexec->execute)
2827
		return 13;
2828 2829

	bios_wr32(bios, reg, val);
2830
	return 13;
2831 2832
}

2833
static int
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
init_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_AUXCH   opcode: 0x98 ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): address
	 * offset + 5  (8  bit): count
	 * offset + 6  (8  bit): mask 0
	 * offset + 7  (8  bit): data 0
	 *  ...
	 *
	 */

	struct drm_device *dev = bios->dev;
	struct nouveau_i2c_chan *auxch;
	uint32_t addr = ROM32(bios->data[offset + 1]);
2851 2852
	uint8_t count = bios->data[offset + 5];
	int len = 6 + count * 2;
2853 2854 2855 2856
	int ret, i;

	if (!bios->display.output) {
		NV_ERROR(dev, "INIT_AUXCH: no active output\n");
2857
		return 0;
2858 2859 2860 2861 2862 2863
	}

	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
	if (!auxch) {
		NV_ERROR(dev, "INIT_AUXCH: couldn't get auxch %d\n",
			 bios->display.output->i2c_index);
2864
		return 0;
2865 2866 2867
	}

	if (!iexec->execute)
2868
		return len;
2869 2870

	offset += 6;
2871
	for (i = 0; i < count; i++, offset += 2) {
2872 2873 2874 2875 2876
		uint8_t data;

		ret = nouveau_dp_auxch(auxch, 9, addr, &data, 1);
		if (ret) {
			NV_ERROR(dev, "INIT_AUXCH: rd auxch fail %d\n", ret);
2877
			return 0;
2878 2879 2880 2881 2882 2883 2884 2885
		}

		data &= bios->data[offset + 0];
		data |= bios->data[offset + 1];

		ret = nouveau_dp_auxch(auxch, 8, addr, &data, 1);
		if (ret) {
			NV_ERROR(dev, "INIT_AUXCH: wr auxch fail %d\n", ret);
2886
			return 0;
2887 2888 2889
		}
	}

2890
	return len;
2891 2892
}

2893
static int
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
init_zm_auxch(struct nvbios *bios, uint16_t offset, struct init_exec *iexec)
{
	/*
	 * INIT_ZM_AUXCH   opcode: 0x99 ('')
	 *
	 * offset      (8  bit): opcode
	 * offset + 1  (32 bit): address
	 * offset + 5  (8  bit): count
	 * offset + 6  (8  bit): data 0
	 *  ...
	 *
	 */

	struct drm_device *dev = bios->dev;
	struct nouveau_i2c_chan *auxch;
	uint32_t addr = ROM32(bios->data[offset + 1]);
2910 2911
	uint8_t count = bios->data[offset + 5];
	int len = 6 + count;
2912 2913 2914 2915
	int ret, i;

	if (!bios->display.output) {
		NV_ERROR(dev, "INIT_ZM_AUXCH: no active output\n");
2916
		return 0;
2917 2918 2919 2920 2921 2922
	}

	auxch = init_i2c_device_find(dev, bios->display.output->i2c_index);
	if (!auxch) {
		NV_ERROR(dev, "INIT_ZM_AUXCH: couldn't get auxch %d\n",
			 bios->display.output->i2c_index);
2923
		return 0;
2924 2925 2926
	}

	if (!iexec->execute)
2927
		return len;
2928 2929

	offset += 6;
2930
	for (i = 0; i < count; i++, offset++) {
2931 2932 2933
		ret = nouveau_dp_auxch(auxch, 8, addr, &bios->data[offset], 1);
		if (ret) {
			NV_ERROR(dev, "INIT_ZM_AUXCH: wr auxch fail %d\n", ret);
2934
			return 0;
2935 2936 2937
		}
	}

2938
	return len;
2939 2940 2941 2942 2943
}

static struct init_tbl_entry itbl_entry[] = {
	/* command name                       , id  , length  , offset  , mult    , command handler                 */
	/* INIT_PROG (0x31, 15, 10, 4) removed due to no example of use */
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	{ "INIT_IO_RESTRICT_PROG"             , 0x32, init_io_restrict_prog           },
	{ "INIT_REPEAT"                       , 0x33, init_repeat                     },
	{ "INIT_IO_RESTRICT_PLL"              , 0x34, init_io_restrict_pll            },
	{ "INIT_END_REPEAT"                   , 0x36, init_end_repeat                 },
	{ "INIT_COPY"                         , 0x37, init_copy                       },
	{ "INIT_NOT"                          , 0x38, init_not                        },
	{ "INIT_IO_FLAG_CONDITION"            , 0x39, init_io_flag_condition          },
	{ "INIT_INDEX_ADDRESS_LATCHED"        , 0x49, init_idx_addr_latched           },
	{ "INIT_IO_RESTRICT_PLL2"             , 0x4A, init_io_restrict_pll2           },
	{ "INIT_PLL2"                         , 0x4B, init_pll2                       },
	{ "INIT_I2C_BYTE"                     , 0x4C, init_i2c_byte                   },
	{ "INIT_ZM_I2C_BYTE"                  , 0x4D, init_zm_i2c_byte                },
	{ "INIT_ZM_I2C"                       , 0x4E, init_zm_i2c                     },
	{ "INIT_TMDS"                         , 0x4F, init_tmds                       },
	{ "INIT_ZM_TMDS_GROUP"                , 0x50, init_zm_tmds_group              },
	{ "INIT_CR_INDEX_ADDRESS_LATCHED"     , 0x51, init_cr_idx_adr_latch           },
	{ "INIT_CR"                           , 0x52, init_cr                         },
	{ "INIT_ZM_CR"                        , 0x53, init_zm_cr                      },
	{ "INIT_ZM_CR_GROUP"                  , 0x54, init_zm_cr_group                },
	{ "INIT_CONDITION_TIME"               , 0x56, init_condition_time             },
	{ "INIT_ZM_REG_SEQUENCE"              , 0x58, init_zm_reg_sequence            },
2965
	/* INIT_INDIRECT_REG (0x5A, 7, 0, 0) removed due to no example of use */
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
	{ "INIT_SUB_DIRECT"                   , 0x5B, init_sub_direct                 },
	{ "INIT_COPY_NV_REG"                  , 0x5F, init_copy_nv_reg                },
	{ "INIT_ZM_INDEX_IO"                  , 0x62, init_zm_index_io                },
	{ "INIT_COMPUTE_MEM"                  , 0x63, init_compute_mem                },
	{ "INIT_RESET"                        , 0x65, init_reset                      },
	{ "INIT_CONFIGURE_MEM"                , 0x66, init_configure_mem              },
	{ "INIT_CONFIGURE_CLK"                , 0x67, init_configure_clk              },
	{ "INIT_CONFIGURE_PREINIT"            , 0x68, init_configure_preinit          },
	{ "INIT_IO"                           , 0x69, init_io                         },
	{ "INIT_SUB"                          , 0x6B, init_sub                        },
	{ "INIT_RAM_CONDITION"                , 0x6D, init_ram_condition              },
	{ "INIT_NV_REG"                       , 0x6E, init_nv_reg                     },
	{ "INIT_MACRO"                        , 0x6F, init_macro                      },
	{ "INIT_DONE"                         , 0x71, init_done                       },
	{ "INIT_RESUME"                       , 0x72, init_resume                     },
2981
	/* INIT_RAM_CONDITION2 (0x73, 9, 0, 0) removed due to no example of use */
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
	{ "INIT_TIME"                         , 0x74, init_time                       },
	{ "INIT_CONDITION"                    , 0x75, init_condition                  },
	{ "INIT_IO_CONDITION"                 , 0x76, init_io_condition               },
	{ "INIT_INDEX_IO"                     , 0x78, init_index_io                   },
	{ "INIT_PLL"                          , 0x79, init_pll                        },
	{ "INIT_ZM_REG"                       , 0x7A, init_zm_reg                     },
	{ "INIT_RAM_RESTRICT_PLL"             , 0x87, init_ram_restrict_pll           },
	{ "INIT_8C"                           , 0x8C, init_8c                         },
	{ "INIT_8D"                           , 0x8D, init_8d                         },
	{ "INIT_GPIO"                         , 0x8E, init_gpio                       },
	{ "INIT_RAM_RESTRICT_ZM_REG_GROUP"    , 0x8F, init_ram_restrict_zm_reg_group  },
	{ "INIT_COPY_ZM_REG"                  , 0x90, init_copy_zm_reg                },
	{ "INIT_ZM_REG_GROUP_ADDRESS_LATCHED" , 0x91, init_zm_reg_group_addr_latched  },
	{ "INIT_RESERVED"                     , 0x92, init_reserved                   },
	{ "INIT_96"                           , 0x96, init_96                         },
	{ "INIT_97"                           , 0x97, init_97                         },
	{ "INIT_AUXCH"                        , 0x98, init_auxch                      },
	{ "INIT_ZM_AUXCH"                     , 0x99, init_zm_auxch                   },
	{ NULL                                , 0   , NULL                            }
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
};

#define MAX_TABLE_OPS 1000

static int
parse_init_table(struct nvbios *bios, unsigned int offset,
		 struct init_exec *iexec)
{
	/*
	 * Parses all commands in an init table.
	 *
	 * We start out executing all commands found in the init table. Some
	 * opcodes may change the status of iexec->execute to SKIP, which will
	 * cause the following opcodes to perform no operation until the value
	 * is changed back to EXECUTE.
	 */

3018
	int count = 0, i, res;
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	uint8_t id;

	/*
	 * Loop until INIT_DONE causes us to break out of the loop
	 * (or until offset > bios length just in case... )
	 * (and no more than MAX_TABLE_OPS iterations, just in case... )
	 */
	while ((offset < bios->length) && (count++ < MAX_TABLE_OPS)) {
		id = bios->data[offset];

		/* Find matching id in itbl_entry */
		for (i = 0; itbl_entry[i].name && (itbl_entry[i].id != id); i++)
			;

		if (itbl_entry[i].name) {
			BIOSLOG(bios, "0x%04X: [ (0x%02X) - %s ]\n",
				offset, itbl_entry[i].id, itbl_entry[i].name);

			/* execute eventual command handler */
3038 3039 3040 3041 3042 3043 3044 3045 3046
			res = (*itbl_entry[i].handler)(bios, offset, iexec);
			if (!res)
				break;
			/*
			 * Add the offset of the current command including all data
			 * of that command. The offset will then be pointing on the
			 * next op code.
			 */
			offset += res;
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
		} else {
			NV_ERROR(bios->dev,
				 "0x%04X: Init table command not found: "
				 "0x%02X\n", offset, id);
			return -ENOENT;
		}
	}

	if (offset >= bios->length)
		NV_WARN(bios->dev,
			"Offset 0x%04X greater than known bios image length.  "
			"Corrupt image?\n", offset);
	if (count >= MAX_TABLE_OPS)
		NV_WARN(bios->dev,
			"More than %d opcodes to a table is unlikely, "
			"is the bios image corrupt?\n", MAX_TABLE_OPS);

	return 0;
}

static void
parse_init_tables(struct nvbios *bios)
{
	/* Loops and calls parse_init_table() for each present table. */

	int i = 0;
	uint16_t table;
	struct init_exec iexec = {true, false};

	if (bios->old_style_init) {
		if (bios->init_script_tbls_ptr)
			parse_init_table(bios, bios->init_script_tbls_ptr, &iexec);
		if (bios->extra_init_script_tbl_ptr)
			parse_init_table(bios, bios->extra_init_script_tbl_ptr, &iexec);

		return;
	}

	while ((table = ROM16(bios->data[bios->init_script_tbls_ptr + i]))) {
		NV_INFO(bios->dev,
			"Parsing VBIOS init table %d at offset 0x%04X\n",
			i / 2, table);
		BIOSLOG(bios, "0x%04X: ------ Executing following commands ------\n", table);

		parse_init_table(bios, table, &iexec);
		i += 2;
	}
}

static uint16_t clkcmptable(struct nvbios *bios, uint16_t clktable, int pxclk)
{
	int compare_record_len, i = 0;
	uint16_t compareclk, scriptptr = 0;

	if (bios->major_version < 5) /* pre BIT */
		compare_record_len = 3;
	else
		compare_record_len = 4;

	do {
		compareclk = ROM16(bios->data[clktable + compare_record_len * i]);
		if (pxclk >= compareclk * 10) {
			if (bios->major_version < 5) {
				uint8_t tmdssub = bios->data[clktable + 2 + compare_record_len * i];
				scriptptr = ROM16(bios->data[bios->init_script_tbls_ptr + tmdssub * 2]);
			} else
				scriptptr = ROM16(bios->data[clktable + 2 + compare_record_len * i]);
			break;
		}
		i++;
	} while (compareclk);

	return scriptptr;
}

static void
run_digital_op_script(struct drm_device *dev, uint16_t scriptptr,
		      struct dcb_entry *dcbent, int head, bool dl)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
3127
	struct nvbios *bios = &dev_priv->vbios;
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
	struct init_exec iexec = {true, false};

	NV_TRACE(dev, "0x%04X: Parsing digital output script table\n",
		 scriptptr);
	bios_idxprt_wr(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_44,
		       head ? NV_CIO_CRE_44_HEADB : NV_CIO_CRE_44_HEADA);
	/* note: if dcb entries have been merged, index may be misleading */
	NVWriteVgaCrtc5758(dev, head, 0, dcbent->index);
	parse_init_table(bios, scriptptr, &iexec);

	nv04_dfp_bind_head(dev, dcbent, head, dl);
}

static int call_lvds_manufacturer_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
3144
	struct nvbios *bios = &dev_priv->vbios;
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
	uint8_t sub = bios->data[bios->fp.xlated_entry + script] + (bios->fp.link_c_increment && dcbent->or & OUTPUT_C ? 1 : 0);
	uint16_t scriptofs = ROM16(bios->data[bios->init_script_tbls_ptr + sub * 2]);

	if (!bios->fp.xlated_entry || !sub || !scriptofs)
		return -EINVAL;

	run_digital_op_script(dev, scriptofs, dcbent, head, bios->fp.dual_link);

	if (script == LVDS_PANEL_OFF) {
		/* off-on delay in ms */
		msleep(ROM16(bios->data[bios->fp.xlated_entry + 7]));
	}
#ifdef __powerpc__
	/* Powerbook specific quirks */
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	if ((dev->pci_device & 0xffff) == 0x0179 ||
	    (dev->pci_device & 0xffff) == 0x0189 ||
	    (dev->pci_device & 0xffff) == 0x0329) {
		if (script == LVDS_RESET) {
			nv_write_tmds(dev, dcbent->or, 0, 0x02, 0x72);

		} else if (script == LVDS_PANEL_ON) {
			bios_wr32(bios, NV_PBUS_DEBUG_DUALHEAD_CTL,
				  bios_rd32(bios, NV_PBUS_DEBUG_DUALHEAD_CTL)
				  | (1 << 31));
			bios_wr32(bios, NV_PCRTC_GPIO_EXT,
				  bios_rd32(bios, NV_PCRTC_GPIO_EXT) | 1);

		} else if (script == LVDS_PANEL_OFF) {
			bios_wr32(bios, NV_PBUS_DEBUG_DUALHEAD_CTL,
				  bios_rd32(bios, NV_PBUS_DEBUG_DUALHEAD_CTL)
				  & ~(1 << 31));
			bios_wr32(bios, NV_PCRTC_GPIO_EXT,
				  bios_rd32(bios, NV_PCRTC_GPIO_EXT) & ~3);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
		}
	}
#endif

	return 0;
}

static int run_lvds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
{
	/*
	 * The BIT LVDS table's header has the information to setup the
	 * necessary registers. Following the standard 4 byte header are:
	 * A bitmask byte and a dual-link transition pxclk value for use in
	 * selecting the init script when not using straps; 4 script pointers
	 * for panel power, selected by output and on/off; and 8 table pointers
	 * for panel init, the needed one determined by output, and bits in the
	 * conf byte. These tables are similar to the TMDS tables, consisting
	 * of a list of pxclks and script pointers.
	 */
	struct drm_nouveau_private *dev_priv = dev->dev_private;
3198
	struct nvbios *bios = &dev_priv->vbios;
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	unsigned int outputset = (dcbent->or == 4) ? 1 : 0;
	uint16_t scriptptr = 0, clktable;
	uint8_t clktableptr = 0;

	/*
	 * For now we assume version 3.0 table - g80 support will need some
	 * changes
	 */

	switch (script) {
	case LVDS_INIT:
		return -ENOSYS;
	case LVDS_BACKLIGHT_ON:
	case LVDS_PANEL_ON:
		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 7 + outputset * 2]);
		break;
	case LVDS_BACKLIGHT_OFF:
	case LVDS_PANEL_OFF:
		scriptptr = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 11 + outputset * 2]);
		break;
	case LVDS_RESET:
		if (dcbent->lvdsconf.use_straps_for_mode) {
			if (bios->fp.dual_link)
				clktableptr += 2;
			if (bios->fp.BITbit1)
				clktableptr++;
		} else {
			/* using EDID */
			uint8_t fallback = bios->data[bios->fp.lvdsmanufacturerpointer + 4];
			int fallbackcmpval = (dcbent->or == 4) ? 4 : 1;

			if (bios->fp.dual_link) {
				clktableptr += 2;
				fallbackcmpval *= 2;
			}
			if (fallbackcmpval & fallback)
				clktableptr++;
		}

		/* adding outputset * 8 may not be correct */
		clktable = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 15 + clktableptr * 2 + outputset * 8]);
		if (!clktable) {
			NV_ERROR(dev, "Pixel clock comparison table not found\n");
			return -ENOENT;
		}
		scriptptr = clkcmptable(bios, clktable, pxclk);
	}

	if (!scriptptr) {
		NV_ERROR(dev, "LVDS output init script not found\n");
		return -ENOENT;
	}
	run_digital_op_script(dev, scriptptr, dcbent, head, bios->fp.dual_link);

	return 0;
}

int call_lvds_script(struct drm_device *dev, struct dcb_entry *dcbent, int head, enum LVDS_script script, int pxclk)
{
	/*
	 * LVDS operations are multiplexed in an effort to present a single API
	 * which works with two vastly differing underlying structures.
	 * This acts as the demux
	 */

	struct drm_nouveau_private *dev_priv = dev->dev_private;
3265
	struct nvbios *bios = &dev_priv->vbios;
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	uint8_t lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];
	uint32_t sel_clk_binding, sel_clk;
	int ret;

	if (bios->fp.last_script_invoc == (script << 1 | head) || !lvds_ver ||
	    (lvds_ver >= 0x30 && script == LVDS_INIT))
		return 0;

	if (!bios->fp.lvds_init_run) {
		bios->fp.lvds_init_run = true;
		call_lvds_script(dev, dcbent, head, LVDS_INIT, pxclk);
	}

	if (script == LVDS_PANEL_ON && bios->fp.reset_after_pclk_change)
		call_lvds_script(dev, dcbent, head, LVDS_RESET, pxclk);
	if (script == LVDS_RESET && bios->fp.power_off_for_reset)
		call_lvds_script(dev, dcbent, head, LVDS_PANEL_OFF, pxclk);

	NV_TRACE(dev, "Calling LVDS script %d:\n", script);

	/* don't let script change pll->head binding */
	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;

	if (lvds_ver < 0x30)
		ret = call_lvds_manufacturer_script(dev, dcbent, head, script);
	else
		ret = run_lvds_table(dev, dcbent, head, script, pxclk);

	bios->fp.last_script_invoc = (script << 1 | head);

	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);
	/* some scripts set a value in NV_PBUS_POWERCTRL_2 and break video overlay */
	nvWriteMC(dev, NV_PBUS_POWERCTRL_2, 0);

	return ret;
}

struct lvdstableheader {
	uint8_t lvds_ver, headerlen, recordlen;
};

static int parse_lvds_manufacturer_table_header(struct drm_device *dev, struct nvbios *bios, struct lvdstableheader *lth)
{
	/*
	 * BMP version (0xa) LVDS table has a simple header of version and
	 * record length. The BIT LVDS table has the typical BIT table header:
	 * version byte, header length byte, record length byte, and a byte for
	 * the maximum number of records that can be held in the table.
	 */

	uint8_t lvds_ver, headerlen, recordlen;

	memset(lth, 0, sizeof(struct lvdstableheader));

	if (bios->fp.lvdsmanufacturerpointer == 0x0) {
		NV_ERROR(dev, "Pointer to LVDS manufacturer table invalid\n");
		return -EINVAL;
	}

	lvds_ver = bios->data[bios->fp.lvdsmanufacturerpointer];

	switch (lvds_ver) {
	case 0x0a:	/* pre NV40 */
		headerlen = 2;
		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
		break;
	case 0x30:	/* NV4x */
		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
		if (headerlen < 0x1f) {
			NV_ERROR(dev, "LVDS table header not understood\n");
			return -EINVAL;
		}
		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
		break;
	case 0x40:	/* G80/G90 */
		headerlen = bios->data[bios->fp.lvdsmanufacturerpointer + 1];
		if (headerlen < 0x7) {
			NV_ERROR(dev, "LVDS table header not understood\n");
			return -EINVAL;
		}
		recordlen = bios->data[bios->fp.lvdsmanufacturerpointer + 2];
		break;
	default:
		NV_ERROR(dev,
			 "LVDS table revision %d.%d not currently supported\n",
			 lvds_ver >> 4, lvds_ver & 0xf);
		return -ENOSYS;
	}

	lth->lvds_ver = lvds_ver;
	lth->headerlen = headerlen;
	lth->recordlen = recordlen;

	return 0;
}

static int
get_fp_strap(struct drm_device *dev, struct nvbios *bios)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;

	/*
	 * The fp strap is normally dictated by the "User Strap" in
	 * PEXTDEV_BOOT_0[20:16], but on BMP cards when bit 2 of the
	 * Internal_Flags struct at 0x48 is set, the user strap gets overriden
	 * by the PCI subsystem ID during POST, but not before the previous user
	 * strap has been committed to CR58 for CR57=0xf on head A, which may be
	 * read and used instead
	 */

	if (bios->major_version < 5 && bios->data[0x48] & 0x4)
		return NVReadVgaCrtc5758(dev, 0, 0xf) & 0xf;

	if (dev_priv->card_type >= NV_50)
		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 24) & 0xf;
	else
		return (bios_rd32(bios, NV_PEXTDEV_BOOT_0) >> 16) & 0xf;
}

static int parse_fp_mode_table(struct drm_device *dev, struct nvbios *bios)
{
	uint8_t *fptable;
	uint8_t fptable_ver, headerlen = 0, recordlen, fpentries = 0xf, fpindex;
	int ret, ofs, fpstrapping;
	struct lvdstableheader lth;

	if (bios->fp.fptablepointer == 0x0) {
		/* Apple cards don't have the fp table; the laptops use DDC */
		/* The table is also missing on some x86 IGPs */
#ifndef __powerpc__
		NV_ERROR(dev, "Pointer to flat panel table invalid\n");
#endif
3399
		bios->digital_min_front_porch = 0x4b;
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
		return 0;
	}

	fptable = &bios->data[bios->fp.fptablepointer];
	fptable_ver = fptable[0];

	switch (fptable_ver) {
	/*
	 * BMP version 0x5.0x11 BIOSen have version 1 like tables, but no
	 * version field, and miss one of the spread spectrum/PWM bytes.
	 * This could affect early GF2Go parts (not seen any appropriate ROMs
	 * though). Here we assume that a version of 0x05 matches this case
	 * (combining with a BMP version check would be better), as the
	 * common case for the panel type field is 0x0005, and that is in
	 * fact what we are reading the first byte of.
	 */
	case 0x05:	/* some NV10, 11, 15, 16 */
		recordlen = 42;
		ofs = -1;
		break;
	case 0x10:	/* some NV15/16, and NV11+ */
		recordlen = 44;
		ofs = 0;
		break;
	case 0x20:	/* NV40+ */
		headerlen = fptable[1];
		recordlen = fptable[2];
		fpentries = fptable[3];
		/*
		 * fptable[4] is the minimum
		 * RAMDAC_FP_HCRTC -> RAMDAC_FP_HSYNC_START gap
		 */
3432
		bios->digital_min_front_porch = fptable[4];
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
		ofs = -7;
		break;
	default:
		NV_ERROR(dev,
			 "FP table revision %d.%d not currently supported\n",
			 fptable_ver >> 4, fptable_ver & 0xf);
		return -ENOSYS;
	}

	if (!bios->is_mobile) /* !mobile only needs digital_min_front_porch */
		return 0;

	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
	if (ret)
		return ret;

	if (lth.lvds_ver == 0x30 || lth.lvds_ver == 0x40) {
		bios->fp.fpxlatetableptr = bios->fp.lvdsmanufacturerpointer +
							lth.headerlen + 1;
		bios->fp.xlatwidth = lth.recordlen;
	}
	if (bios->fp.fpxlatetableptr == 0x0) {
		NV_ERROR(dev, "Pointer to flat panel xlat table invalid\n");
		return -EINVAL;
	}

	fpstrapping = get_fp_strap(dev, bios);

	fpindex = bios->data[bios->fp.fpxlatetableptr +
					fpstrapping * bios->fp.xlatwidth];

	if (fpindex > fpentries) {
		NV_ERROR(dev, "Bad flat panel table index\n");
		return -ENOENT;
	}

	/* nv4x cards need both a strap value and fpindex of 0xf to use DDC */
	if (lth.lvds_ver > 0x10)
3471
		bios->fp_no_ddc = fpstrapping != 0xf || fpindex != 0xf;
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494

	/*
	 * If either the strap or xlated fpindex value are 0xf there is no
	 * panel using a strap-derived bios mode present.  this condition
	 * includes, but is different from, the DDC panel indicator above
	 */
	if (fpstrapping == 0xf || fpindex == 0xf)
		return 0;

	bios->fp.mode_ptr = bios->fp.fptablepointer + headerlen +
			    recordlen * fpindex + ofs;

	NV_TRACE(dev, "BIOS FP mode: %dx%d (%dkHz pixel clock)\n",
		 ROM16(bios->data[bios->fp.mode_ptr + 11]) + 1,
		 ROM16(bios->data[bios->fp.mode_ptr + 25]) + 1,
		 ROM16(bios->data[bios->fp.mode_ptr + 7]) * 10);

	return 0;
}

bool nouveau_bios_fp_mode(struct drm_device *dev, struct drm_display_mode *mode)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
3495
	struct nvbios *bios = &dev_priv->vbios;
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
	uint8_t *mode_entry = &bios->data[bios->fp.mode_ptr];

	if (!mode)	/* just checking whether we can produce a mode */
		return bios->fp.mode_ptr;

	memset(mode, 0, sizeof(struct drm_display_mode));
	/*
	 * For version 1.0 (version in byte 0):
	 * bytes 1-2 are "panel type", including bits on whether Colour/mono,
	 * single/dual link, and type (TFT etc.)
	 * bytes 3-6 are bits per colour in RGBX
	 */
	mode->clock = ROM16(mode_entry[7]) * 10;
	/* bytes 9-10 is HActive */
	mode->hdisplay = ROM16(mode_entry[11]) + 1;
	/*
	 * bytes 13-14 is HValid Start
	 * bytes 15-16 is HValid End
	 */
	mode->hsync_start = ROM16(mode_entry[17]) + 1;
	mode->hsync_end = ROM16(mode_entry[19]) + 1;
	mode->htotal = ROM16(mode_entry[21]) + 1;
	/* bytes 23-24, 27-30 similarly, but vertical */
	mode->vdisplay = ROM16(mode_entry[25]) + 1;
	mode->vsync_start = ROM16(mode_entry[31]) + 1;
	mode->vsync_end = ROM16(mode_entry[33]) + 1;
	mode->vtotal = ROM16(mode_entry[35]) + 1;
	mode->flags |= (mode_entry[37] & 0x10) ?
			DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
	mode->flags |= (mode_entry[37] & 0x1) ?
			DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
	/*
	 * bytes 38-39 relate to spread spectrum settings
	 * bytes 40-43 are something to do with PWM
	 */

	mode->status = MODE_OK;
	mode->type = DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED;
	drm_mode_set_name(mode);
	return bios->fp.mode_ptr;
}

int nouveau_bios_parse_lvds_table(struct drm_device *dev, int pxclk, bool *dl, bool *if_is_24bit)
{
	/*
	 * The LVDS table header is (mostly) described in
	 * parse_lvds_manufacturer_table_header(): the BIT header additionally
	 * contains the dual-link transition pxclk (in 10s kHz), at byte 5 - if
	 * straps are not being used for the panel, this specifies the frequency
	 * at which modes should be set up in the dual link style.
	 *
	 * Following the header, the BMP (ver 0xa) table has several records,
D
Daniel Mack 已提交
3548
	 * indexed by a separate xlat table, indexed in turn by the fp strap in
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
	 * EXTDEV_BOOT. Each record had a config byte, followed by 6 script
	 * numbers for use by INIT_SUB which controlled panel init and power,
	 * and finally a dword of ms to sleep between power off and on
	 * operations.
	 *
	 * In the BIT versions, the table following the header serves as an
	 * integrated config and xlat table: the records in the table are
	 * indexed by the FP strap nibble in EXTDEV_BOOT, and each record has
	 * two bytes - the first as a config byte, the second for indexing the
	 * fp mode table pointed to by the BIT 'D' table
	 *
	 * DDC is not used until after card init, so selecting the correct table
	 * entry and setting the dual link flag for EDID equipped panels,
	 * requiring tests against the native-mode pixel clock, cannot be done
	 * until later, when this function should be called with non-zero pxclk
	 */
	struct drm_nouveau_private *dev_priv = dev->dev_private;
3566
	struct nvbios *bios = &dev_priv->vbios;
3567 3568 3569
	int fpstrapping = get_fp_strap(dev, bios), lvdsmanufacturerindex = 0;
	struct lvdstableheader lth;
	uint16_t lvdsofs;
3570
	int ret, chip_version = bios->chip_version;
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685

	ret = parse_lvds_manufacturer_table_header(dev, bios, &lth);
	if (ret)
		return ret;

	switch (lth.lvds_ver) {
	case 0x0a:	/* pre NV40 */
		lvdsmanufacturerindex = bios->data[
					bios->fp.fpxlatemanufacturertableptr +
					fpstrapping];

		/* we're done if this isn't the EDID panel case */
		if (!pxclk)
			break;

		if (chip_version < 0x25) {
			/* nv17 behaviour
			 *
			 * It seems the old style lvds script pointer is reused
			 * to select 18/24 bit colour depth for EDID panels.
			 */
			lvdsmanufacturerindex =
				(bios->legacy.lvds_single_a_script_ptr & 1) ?
									2 : 0;
			if (pxclk >= bios->fp.duallink_transition_clk)
				lvdsmanufacturerindex++;
		} else if (chip_version < 0x30) {
			/* nv28 behaviour (off-chip encoder)
			 *
			 * nv28 does a complex dance of first using byte 121 of
			 * the EDID to choose the lvdsmanufacturerindex, then
			 * later attempting to match the EDID manufacturer and
			 * product IDs in a table (signature 'pidt' (panel id
			 * table?)), setting an lvdsmanufacturerindex of 0 and
			 * an fp strap of the match index (or 0xf if none)
			 */
			lvdsmanufacturerindex = 0;
		} else {
			/* nv31, nv34 behaviour */
			lvdsmanufacturerindex = 0;
			if (pxclk >= bios->fp.duallink_transition_clk)
				lvdsmanufacturerindex = 2;
			if (pxclk >= 140000)
				lvdsmanufacturerindex = 3;
		}

		/*
		 * nvidia set the high nibble of (cr57=f, cr58) to
		 * lvdsmanufacturerindex in this case; we don't
		 */
		break;
	case 0x30:	/* NV4x */
	case 0x40:	/* G80/G90 */
		lvdsmanufacturerindex = fpstrapping;
		break;
	default:
		NV_ERROR(dev, "LVDS table revision not currently supported\n");
		return -ENOSYS;
	}

	lvdsofs = bios->fp.xlated_entry = bios->fp.lvdsmanufacturerpointer + lth.headerlen + lth.recordlen * lvdsmanufacturerindex;
	switch (lth.lvds_ver) {
	case 0x0a:
		bios->fp.power_off_for_reset = bios->data[lvdsofs] & 1;
		bios->fp.reset_after_pclk_change = bios->data[lvdsofs] & 2;
		bios->fp.dual_link = bios->data[lvdsofs] & 4;
		bios->fp.link_c_increment = bios->data[lvdsofs] & 8;
		*if_is_24bit = bios->data[lvdsofs] & 16;
		break;
	case 0x30:
		/*
		 * My money would be on there being a 24 bit interface bit in
		 * this table, but I have no example of a laptop bios with a
		 * 24 bit panel to confirm that. Hence we shout loudly if any
		 * bit other than bit 0 is set (I've not even seen bit 1)
		 */
		if (bios->data[lvdsofs] > 1)
			NV_ERROR(dev,
				 "You have a very unusual laptop display; please report it\n");
		/*
		 * No sign of the "power off for reset" or "reset for panel
		 * on" bits, but it's safer to assume we should
		 */
		bios->fp.power_off_for_reset = true;
		bios->fp.reset_after_pclk_change = true;
		/*
		 * It's ok lvdsofs is wrong for nv4x edid case; dual_link is
		 * over-written, and BITbit1 isn't used
		 */
		bios->fp.dual_link = bios->data[lvdsofs] & 1;
		bios->fp.BITbit1 = bios->data[lvdsofs] & 2;
		bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10;
		break;
	case 0x40:
		bios->fp.dual_link = bios->data[lvdsofs] & 1;
		bios->fp.if_is_24bit = bios->data[lvdsofs] & 2;
		bios->fp.strapless_is_24bit = bios->data[bios->fp.lvdsmanufacturerpointer + 4];
		bios->fp.duallink_transition_clk = ROM16(bios->data[bios->fp.lvdsmanufacturerpointer + 5]) * 10;
		break;
	}

	/* set dual_link flag for EDID case */
	if (pxclk && (chip_version < 0x25 || chip_version > 0x28))
		bios->fp.dual_link = (pxclk >= bios->fp.duallink_transition_clk);

	*dl = bios->fp.dual_link;

	return 0;
}

static uint8_t *
bios_output_config_match(struct drm_device *dev, struct dcb_entry *dcbent,
			 uint16_t record, int record_len, int record_nr)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
3686
	struct nvbios *bios = &dev_priv->vbios;
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
	uint32_t entry;
	uint16_t table;
	int i, v;

	for (i = 0; i < record_nr; i++, record += record_len) {
		table = ROM16(bios->data[record]);
		if (!table)
			continue;
		entry = ROM32(bios->data[table]);

		v = (entry & 0x000f0000) >> 16;
		if (!(v & dcbent->or))
			continue;

		v = (entry & 0x000000f0) >> 4;
		if (v != dcbent->location)
			continue;

		v = (entry & 0x0000000f);
		if (v != dcbent->type)
			continue;

		return &bios->data[table];
	}

	return NULL;
}

void *
nouveau_bios_dp_table(struct drm_device *dev, struct dcb_entry *dcbent,
		      int *length)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
3720
	struct nvbios *bios = &dev_priv->vbios;
3721 3722 3723 3724 3725 3726 3727 3728
	uint8_t *table;

	if (!bios->display.dp_table_ptr) {
		NV_ERROR(dev, "No pointer to DisplayPort table\n");
		return NULL;
	}
	table = &bios->data[bios->display.dp_table_ptr];

3729
	if (table[0] != 0x20 && table[0] != 0x21) {
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
		NV_ERROR(dev, "DisplayPort table version 0x%02x unknown\n",
			 table[0]);
		return NULL;
	}

	*length = table[4];
	return bios_output_config_match(dev, dcbent,
					bios->display.dp_table_ptr + table[1],
					table[2], table[3]);
}

int
nouveau_bios_run_display_table(struct drm_device *dev, struct dcb_entry *dcbent,
			       uint32_t sub, int pxclk)
{
	/*
	 * The display script table is located by the BIT 'U' table.
	 *
	 * It contains an array of pointers to various tables describing
	 * a particular output type.  The first 32-bits of the output
	 * tables contains similar information to a DCB entry, and is
	 * used to decide whether that particular table is suitable for
	 * the output you want to access.
	 *
	 * The "record header length" field here seems to indicate the
	 * offset of the first configuration entry in the output tables.
	 * This is 10 on most cards I've seen, but 12 has been witnessed
	 * on DP cards, and there's another script pointer within the
	 * header.
	 *
	 * offset + 0   ( 8 bits): version
	 * offset + 1   ( 8 bits): header length
	 * offset + 2   ( 8 bits): record length
	 * offset + 3   ( 8 bits): number of records
	 * offset + 4   ( 8 bits): record header length
	 * offset + 5   (16 bits): pointer to first output script table
	 */

	struct drm_nouveau_private *dev_priv = dev->dev_private;
3769
	struct nvbios *bios = &dev_priv->vbios;
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
	uint8_t *table = &bios->data[bios->display.script_table_ptr];
	uint8_t *otable = NULL;
	uint16_t script;
	int i = 0;

	if (!bios->display.script_table_ptr) {
		NV_ERROR(dev, "No pointer to output script table\n");
		return 1;
	}

	/*
	 * Nothing useful has been in any of the pre-2.0 tables I've seen,
	 * so until they are, we really don't need to care.
	 */
	if (table[0] < 0x20)
		return 1;

	if (table[0] != 0x20 && table[0] != 0x21) {
		NV_ERROR(dev, "Output script table version 0x%02x unknown\n",
			 table[0]);
		return 1;
	}

	/*
	 * The output script tables describing a particular output type
	 * look as follows:
	 *
	 * offset + 0   (32 bits): output this table matches (hash of DCB)
	 * offset + 4   ( 8 bits): unknown
	 * offset + 5   ( 8 bits): number of configurations
	 * offset + 6   (16 bits): pointer to some script
	 * offset + 8   (16 bits): pointer to some script
	 *
	 * headerlen == 10
	 * offset + 10           : configuration 0
	 *
	 * headerlen == 12
	 * offset + 10           : pointer to some script
	 * offset + 12           : configuration 0
	 *
	 * Each config entry is as follows:
	 *
	 * offset + 0   (16 bits): unknown, assumed to be a match value
	 * offset + 2   (16 bits): pointer to script table (clock set?)
	 * offset + 4   (16 bits): pointer to script table (reset?)
	 *
	 * There doesn't appear to be a count value to say how many
	 * entries exist in each script table, instead, a 0 value in
	 * the first 16-bit word seems to indicate both the end of the
	 * list and the default entry.  The second 16-bit word in the
	 * script tables is a pointer to the script to execute.
	 */

3823
	NV_DEBUG_KMS(dev, "Searching for output entry for %d %d %d\n",
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
			dcbent->type, dcbent->location, dcbent->or);
	otable = bios_output_config_match(dev, dcbent, table[1] +
					  bios->display.script_table_ptr,
					  table[2], table[3]);
	if (!otable) {
		NV_ERROR(dev, "Couldn't find matching output script table\n");
		return 1;
	}

	if (pxclk < -2 || pxclk > 0) {
		/* Try to find matching script table entry */
		for (i = 0; i < otable[5]; i++) {
			if (ROM16(otable[table[4] + i*6]) == sub)
				break;
		}

		if (i == otable[5]) {
			NV_ERROR(dev, "Table 0x%04x not found for %d/%d, "
				      "using first\n",
				 sub, dcbent->type, dcbent->or);
			i = 0;
		}
	}

	if (pxclk == 0) {
		script = ROM16(otable[6]);
		if (!script) {
3851
			NV_DEBUG_KMS(dev, "output script 0 not found\n");
3852 3853 3854 3855
			return 1;
		}

		NV_TRACE(dev, "0x%04X: parsing output script 0\n", script);
3856
		nouveau_bios_run_init_table(dev, script, dcbent);
3857 3858 3859 3860
	} else
	if (pxclk == -1) {
		script = ROM16(otable[8]);
		if (!script) {
3861
			NV_DEBUG_KMS(dev, "output script 1 not found\n");
3862 3863 3864 3865
			return 1;
		}

		NV_TRACE(dev, "0x%04X: parsing output script 1\n", script);
3866
		nouveau_bios_run_init_table(dev, script, dcbent);
3867 3868 3869 3870 3871 3872 3873
	} else
	if (pxclk == -2) {
		if (table[4] >= 12)
			script = ROM16(otable[10]);
		else
			script = 0;
		if (!script) {
3874
			NV_DEBUG_KMS(dev, "output script 2 not found\n");
3875 3876 3877 3878
			return 1;
		}

		NV_TRACE(dev, "0x%04X: parsing output script 2\n", script);
3879
		nouveau_bios_run_init_table(dev, script, dcbent);
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
	} else
	if (pxclk > 0) {
		script = ROM16(otable[table[4] + i*6 + 2]);
		if (script)
			script = clkcmptable(bios, script, pxclk);
		if (!script) {
			NV_ERROR(dev, "clock script 0 not found\n");
			return 1;
		}

		NV_TRACE(dev, "0x%04X: parsing clock script 0\n", script);
3891
		nouveau_bios_run_init_table(dev, script, dcbent);
3892 3893 3894 3895 3896 3897
	} else
	if (pxclk < 0) {
		script = ROM16(otable[table[4] + i*6 + 4]);
		if (script)
			script = clkcmptable(bios, script, -pxclk);
		if (!script) {
3898
			NV_DEBUG_KMS(dev, "clock script 1 not found\n");
3899 3900 3901 3902
			return 1;
		}

		NV_TRACE(dev, "0x%04X: parsing clock script 1\n", script);
3903
		nouveau_bios_run_init_table(dev, script, dcbent);
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
	}

	return 0;
}


int run_tmds_table(struct drm_device *dev, struct dcb_entry *dcbent, int head, int pxclk)
{
	/*
	 * the pxclk parameter is in kHz
	 *
	 * This runs the TMDS regs setting code found on BIT bios cards
	 *
	 * For ffs(or) == 1 use the first table, for ffs(or) == 2 and
	 * ffs(or) == 3, use the second.
	 */

	struct drm_nouveau_private *dev_priv = dev->dev_private;
3922 3923
	struct nvbios *bios = &dev_priv->vbios;
	int cv = bios->chip_version;
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
	uint16_t clktable = 0, scriptptr;
	uint32_t sel_clk_binding, sel_clk;

	/* pre-nv17 off-chip tmds uses scripts, post nv17 doesn't */
	if (cv >= 0x17 && cv != 0x1a && cv != 0x20 &&
	    dcbent->location != DCB_LOC_ON_CHIP)
		return 0;

	switch (ffs(dcbent->or)) {
	case 1:
		clktable = bios->tmds.output0_script_ptr;
		break;
	case 2:
	case 3:
		clktable = bios->tmds.output1_script_ptr;
		break;
	}

	if (!clktable) {
		NV_ERROR(dev, "Pixel clock comparison table not found\n");
		return -EINVAL;
	}

	scriptptr = clkcmptable(bios, clktable, pxclk);

	if (!scriptptr) {
		NV_ERROR(dev, "TMDS output init script not found\n");
		return -ENOENT;
	}

	/* don't let script change pll->head binding */
	sel_clk_binding = bios_rd32(bios, NV_PRAMDAC_SEL_CLK) & 0x50000;
	run_digital_op_script(dev, scriptptr, dcbent, head, pxclk >= 165000);
	sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK) & ~0x50000;
	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, sel_clk | sel_clk_binding);

	return 0;
}

int get_pll_limits(struct drm_device *dev, uint32_t limit_match, struct pll_lims *pll_lim)
{
	/*
	 * PLL limits table
	 *
	 * Version 0x10: NV30, NV31
	 * One byte header (version), one record of 24 bytes
	 * Version 0x11: NV36 - Not implemented
	 * Seems to have same record style as 0x10, but 3 records rather than 1
	 * Version 0x20: Found on Geforce 6 cards
	 * Trivial 4 byte BIT header. 31 (0x1f) byte record length
	 * Version 0x21: Found on Geforce 7, 8 and some Geforce 6 cards
	 * 5 byte header, fifth byte of unknown purpose. 35 (0x23) byte record
	 * length in general, some (integrated) have an extra configuration byte
	 * Version 0x30: Found on Geforce 8, separates the register mapping
	 * from the limits tables.
	 */

	struct drm_nouveau_private *dev_priv = dev->dev_private;
3982 3983
	struct nvbios *bios = &dev_priv->vbios;
	int cv = bios->chip_version, pllindex = 0;
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
	uint8_t pll_lim_ver = 0, headerlen = 0, recordlen = 0, entries = 0;
	uint32_t crystal_strap_mask, crystal_straps;

	if (!bios->pll_limit_tbl_ptr) {
		if (cv == 0x30 || cv == 0x31 || cv == 0x35 || cv == 0x36 ||
		    cv >= 0x40) {
			NV_ERROR(dev, "Pointer to PLL limits table invalid\n");
			return -EINVAL;
		}
	} else
		pll_lim_ver = bios->data[bios->pll_limit_tbl_ptr];

	crystal_strap_mask = 1 << 6;
	/* open coded dev->twoHeads test */
	if (cv > 0x10 && cv != 0x15 && cv != 0x1a && cv != 0x20)
		crystal_strap_mask |= 1 << 22;
	crystal_straps = nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) &
							crystal_strap_mask;

	switch (pll_lim_ver) {
	/*
	 * We use version 0 to indicate a pre limit table bios (single stage
	 * pll) and load the hard coded limits instead.
	 */
	case 0:
		break;
	case 0x10:
	case 0x11:
		/*
		 * Strictly v0x11 has 3 entries, but the last two don't seem
		 * to get used.
		 */
		headerlen = 1;
		recordlen = 0x18;
		entries = 1;
		pllindex = 0;
		break;
	case 0x20:
	case 0x21:
	case 0x30:
	case 0x40:
		headerlen = bios->data[bios->pll_limit_tbl_ptr + 1];
		recordlen = bios->data[bios->pll_limit_tbl_ptr + 2];
		entries = bios->data[bios->pll_limit_tbl_ptr + 3];
		break;
	default:
		NV_ERROR(dev, "PLL limits table revision 0x%X not currently "
				"supported\n", pll_lim_ver);
		return -ENOSYS;
	}

	/* initialize all members to zero */
	memset(pll_lim, 0, sizeof(struct pll_lims));

	if (pll_lim_ver == 0x10 || pll_lim_ver == 0x11) {
		uint8_t *pll_rec = &bios->data[bios->pll_limit_tbl_ptr + headerlen + recordlen * pllindex];

		pll_lim->vco1.minfreq = ROM32(pll_rec[0]);
		pll_lim->vco1.maxfreq = ROM32(pll_rec[4]);
		pll_lim->vco2.minfreq = ROM32(pll_rec[8]);
		pll_lim->vco2.maxfreq = ROM32(pll_rec[12]);
		pll_lim->vco1.min_inputfreq = ROM32(pll_rec[16]);
		pll_lim->vco2.min_inputfreq = ROM32(pll_rec[20]);
		pll_lim->vco1.max_inputfreq = pll_lim->vco2.max_inputfreq = INT_MAX;

		/* these values taken from nv30/31/36 */
		pll_lim->vco1.min_n = 0x1;
		if (cv == 0x36)
			pll_lim->vco1.min_n = 0x5;
		pll_lim->vco1.max_n = 0xff;
		pll_lim->vco1.min_m = 0x1;
		pll_lim->vco1.max_m = 0xd;
		pll_lim->vco2.min_n = 0x4;
		/*
		 * On nv30, 31, 36 (i.e. all cards with two stage PLLs with this
		 * table version (apart from nv35)), N2 is compared to
		 * maxN2 (0x46) and 10 * maxM2 (0x4), so set maxN2 to 0x28 and
		 * save a comparison
		 */
		pll_lim->vco2.max_n = 0x28;
		if (cv == 0x30 || cv == 0x35)
			/* only 5 bits available for N2 on nv30/35 */
			pll_lim->vco2.max_n = 0x1f;
		pll_lim->vco2.min_m = 0x1;
		pll_lim->vco2.max_m = 0x4;
		pll_lim->max_log2p = 0x7;
		pll_lim->max_usable_log2p = 0x6;
	} else if (pll_lim_ver == 0x20 || pll_lim_ver == 0x21) {
		uint16_t plloffs = bios->pll_limit_tbl_ptr + headerlen;
		uint32_t reg = 0; /* default match */
		uint8_t *pll_rec;
		int i;

		/*
		 * First entry is default match, if nothing better. warn if
		 * reg field nonzero
		 */
		if (ROM32(bios->data[plloffs]))
			NV_WARN(dev, "Default PLL limit entry has non-zero "
				       "register field\n");

		if (limit_match > MAX_PLL_TYPES)
			/* we've been passed a reg as the match */
			reg = limit_match;
		else /* limit match is a pll type */
			for (i = 1; i < entries && !reg; i++) {
				uint32_t cmpreg = ROM32(bios->data[plloffs + recordlen * i]);

				if (limit_match == NVPLL &&
				    (cmpreg == NV_PRAMDAC_NVPLL_COEFF || cmpreg == 0x4000))
					reg = cmpreg;
				if (limit_match == MPLL &&
				    (cmpreg == NV_PRAMDAC_MPLL_COEFF || cmpreg == 0x4020))
					reg = cmpreg;
				if (limit_match == VPLL1 &&
				    (cmpreg == NV_PRAMDAC_VPLL_COEFF || cmpreg == 0x4010))
					reg = cmpreg;
				if (limit_match == VPLL2 &&
				    (cmpreg == NV_RAMDAC_VPLL2 || cmpreg == 0x4018))
					reg = cmpreg;
			}

		for (i = 1; i < entries; i++)
			if (ROM32(bios->data[plloffs + recordlen * i]) == reg) {
				pllindex = i;
				break;
			}

		pll_rec = &bios->data[plloffs + recordlen * pllindex];

		BIOSLOG(bios, "Loading PLL limits for reg 0x%08x\n",
			pllindex ? reg : 0);

		/*
		 * Frequencies are stored in tables in MHz, kHz are more
		 * useful, so we convert.
		 */

		/* What output frequencies can each VCO generate? */
		pll_lim->vco1.minfreq = ROM16(pll_rec[4]) * 1000;
		pll_lim->vco1.maxfreq = ROM16(pll_rec[6]) * 1000;
		pll_lim->vco2.minfreq = ROM16(pll_rec[8]) * 1000;
		pll_lim->vco2.maxfreq = ROM16(pll_rec[10]) * 1000;

		/* What input frequencies they accept (past the m-divider)? */
		pll_lim->vco1.min_inputfreq = ROM16(pll_rec[12]) * 1000;
		pll_lim->vco2.min_inputfreq = ROM16(pll_rec[14]) * 1000;
		pll_lim->vco1.max_inputfreq = ROM16(pll_rec[16]) * 1000;
		pll_lim->vco2.max_inputfreq = ROM16(pll_rec[18]) * 1000;

		/* What values are accepted as multiplier and divider? */
		pll_lim->vco1.min_n = pll_rec[20];
		pll_lim->vco1.max_n = pll_rec[21];
		pll_lim->vco1.min_m = pll_rec[22];
		pll_lim->vco1.max_m = pll_rec[23];
		pll_lim->vco2.min_n = pll_rec[24];
		pll_lim->vco2.max_n = pll_rec[25];
		pll_lim->vco2.min_m = pll_rec[26];
		pll_lim->vco2.max_m = pll_rec[27];

		pll_lim->max_usable_log2p = pll_lim->max_log2p = pll_rec[29];
		if (pll_lim->max_log2p > 0x7)
			/* pll decoding in nv_hw.c assumes never > 7 */
			NV_WARN(dev, "Max log2 P value greater than 7 (%d)\n",
				pll_lim->max_log2p);
		if (cv < 0x60)
			pll_lim->max_usable_log2p = 0x6;
		pll_lim->log2p_bias = pll_rec[30];

		if (recordlen > 0x22)
			pll_lim->refclk = ROM32(pll_rec[31]);

		if (recordlen > 0x23 && pll_rec[35])
			NV_WARN(dev,
				"Bits set in PLL configuration byte (%x)\n",
				pll_rec[35]);

		/* C51 special not seen elsewhere */
		if (cv == 0x51 && !pll_lim->refclk) {
			uint32_t sel_clk = bios_rd32(bios, NV_PRAMDAC_SEL_CLK);

			if (((limit_match == NV_PRAMDAC_VPLL_COEFF || limit_match == VPLL1) && sel_clk & 0x20) ||
			    ((limit_match == NV_RAMDAC_VPLL2 || limit_match == VPLL2) && sel_clk & 0x80)) {
				if (bios_idxprt_rd(bios, NV_CIO_CRX__COLOR, NV_CIO_CRE_CHIP_ID_INDEX) < 0xa3)
					pll_lim->refclk = 200000;
				else
					pll_lim->refclk = 25000;
			}
		}
	} else if (pll_lim_ver == 0x30) { /* ver 0x30 */
		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
		uint8_t *record = NULL;
		int i;

		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
			limit_match);

		for (i = 0; i < entries; i++, entry += recordlen) {
			if (ROM32(entry[3]) == limit_match) {
				record = &bios->data[ROM16(entry[1])];
				break;
			}
		}

		if (!record) {
			NV_ERROR(dev, "Register 0x%08x not found in PLL "
				 "limits table", limit_match);
			return -ENOENT;
		}

		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
		pll_lim->vco2.minfreq = ROM16(record[4]) * 1000;
		pll_lim->vco2.maxfreq = ROM16(record[6]) * 1000;
		pll_lim->vco1.min_inputfreq = ROM16(record[8]) * 1000;
		pll_lim->vco2.min_inputfreq = ROM16(record[10]) * 1000;
		pll_lim->vco1.max_inputfreq = ROM16(record[12]) * 1000;
		pll_lim->vco2.max_inputfreq = ROM16(record[14]) * 1000;
		pll_lim->vco1.min_n = record[16];
		pll_lim->vco1.max_n = record[17];
		pll_lim->vco1.min_m = record[18];
		pll_lim->vco1.max_m = record[19];
		pll_lim->vco2.min_n = record[20];
		pll_lim->vco2.max_n = record[21];
		pll_lim->vco2.min_m = record[22];
		pll_lim->vco2.max_m = record[23];
		pll_lim->max_usable_log2p = pll_lim->max_log2p = record[25];
		pll_lim->log2p_bias = record[27];
		pll_lim->refclk = ROM32(record[28]);
	} else if (pll_lim_ver) { /* ver 0x40 */
		uint8_t *entry = &bios->data[bios->pll_limit_tbl_ptr + headerlen];
		uint8_t *record = NULL;
		int i;

		BIOSLOG(bios, "Loading PLL limits for register 0x%08x\n",
			limit_match);

		for (i = 0; i < entries; i++, entry += recordlen) {
			if (ROM32(entry[3]) == limit_match) {
				record = &bios->data[ROM16(entry[1])];
				break;
			}
		}

		if (!record) {
			NV_ERROR(dev, "Register 0x%08x not found in PLL "
				 "limits table", limit_match);
			return -ENOENT;
		}

		pll_lim->vco1.minfreq = ROM16(record[0]) * 1000;
		pll_lim->vco1.maxfreq = ROM16(record[2]) * 1000;
		pll_lim->vco1.min_inputfreq = ROM16(record[4]) * 1000;
		pll_lim->vco1.max_inputfreq = ROM16(record[6]) * 1000;
		pll_lim->vco1.min_m = record[8];
		pll_lim->vco1.max_m = record[9];
		pll_lim->vco1.min_n = record[10];
		pll_lim->vco1.max_n = record[11];
		pll_lim->min_p = record[12];
		pll_lim->max_p = record[13];
		/* where did this go to?? */
		if (limit_match == 0x00614100 || limit_match == 0x00614900)
			pll_lim->refclk = 27000;
		else
			pll_lim->refclk = 100000;
	}

	/*
	 * By now any valid limit table ought to have set a max frequency for
	 * vco1, so if it's zero it's either a pre limit table bios, or one
	 * with an empty limit table (seen on nv18)
	 */
	if (!pll_lim->vco1.maxfreq) {
		pll_lim->vco1.minfreq = bios->fminvco;
		pll_lim->vco1.maxfreq = bios->fmaxvco;
		pll_lim->vco1.min_inputfreq = 0;
		pll_lim->vco1.max_inputfreq = INT_MAX;
		pll_lim->vco1.min_n = 0x1;
		pll_lim->vco1.max_n = 0xff;
		pll_lim->vco1.min_m = 0x1;
		if (crystal_straps == 0) {
			/* nv05 does this, nv11 doesn't, nv10 unknown */
			if (cv < 0x11)
				pll_lim->vco1.min_m = 0x7;
			pll_lim->vco1.max_m = 0xd;
		} else {
			if (cv < 0x11)
				pll_lim->vco1.min_m = 0x8;
			pll_lim->vco1.max_m = 0xe;
		}
		if (cv < 0x17 || cv == 0x1a || cv == 0x20)
			pll_lim->max_log2p = 4;
		else
			pll_lim->max_log2p = 5;
		pll_lim->max_usable_log2p = pll_lim->max_log2p;
	}

	if (!pll_lim->refclk)
		switch (crystal_straps) {
		case 0:
			pll_lim->refclk = 13500;
			break;
		case (1 << 6):
			pll_lim->refclk = 14318;
			break;
		case (1 << 22):
			pll_lim->refclk = 27000;
			break;
		case (1 << 22 | 1 << 6):
			pll_lim->refclk = 25000;
			break;
		}

#if 0 /* for easy debugging */
	ErrorF("pll.vco1.minfreq: %d\n", pll_lim->vco1.minfreq);
	ErrorF("pll.vco1.maxfreq: %d\n", pll_lim->vco1.maxfreq);
	ErrorF("pll.vco2.minfreq: %d\n", pll_lim->vco2.minfreq);
	ErrorF("pll.vco2.maxfreq: %d\n", pll_lim->vco2.maxfreq);

	ErrorF("pll.vco1.min_inputfreq: %d\n", pll_lim->vco1.min_inputfreq);
	ErrorF("pll.vco1.max_inputfreq: %d\n", pll_lim->vco1.max_inputfreq);
	ErrorF("pll.vco2.min_inputfreq: %d\n", pll_lim->vco2.min_inputfreq);
	ErrorF("pll.vco2.max_inputfreq: %d\n", pll_lim->vco2.max_inputfreq);

	ErrorF("pll.vco1.min_n: %d\n", pll_lim->vco1.min_n);
	ErrorF("pll.vco1.max_n: %d\n", pll_lim->vco1.max_n);
	ErrorF("pll.vco1.min_m: %d\n", pll_lim->vco1.min_m);
	ErrorF("pll.vco1.max_m: %d\n", pll_lim->vco1.max_m);
	ErrorF("pll.vco2.min_n: %d\n", pll_lim->vco2.min_n);
	ErrorF("pll.vco2.max_n: %d\n", pll_lim->vco2.max_n);
	ErrorF("pll.vco2.min_m: %d\n", pll_lim->vco2.min_m);
	ErrorF("pll.vco2.max_m: %d\n", pll_lim->vco2.max_m);

	ErrorF("pll.max_log2p: %d\n", pll_lim->max_log2p);
	ErrorF("pll.log2p_bias: %d\n", pll_lim->log2p_bias);

	ErrorF("pll.refclk: %d\n", pll_lim->refclk);
#endif

	return 0;
}

static void parse_bios_version(struct drm_device *dev, struct nvbios *bios, uint16_t offset)
{
	/*
	 * offset + 0  (8 bits): Micro version
	 * offset + 1  (8 bits): Minor version
	 * offset + 2  (8 bits): Chip version
	 * offset + 3  (8 bits): Major version
	 */

	bios->major_version = bios->data[offset + 3];
4336
	bios->chip_version = bios->data[offset + 2];
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
	NV_TRACE(dev, "Bios version %02x.%02x.%02x.%02x\n",
		 bios->data[offset + 3], bios->data[offset + 2],
		 bios->data[offset + 1], bios->data[offset]);
}

static void parse_script_table_pointers(struct nvbios *bios, uint16_t offset)
{
	/*
	 * Parses the init table segment for pointers used in script execution.
	 *
	 * offset + 0  (16 bits): init script tables pointer
	 * offset + 2  (16 bits): macro index table pointer
	 * offset + 4  (16 bits): macro table pointer
	 * offset + 6  (16 bits): condition table pointer
	 * offset + 8  (16 bits): io condition table pointer
	 * offset + 10 (16 bits): io flag condition table pointer
	 * offset + 12 (16 bits): init function table pointer
	 */

	bios->init_script_tbls_ptr = ROM16(bios->data[offset]);
	bios->macro_index_tbl_ptr = ROM16(bios->data[offset + 2]);
	bios->macro_tbl_ptr = ROM16(bios->data[offset + 4]);
	bios->condition_tbl_ptr = ROM16(bios->data[offset + 6]);
	bios->io_condition_tbl_ptr = ROM16(bios->data[offset + 8]);
	bios->io_flag_condition_tbl_ptr = ROM16(bios->data[offset + 10]);
	bios->init_function_tbl_ptr = ROM16(bios->data[offset + 12]);
}

static int parse_bit_A_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * Parses the load detect values for g80 cards.
	 *
	 * offset + 0 (16 bits): loadval table pointer
	 */

	uint16_t load_table_ptr;
	uint8_t version, headerlen, entrylen, num_entries;

	if (bitentry->length != 3) {
		NV_ERROR(dev, "Do not understand BIT A table\n");
		return -EINVAL;
	}

	load_table_ptr = ROM16(bios->data[bitentry->offset]);

	if (load_table_ptr == 0x0) {
		NV_ERROR(dev, "Pointer to BIT loadval table invalid\n");
		return -EINVAL;
	}

	version = bios->data[load_table_ptr];

	if (version != 0x10) {
		NV_ERROR(dev, "BIT loadval table version %d.%d not supported\n",
			 version >> 4, version & 0xF);
		return -ENOSYS;
	}

	headerlen = bios->data[load_table_ptr + 1];
	entrylen = bios->data[load_table_ptr + 2];
	num_entries = bios->data[load_table_ptr + 3];

	if (headerlen != 4 || entrylen != 4 || num_entries != 2) {
		NV_ERROR(dev, "Do not understand BIT loadval table\n");
		return -EINVAL;
	}

	/* First entry is normal dac, 2nd tv-out perhaps? */
4406
	bios->dactestval = ROM32(bios->data[load_table_ptr + headerlen]) & 0x3ff;
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529

	return 0;
}

static int parse_bit_C_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * offset + 8  (16 bits): PLL limits table pointer
	 *
	 * There's more in here, but that's unknown.
	 */

	if (bitentry->length < 10) {
		NV_ERROR(dev, "Do not understand BIT C table\n");
		return -EINVAL;
	}

	bios->pll_limit_tbl_ptr = ROM16(bios->data[bitentry->offset + 8]);

	return 0;
}

static int parse_bit_display_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * Parses the flat panel table segment that the bit entry points to.
	 * Starting at bitentry->offset:
	 *
	 * offset + 0  (16 bits): ??? table pointer - seems to have 18 byte
	 * records beginning with a freq.
	 * offset + 2  (16 bits): mode table pointer
	 */

	if (bitentry->length != 4) {
		NV_ERROR(dev, "Do not understand BIT display table\n");
		return -EINVAL;
	}

	bios->fp.fptablepointer = ROM16(bios->data[bitentry->offset + 2]);

	return 0;
}

static int parse_bit_init_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * Parses the init table segment that the bit entry points to.
	 *
	 * See parse_script_table_pointers for layout
	 */

	if (bitentry->length < 14) {
		NV_ERROR(dev, "Do not understand init table\n");
		return -EINVAL;
	}

	parse_script_table_pointers(bios, bitentry->offset);

	if (bitentry->length >= 16)
		bios->some_script_ptr = ROM16(bios->data[bitentry->offset + 14]);
	if (bitentry->length >= 18)
		bios->init96_tbl_ptr = ROM16(bios->data[bitentry->offset + 16]);

	return 0;
}

static int parse_bit_i_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * BIT 'i' (info?) table
	 *
	 * offset + 0  (32 bits): BIOS version dword (as in B table)
	 * offset + 5  (8  bits): BIOS feature byte (same as for BMP?)
	 * offset + 13 (16 bits): pointer to table containing DAC load
	 * detection comparison values
	 *
	 * There's other things in the table, purpose unknown
	 */

	uint16_t daccmpoffset;
	uint8_t dacver, dacheaderlen;

	if (bitentry->length < 6) {
		NV_ERROR(dev, "BIT i table too short for needed information\n");
		return -EINVAL;
	}

	parse_bios_version(dev, bios, bitentry->offset);

	/*
	 * bit 4 seems to indicate a mobile bios (doesn't suffer from BMP's
	 * Quadro identity crisis), other bits possibly as for BMP feature byte
	 */
	bios->feature_byte = bios->data[bitentry->offset + 5];
	bios->is_mobile = bios->feature_byte & FEATURE_MOBILE;

	if (bitentry->length < 15) {
		NV_WARN(dev, "BIT i table not long enough for DAC load "
			       "detection comparison table\n");
		return -EINVAL;
	}

	daccmpoffset = ROM16(bios->data[bitentry->offset + 13]);

	/* doesn't exist on g80 */
	if (!daccmpoffset)
		return 0;

	/*
	 * The first value in the table, following the header, is the
	 * comparison value, the second entry is a comparison value for
	 * TV load detection.
	 */

	dacver = bios->data[daccmpoffset];
	dacheaderlen = bios->data[daccmpoffset + 1];

	if (dacver != 0x00 && dacver != 0x10) {
		NV_WARN(dev, "DAC load detection comparison table version "
			       "%d.%d not known\n", dacver >> 4, dacver & 0xf);
		return -ENOSYS;
	}

4530 4531
	bios->dactestval = ROM32(bios->data[daccmpoffset + dacheaderlen]);
	bios->tvdactestval = ROM32(bios->data[daccmpoffset + dacheaderlen + 4]);
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580

	return 0;
}

static int parse_bit_lvds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * Parses the LVDS table segment that the bit entry points to.
	 * Starting at bitentry->offset:
	 *
	 * offset + 0  (16 bits): LVDS strap xlate table pointer
	 */

	if (bitentry->length != 2) {
		NV_ERROR(dev, "Do not understand BIT LVDS table\n");
		return -EINVAL;
	}

	/*
	 * No idea if it's still called the LVDS manufacturer table, but
	 * the concept's close enough.
	 */
	bios->fp.lvdsmanufacturerpointer = ROM16(bios->data[bitentry->offset]);

	return 0;
}

static int
parse_bit_M_tbl_entry(struct drm_device *dev, struct nvbios *bios,
		      struct bit_entry *bitentry)
{
	/*
	 * offset + 2  (8  bits): number of options in an
	 * 	INIT_RAM_RESTRICT_ZM_REG_GROUP opcode option set
	 * offset + 3  (16 bits): pointer to strap xlate table for RAM
	 * 	restrict option selection
	 *
	 * There's a bunch of bits in this table other than the RAM restrict
	 * stuff that we don't use - their use currently unknown
	 */

	/*
	 * Older bios versions don't have a sufficiently long table for
	 * what we want
	 */
	if (bitentry->length < 0x5)
		return 0;

	if (bitentry->id[1] < 2) {
4581 4582
		bios->ram_restrict_group_count = bios->data[bitentry->offset + 2];
		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 3]);
4583
	} else {
4584 4585
		bios->ram_restrict_group_count = bios->data[bitentry->offset + 0];
		bios->ram_restrict_tbl_ptr = ROM16(bios->data[bitentry->offset + 1]);
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
	}

	return 0;
}

static int parse_bit_tmds_tbl_entry(struct drm_device *dev, struct nvbios *bios, struct bit_entry *bitentry)
{
	/*
	 * Parses the pointer to the TMDS table
	 *
	 * Starting at bitentry->offset:
	 *
	 * offset + 0  (16 bits): TMDS table pointer
	 *
	 * The TMDS table is typically found just before the DCB table, with a
	 * characteristic signature of 0x11,0x13 (1.1 being version, 0x13 being
	 * length?)
	 *
	 * At offset +7 is a pointer to a script, which I don't know how to
	 * run yet.
	 * At offset +9 is a pointer to another script, likewise
	 * Offset +11 has a pointer to a table where the first word is a pxclk
	 * frequency and the second word a pointer to a script, which should be
	 * run if the comparison pxclk frequency is less than the pxclk desired.
	 * This repeats for decreasing comparison frequencies
	 * Offset +13 has a pointer to a similar table
	 * The selection of table (and possibly +7/+9 script) is dictated by
	 * "or" from the DCB.
	 */

	uint16_t tmdstableptr, script1, script2;

	if (bitentry->length != 2) {
		NV_ERROR(dev, "Do not understand BIT TMDS table\n");
		return -EINVAL;
	}

	tmdstableptr = ROM16(bios->data[bitentry->offset]);

	if (tmdstableptr == 0x0) {
		NV_ERROR(dev, "Pointer to TMDS table invalid\n");
		return -EINVAL;
	}

	/* nv50+ has v2.0, but we don't parse it atm */
	if (bios->data[tmdstableptr] != 0x11) {
		NV_WARN(dev,
			"TMDS table revision %d.%d not currently supported\n",
			bios->data[tmdstableptr] >> 4, bios->data[tmdstableptr] & 0xf);
		return -ENOSYS;
	}

	/*
	 * These two scripts are odd: they don't seem to get run even when
	 * they are not stubbed.
	 */
	script1 = ROM16(bios->data[tmdstableptr + 7]);
	script2 = ROM16(bios->data[tmdstableptr + 9]);
	if (bios->data[script1] != 'q' || bios->data[script2] != 'q')
		NV_WARN(dev, "TMDS table script pointers not stubbed\n");

	bios->tmds.output0_script_ptr = ROM16(bios->data[tmdstableptr + 11]);
	bios->tmds.output1_script_ptr = ROM16(bios->data[tmdstableptr + 13]);

	return 0;
}

static int
parse_bit_U_tbl_entry(struct drm_device *dev, struct nvbios *bios,
		      struct bit_entry *bitentry)
{
	/*
	 * Parses the pointer to the G80 output script tables
	 *
	 * Starting at bitentry->offset:
	 *
	 * offset + 0  (16 bits): output script table pointer
	 */

	uint16_t outputscripttableptr;

	if (bitentry->length != 3) {
		NV_ERROR(dev, "Do not understand BIT U table\n");
		return -EINVAL;
	}

	outputscripttableptr = ROM16(bios->data[bitentry->offset]);
	bios->display.script_table_ptr = outputscripttableptr;
	return 0;
}

static int
parse_bit_displayport_tbl_entry(struct drm_device *dev, struct nvbios *bios,
				struct bit_entry *bitentry)
{
	bios->display.dp_table_ptr = ROM16(bios->data[bitentry->offset]);
	return 0;
}

struct bit_table {
	const char id;
	int (* const parse_fn)(struct drm_device *, struct nvbios *, struct bit_entry *);
};

#define BIT_TABLE(id, funcid) ((struct bit_table){ id, parse_bit_##funcid##_tbl_entry })

static int
parse_bit_table(struct nvbios *bios, const uint16_t bitoffset,
		struct bit_table *table)
{
	struct drm_device *dev = bios->dev;
	uint8_t maxentries = bios->data[bitoffset + 4];
	int i, offset;
	struct bit_entry bitentry;

	for (i = 0, offset = bitoffset + 6; i < maxentries; i++, offset += 6) {
		bitentry.id[0] = bios->data[offset];

		if (bitentry.id[0] != table->id)
			continue;

		bitentry.id[1] = bios->data[offset + 1];
		bitentry.length = ROM16(bios->data[offset + 2]);
		bitentry.offset = ROM16(bios->data[offset + 4]);

		return table->parse_fn(dev, bios, &bitentry);
	}

	NV_INFO(dev, "BIT table '%c' not found\n", table->id);
	return -ENOSYS;
}

static int
parse_bit_structure(struct nvbios *bios, const uint16_t bitoffset)
{
	int ret;

	/*
	 * The only restriction on parsing order currently is having 'i' first
	 * for use of bios->*_version or bios->feature_byte while parsing;
	 * functions shouldn't be actually *doing* anything apart from pulling
	 * data from the image into the bios struct, thus no interdependencies
	 */
	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('i', i));
	if (ret) /* info? */
		return ret;
	if (bios->major_version >= 0x60) /* g80+ */
		parse_bit_table(bios, bitoffset, &BIT_TABLE('A', A));
	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('C', C));
	if (ret)
		return ret;
	parse_bit_table(bios, bitoffset, &BIT_TABLE('D', display));
	ret = parse_bit_table(bios, bitoffset, &BIT_TABLE('I', init));
	if (ret)
		return ret;
	parse_bit_table(bios, bitoffset, &BIT_TABLE('M', M)); /* memory? */
	parse_bit_table(bios, bitoffset, &BIT_TABLE('L', lvds));
	parse_bit_table(bios, bitoffset, &BIT_TABLE('T', tmds));
	parse_bit_table(bios, bitoffset, &BIT_TABLE('U', U));
	parse_bit_table(bios, bitoffset, &BIT_TABLE('d', displayport));

	return 0;
}

static int parse_bmp_structure(struct drm_device *dev, struct nvbios *bios, unsigned int offset)
{
	/*
	 * Parses the BMP structure for useful things, but does not act on them
	 *
	 * offset +   5: BMP major version
	 * offset +   6: BMP minor version
	 * offset +   9: BMP feature byte
	 * offset +  10: BCD encoded BIOS version
	 *
	 * offset +  18: init script table pointer (for bios versions < 5.10h)
	 * offset +  20: extra init script table pointer (for bios
	 * versions < 5.10h)
	 *
	 * offset +  24: memory init table pointer (used on early bios versions)
	 * offset +  26: SDR memory sequencing setup data table
	 * offset +  28: DDR memory sequencing setup data table
	 *
	 * offset +  54: index of I2C CRTC pair to use for CRT output
	 * offset +  55: index of I2C CRTC pair to use for TV output
	 * offset +  56: index of I2C CRTC pair to use for flat panel output
	 * offset +  58: write CRTC index for I2C pair 0
	 * offset +  59: read CRTC index for I2C pair 0
	 * offset +  60: write CRTC index for I2C pair 1
	 * offset +  61: read CRTC index for I2C pair 1
	 *
	 * offset +  67: maximum internal PLL frequency (single stage PLL)
	 * offset +  71: minimum internal PLL frequency (single stage PLL)
	 *
	 * offset +  75: script table pointers, as described in
	 * parse_script_table_pointers
	 *
	 * offset +  89: TMDS single link output A table pointer
	 * offset +  91: TMDS single link output B table pointer
	 * offset +  95: LVDS single link output A table pointer
	 * offset + 105: flat panel timings table pointer
	 * offset + 107: flat panel strapping translation table pointer
	 * offset + 117: LVDS manufacturer panel config table pointer
	 * offset + 119: LVDS manufacturer strapping translation table pointer
	 *
	 * offset + 142: PLL limits table pointer
	 *
	 * offset + 156: minimum pixel clock for LVDS dual link
	 */

	uint8_t *bmp = &bios->data[offset], bmp_version_major, bmp_version_minor;
	uint16_t bmplength;
	uint16_t legacy_scripts_offset, legacy_i2c_offset;

	/* load needed defaults in case we can't parse this info */
4800 4801 4802 4803
	bios->dcb.i2c[0].write = NV_CIO_CRE_DDC_WR__INDEX;
	bios->dcb.i2c[0].read = NV_CIO_CRE_DDC_STATUS__INDEX;
	bios->dcb.i2c[1].write = NV_CIO_CRE_DDC0_WR__INDEX;
	bios->dcb.i2c[1].read = NV_CIO_CRE_DDC0_STATUS__INDEX;
4804
	bios->digital_min_front_porch = 0x4b;
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
	bios->fmaxvco = 256000;
	bios->fminvco = 128000;
	bios->fp.duallink_transition_clk = 90000;

	bmp_version_major = bmp[5];
	bmp_version_minor = bmp[6];

	NV_TRACE(dev, "BMP version %d.%d\n",
		 bmp_version_major, bmp_version_minor);

	/*
	 * Make sure that 0x36 is blank and can't be mistaken for a DCB
	 * pointer on early versions
	 */
	if (bmp_version_major < 5)
		*(uint16_t *)&bios->data[0x36] = 0;

	/*
	 * Seems that the minor version was 1 for all major versions prior
	 * to 5. Version 6 could theoretically exist, but I suspect BIT
	 * happened instead.
	 */
	if ((bmp_version_major < 5 && bmp_version_minor != 1) || bmp_version_major > 5) {
		NV_ERROR(dev, "You have an unsupported BMP version. "
				"Please send in your bios\n");
		return -ENOSYS;
	}

	if (bmp_version_major == 0)
		/* nothing that's currently useful in this version */
		return 0;
	else if (bmp_version_major == 1)
		bmplength = 44; /* exact for 1.01 */
	else if (bmp_version_major == 2)
		bmplength = 48; /* exact for 2.01 */
	else if (bmp_version_major == 3)
		bmplength = 54;
		/* guessed - mem init tables added in this version */
	else if (bmp_version_major == 4 || bmp_version_minor < 0x1)
		/* don't know if 5.0 exists... */
		bmplength = 62;
		/* guessed - BMP I2C indices added in version 4*/
	else if (bmp_version_minor < 0x6)
		bmplength = 67; /* exact for 5.01 */
	else if (bmp_version_minor < 0x10)
		bmplength = 75; /* exact for 5.06 */
	else if (bmp_version_minor == 0x10)
		bmplength = 89; /* exact for 5.10h */
	else if (bmp_version_minor < 0x14)
		bmplength = 118; /* exact for 5.11h */
	else if (bmp_version_minor < 0x24)
		/*
		 * Not sure of version where pll limits came in;
		 * certainly exist by 0x24 though.
		 */
		/* length not exact: this is long enough to get lvds members */
		bmplength = 123;
	else if (bmp_version_minor < 0x27)
		/*
		 * Length not exact: this is long enough to get pll limit
		 * member
		 */
		bmplength = 144;
	else
		/*
		 * Length not exact: this is long enough to get dual link
		 * transition clock.
		 */
		bmplength = 158;

	/* checksum */
	if (nv_cksum(bmp, 8)) {
		NV_ERROR(dev, "Bad BMP checksum\n");
		return -EINVAL;
	}

	/*
	 * Bit 4 seems to indicate either a mobile bios or a quadro card --
	 * mobile behaviour consistent (nv11+), quadro only seen nv18gl-nv36gl
	 * (not nv10gl), bit 5 that the flat panel tables are present, and
	 * bit 6 a tv bios.
	 */
	bios->feature_byte = bmp[9];

	parse_bios_version(dev, bios, offset + 10);

	if (bmp_version_major < 5 || bmp_version_minor < 0x10)
		bios->old_style_init = true;
	legacy_scripts_offset = 18;
	if (bmp_version_major < 2)
		legacy_scripts_offset -= 4;
	bios->init_script_tbls_ptr = ROM16(bmp[legacy_scripts_offset]);
	bios->extra_init_script_tbl_ptr = ROM16(bmp[legacy_scripts_offset + 2]);

	if (bmp_version_major > 2) {	/* appears in BMP 3 */
		bios->legacy.mem_init_tbl_ptr = ROM16(bmp[24]);
		bios->legacy.sdr_seq_tbl_ptr = ROM16(bmp[26]);
		bios->legacy.ddr_seq_tbl_ptr = ROM16(bmp[28]);
	}

	legacy_i2c_offset = 0x48;	/* BMP version 2 & 3 */
	if (bmplength > 61)
		legacy_i2c_offset = offset + 54;
	bios->legacy.i2c_indices.crt = bios->data[legacy_i2c_offset];
	bios->legacy.i2c_indices.tv = bios->data[legacy_i2c_offset + 1];
	bios->legacy.i2c_indices.panel = bios->data[legacy_i2c_offset + 2];
4911 4912 4913 4914
	bios->dcb.i2c[0].write = bios->data[legacy_i2c_offset + 4];
	bios->dcb.i2c[0].read = bios->data[legacy_i2c_offset + 5];
	bios->dcb.i2c[1].write = bios->data[legacy_i2c_offset + 6];
	bios->dcb.i2c[1].read = bios->data[legacy_i2c_offset + 7];
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987

	if (bmplength > 74) {
		bios->fmaxvco = ROM32(bmp[67]);
		bios->fminvco = ROM32(bmp[71]);
	}
	if (bmplength > 88)
		parse_script_table_pointers(bios, offset + 75);
	if (bmplength > 94) {
		bios->tmds.output0_script_ptr = ROM16(bmp[89]);
		bios->tmds.output1_script_ptr = ROM16(bmp[91]);
		/*
		 * Never observed in use with lvds scripts, but is reused for
		 * 18/24 bit panel interface default for EDID equipped panels
		 * (if_is_24bit not set directly to avoid any oscillation).
		 */
		bios->legacy.lvds_single_a_script_ptr = ROM16(bmp[95]);
	}
	if (bmplength > 108) {
		bios->fp.fptablepointer = ROM16(bmp[105]);
		bios->fp.fpxlatetableptr = ROM16(bmp[107]);
		bios->fp.xlatwidth = 1;
	}
	if (bmplength > 120) {
		bios->fp.lvdsmanufacturerpointer = ROM16(bmp[117]);
		bios->fp.fpxlatemanufacturertableptr = ROM16(bmp[119]);
	}
	if (bmplength > 143)
		bios->pll_limit_tbl_ptr = ROM16(bmp[142]);

	if (bmplength > 157)
		bios->fp.duallink_transition_clk = ROM16(bmp[156]) * 10;

	return 0;
}

static uint16_t findstr(uint8_t *data, int n, const uint8_t *str, int len)
{
	int i, j;

	for (i = 0; i <= (n - len); i++) {
		for (j = 0; j < len; j++)
			if (data[i + j] != str[j])
				break;
		if (j == len)
			return i;
	}

	return 0;
}

static int
read_dcb_i2c_entry(struct drm_device *dev, int dcb_version, uint8_t *i2ctable, int index, struct dcb_i2c_entry *i2c)
{
	uint8_t dcb_i2c_ver = dcb_version, headerlen = 0, entry_len = 4;
	int i2c_entries = DCB_MAX_NUM_I2C_ENTRIES;
	int recordoffset = 0, rdofs = 1, wrofs = 0;
	uint8_t port_type = 0;

	if (!i2ctable)
		return -EINVAL;

	if (dcb_version >= 0x30) {
		if (i2ctable[0] != dcb_version) /* necessary? */
			NV_WARN(dev,
				"DCB I2C table version mismatch (%02X vs %02X)\n",
				i2ctable[0], dcb_version);
		dcb_i2c_ver = i2ctable[0];
		headerlen = i2ctable[1];
		if (i2ctable[2] <= DCB_MAX_NUM_I2C_ENTRIES)
			i2c_entries = i2ctable[2];
		else
			NV_WARN(dev,
				"DCB I2C table has more entries than indexable "
4988 4989
				"(%d entries, max %d)\n", i2ctable[2],
				DCB_MAX_NUM_I2C_ENTRIES);
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
		entry_len = i2ctable[3];
		/* [4] is i2c_default_indices, read in parse_dcb_table() */
	}
	/*
	 * It's your own fault if you call this function on a DCB 1.1 BIOS --
	 * the test below is for DCB 1.2
	 */
	if (dcb_version < 0x14) {
		recordoffset = 2;
		rdofs = 0;
		wrofs = 1;
	}

	if (index == 0xf)
		return 0;
5005 5006
	if (index >= i2c_entries) {
		NV_ERROR(dev, "DCB I2C index too big (%d >= %d)\n",
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
			 index, i2ctable[2]);
		return -ENOENT;
	}
	if (i2ctable[headerlen + entry_len * index + 3] == 0xff) {
		NV_ERROR(dev, "DCB I2C entry invalid\n");
		return -EINVAL;
	}

	if (dcb_i2c_ver >= 0x30) {
		port_type = i2ctable[headerlen + recordoffset + 3 + entry_len * index];

		/*
		 * Fixup for chips using same address offset for read and
		 * write.
		 */
		if (port_type == 4)	/* seen on C51 */
			rdofs = wrofs = 1;
		if (port_type >= 5)	/* G80+ */
			rdofs = wrofs = 0;
	}

	if (dcb_i2c_ver >= 0x40 && port_type != 5 && port_type != 6)
		NV_WARN(dev, "DCB I2C table has port type %d\n", port_type);

	i2c->port_type = port_type;
	i2c->read = i2ctable[headerlen + recordoffset + rdofs + entry_len * index];
	i2c->write = i2ctable[headerlen + recordoffset + wrofs + entry_len * index];

	return 0;
}

static struct dcb_gpio_entry *
new_gpio_entry(struct nvbios *bios)
{
5041
	struct dcb_gpio_table *gpio = &bios->dcb.gpio;
5042 5043 5044 5045 5046 5047 5048 5049

	return &gpio->entry[gpio->entries++];
}

struct dcb_gpio_entry *
nouveau_bios_gpio_entry(struct drm_device *dev, enum dcb_gpio_tag tag)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
5050
	struct nvbios *bios = &dev_priv->vbios;
5051 5052
	int i;

5053 5054
	for (i = 0; i < bios->dcb.gpio.entries; i++) {
		if (bios->dcb.gpio.entry[i].tag != tag)
5055 5056
			continue;

5057
		return &bios->dcb.gpio.entry[i];
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
	}

	return NULL;
}

static void
parse_dcb30_gpio_entry(struct nvbios *bios, uint16_t offset)
{
	struct dcb_gpio_entry *gpio;
	uint16_t ent = ROM16(bios->data[offset]);
	uint8_t line = ent & 0x1f,
		tag = ent >> 5 & 0x3f,
		flags = ent >> 11 & 0x1f;

	if (tag == 0x3f)
		return;

	gpio = new_gpio_entry(bios);

	gpio->tag = tag;
	gpio->line = line;
	gpio->invert = flags != 4;
}

static void
parse_dcb40_gpio_entry(struct nvbios *bios, uint16_t offset)
{
	struct dcb_gpio_entry *gpio;
	uint32_t ent = ROM32(bios->data[offset]);
	uint8_t line = ent & 0x1f,
		tag = ent >> 8 & 0xff;

	if (tag == 0xff)
		return;

	gpio = new_gpio_entry(bios);

	/* Currently unused, we may need more fields parsed at some
	 * point. */
	gpio->tag = tag;
	gpio->line = line;
}

static void
parse_dcb_gpio_table(struct nvbios *bios)
{
	struct drm_device *dev = bios->dev;
5105
	uint16_t gpio_table_ptr = bios->dcb.gpio_table_ptr;
5106 5107 5108 5109 5110 5111 5112
	uint8_t *gpio_table = &bios->data[gpio_table_ptr];
	int header_len = gpio_table[1],
	    entries = gpio_table[2],
	    entry_len = gpio_table[3];
	void (*parse_entry)(struct nvbios *, uint16_t) = NULL;
	int i;

5113
	if (bios->dcb.version >= 0x40) {
5114 5115 5116 5117 5118 5119 5120
		if (gpio_table_ptr && entry_len != 4) {
			NV_WARN(dev, "Invalid DCB GPIO table entry length.\n");
			return;
		}

		parse_entry = parse_dcb40_gpio_entry;

5121
	} else if (bios->dcb.version >= 0x30) {
5122 5123 5124 5125 5126 5127 5128
		if (gpio_table_ptr && entry_len != 2) {
			NV_WARN(dev, "Invalid DCB GPIO table entry length.\n");
			return;
		}

		parse_entry = parse_dcb30_gpio_entry;

5129
	} else if (bios->dcb.version >= 0x22) {
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162
		/*
		 * DCBs older than v3.0 don't really have a GPIO
		 * table, instead they keep some GPIO info at fixed
		 * locations.
		 */
		uint16_t dcbptr = ROM16(bios->data[0x36]);
		uint8_t *tvdac_gpio = &bios->data[dcbptr - 5];

		if (tvdac_gpio[0] & 1) {
			struct dcb_gpio_entry *gpio = new_gpio_entry(bios);

			gpio->tag = DCB_GPIO_TVDAC0;
			gpio->line = tvdac_gpio[1] >> 4;
			gpio->invert = tvdac_gpio[0] & 2;
		}
	}

	if (!gpio_table_ptr)
		return;

	if (entries > DCB_MAX_NUM_GPIO_ENTRIES) {
		NV_WARN(dev, "Too many entries in the DCB GPIO table.\n");
		entries = DCB_MAX_NUM_GPIO_ENTRIES;
	}

	for (i = 0; i < entries; i++)
		parse_entry(bios, gpio_table_ptr + header_len + entry_len * i);
}

struct dcb_connector_table_entry *
nouveau_bios_connector_entry(struct drm_device *dev, int index)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
5163
	struct nvbios *bios = &dev_priv->vbios;
5164 5165
	struct dcb_connector_table_entry *cte;

5166
	if (index >= bios->dcb.connector.entries)
5167 5168
		return NULL;

5169
	cte = &bios->dcb.connector.entry[index];
5170 5171 5172 5173 5174 5175
	if (cte->type == 0xff)
		return NULL;

	return cte;
}

5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
static enum dcb_connector_type
divine_connector_type(struct nvbios *bios, int index)
{
	struct dcb_table *dcb = &bios->dcb;
	unsigned encoders = 0, type = DCB_CONNECTOR_NONE;
	int i;

	for (i = 0; i < dcb->entries; i++) {
		if (dcb->entry[i].connector == index)
			encoders |= (1 << dcb->entry[i].type);
	}

	if (encoders & (1 << OUTPUT_DP)) {
		if (encoders & (1 << OUTPUT_TMDS))
			type = DCB_CONNECTOR_DP;
		else
			type = DCB_CONNECTOR_eDP;
	} else
	if (encoders & (1 << OUTPUT_TMDS)) {
		if (encoders & (1 << OUTPUT_ANALOG))
			type = DCB_CONNECTOR_DVI_I;
		else
			type = DCB_CONNECTOR_DVI_D;
	} else
	if (encoders & (1 << OUTPUT_ANALOG)) {
		type = DCB_CONNECTOR_VGA;
	} else
	if (encoders & (1 << OUTPUT_LVDS)) {
		type = DCB_CONNECTOR_LVDS;
	} else
	if (encoders & (1 << OUTPUT_TV)) {
		type = DCB_CONNECTOR_TV_0;
	}

	return type;
}

5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
static void
apply_dcb_connector_quirks(struct nvbios *bios, int idx)
{
	struct dcb_connector_table_entry *cte = &bios->dcb.connector.entry[idx];
	struct drm_device *dev = bios->dev;

	/* Gigabyte NX85T */
	if ((dev->pdev->device == 0x0421) &&
	    (dev->pdev->subsystem_vendor == 0x1458) &&
	    (dev->pdev->subsystem_device == 0x344c)) {
		if (cte->type == DCB_CONNECTOR_HDMI_1)
			cte->type = DCB_CONNECTOR_DVI_I;
	}
}

5228 5229 5230 5231
static void
parse_dcb_connector_table(struct nvbios *bios)
{
	struct drm_device *dev = bios->dev;
5232
	struct dcb_connector_table *ct = &bios->dcb.connector;
5233
	struct dcb_connector_table_entry *cte;
5234
	uint8_t *conntab = &bios->data[bios->dcb.connector_table_ptr];
5235 5236 5237
	uint8_t *entry;
	int i;

5238
	if (!bios->dcb.connector_table_ptr) {
5239
		NV_DEBUG_KMS(dev, "No DCB connector table present\n");
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
		return;
	}

	NV_INFO(dev, "DCB connector table: VHER 0x%02x %d %d %d\n",
		conntab[0], conntab[1], conntab[2], conntab[3]);
	if ((conntab[0] != 0x30 && conntab[0] != 0x40) ||
	    (conntab[3] != 2 && conntab[3] != 4)) {
		NV_ERROR(dev, "  Unknown!  Please report.\n");
		return;
	}

	ct->entries = conntab[2];

	entry = conntab + conntab[1];
	cte = &ct->entry[0];
	for (i = 0; i < conntab[2]; i++, entry += conntab[3], cte++) {
5256
		cte->index = i;
5257 5258 5259 5260
		if (conntab[3] == 2)
			cte->entry = ROM16(entry[0]);
		else
			cte->entry = ROM32(entry[0]);
5261

5262
		cte->type  = (cte->entry & 0x000000ff) >> 0;
5263
		cte->index2 = (cte->entry & 0x00000f00) >> 8;
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
		switch (cte->entry & 0x00033000) {
		case 0x00001000:
			cte->gpio_tag = 0x07;
			break;
		case 0x00002000:
			cte->gpio_tag = 0x08;
			break;
		case 0x00010000:
			cte->gpio_tag = 0x51;
			break;
		case 0x00020000:
			cte->gpio_tag = 0x52;
			break;
		default:
			cte->gpio_tag = 0xff;
			break;
		}

		if (cte->type == 0xff)
			continue;

5285 5286
		apply_dcb_connector_quirks(bios, i);

5287 5288
		NV_INFO(dev, "  %d: 0x%08x: type 0x%02x idx %d tag 0x%02x\n",
			i, cte->entry, cte->type, cte->index, cte->gpio_tag);
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307

		/* check for known types, fallback to guessing the type
		 * from attached encoders if we hit an unknown.
		 */
		switch (cte->type) {
		case DCB_CONNECTOR_VGA:
		case DCB_CONNECTOR_TV_0:
		case DCB_CONNECTOR_TV_1:
		case DCB_CONNECTOR_TV_3:
		case DCB_CONNECTOR_DVI_I:
		case DCB_CONNECTOR_DVI_D:
		case DCB_CONNECTOR_LVDS:
		case DCB_CONNECTOR_DP:
		case DCB_CONNECTOR_eDP:
		case DCB_CONNECTOR_HDMI_0:
		case DCB_CONNECTOR_HDMI_1:
			break;
		default:
			cte->type = divine_connector_type(bios, cte->index);
5308
			NV_WARN(dev, "unknown type, using 0x%02x\n", cte->type);
5309 5310 5311
			break;
		}

5312 5313 5314 5315 5316 5317
		if (nouveau_override_conntype) {
			int type = divine_connector_type(bios, cte->index);
			if (type != cte->type)
				NV_WARN(dev, " -> type 0x%02x\n", cte->type);
		}

5318 5319 5320
	}
}

5321
static struct dcb_entry *new_dcb_entry(struct dcb_table *dcb)
5322 5323 5324 5325 5326 5327 5328 5329 5330
{
	struct dcb_entry *entry = &dcb->entry[dcb->entries];

	memset(entry, 0, sizeof(struct dcb_entry));
	entry->index = dcb->entries++;

	return entry;
}

5331
static void fabricate_vga_output(struct dcb_table *dcb, int i2c, int heads)
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
{
	struct dcb_entry *entry = new_dcb_entry(dcb);

	entry->type = 0;
	entry->i2c_index = i2c;
	entry->heads = heads;
	entry->location = DCB_LOC_ON_CHIP;
	/* "or" mostly unused in early gen crt modesetting, 0 is fine */
}

5342
static void fabricate_dvi_i_output(struct dcb_table *dcb, bool twoHeads)
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
{
	struct dcb_entry *entry = new_dcb_entry(dcb);

	entry->type = 2;
	entry->i2c_index = LEGACY_I2C_PANEL;
	entry->heads = twoHeads ? 3 : 1;
	entry->location = !DCB_LOC_ON_CHIP;	/* ie OFF CHIP */
	entry->or = 1;	/* means |0x10 gets set on CRE_LCD__INDEX */
	entry->duallink_possible = false; /* SiI164 and co. are single link */

#if 0
	/*
	 * For dvi-a either crtc probably works, but my card appears to only
	 * support dvi-d.  "nvidia" still attempts to program it for dvi-a,
	 * doing the full fp output setup (program 0x6808.. fp dimension regs,
	 * setting 0x680848 to 0x10000111 to enable, maybe setting 0x680880);
	 * the monitor picks up the mode res ok and lights up, but no pixel
	 * data appears, so the board manufacturer probably connected up the
	 * sync lines, but missed the video traces / components
	 *
	 * with this introduction, dvi-a left as an exercise for the reader.
	 */
	fabricate_vga_output(dcb, LEGACY_I2C_PANEL, entry->heads);
#endif
}

5369
static void fabricate_tv_output(struct dcb_table *dcb, bool twoHeads)
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379
{
	struct dcb_entry *entry = new_dcb_entry(dcb);

	entry->type = 1;
	entry->i2c_index = LEGACY_I2C_TV;
	entry->heads = twoHeads ? 3 : 1;
	entry->location = !DCB_LOC_ON_CHIP;	/* ie OFF CHIP */
}

static bool
5380
parse_dcb20_entry(struct drm_device *dev, struct dcb_table *dcb,
5381 5382 5383 5384 5385
		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
{
	entry->type = conn & 0xf;
	entry->i2c_index = (conn >> 4) & 0xf;
	entry->heads = (conn >> 8) & 0xf;
5386
	if (dcb->version >= 0x40)
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
		entry->connector = (conn >> 12) & 0xf;
	entry->bus = (conn >> 16) & 0xf;
	entry->location = (conn >> 20) & 0x3;
	entry->or = (conn >> 24) & 0xf;
	/*
	 * Normal entries consist of a single bit, but dual link has the
	 * next most significant bit set too
	 */
	entry->duallink_possible =
			((1 << (ffs(entry->or) - 1)) * 3 == entry->or);

	switch (entry->type) {
	case OUTPUT_ANALOG:
		/*
		 * Although the rest of a CRT conf dword is usually
		 * zeros, mac biosen have stuff there so we must mask
		 */
5404
		entry->crtconf.maxfreq = (dcb->version < 0x30) ?
5405 5406 5407 5408 5409 5410 5411 5412
					 (conf & 0xffff) * 10 :
					 (conf & 0xff) * 10000;
		break;
	case OUTPUT_LVDS:
		{
		uint32_t mask;
		if (conf & 0x1)
			entry->lvdsconf.use_straps_for_mode = true;
5413
		if (dcb->version < 0x22) {
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
			mask = ~0xd;
			/*
			 * The laptop in bug 14567 lies and claims to not use
			 * straps when it does, so assume all DCB 2.0 laptops
			 * use straps, until a broken EDID using one is produced
			 */
			entry->lvdsconf.use_straps_for_mode = true;
			/*
			 * Both 0x4 and 0x8 show up in v2.0 tables; assume they
			 * mean the same thing (probably wrong, but might work)
			 */
			if (conf & 0x4 || conf & 0x8)
				entry->lvdsconf.use_power_scripts = true;
		} else {
			mask = ~0x5;
			if (conf & 0x4)
				entry->lvdsconf.use_power_scripts = true;
		}
		if (conf & mask) {
			/*
			 * Until we even try to use these on G8x, it's
			 * useless reporting unknown bits.  They all are.
			 */
5437
			if (dcb->version >= 0x40)
5438 5439 5440 5441 5442 5443 5444 5445 5446
				break;

			NV_ERROR(dev, "Unknown LVDS configuration bits, "
				      "please report\n");
		}
		break;
		}
	case OUTPUT_TV:
	{
5447
		if (dcb->version >= 0x30)
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
			entry->tvconf.has_component_output = conf & (0x8 << 4);
		else
			entry->tvconf.has_component_output = false;

		break;
	}
	case OUTPUT_DP:
		entry->dpconf.sor.link = (conf & 0x00000030) >> 4;
		entry->dpconf.link_bw = (conf & 0x00e00000) >> 21;
		switch ((conf & 0x0f000000) >> 24) {
		case 0xf:
			entry->dpconf.link_nr = 4;
			break;
		case 0x3:
			entry->dpconf.link_nr = 2;
			break;
		default:
			entry->dpconf.link_nr = 1;
			break;
		}
		break;
	case OUTPUT_TMDS:
		entry->tmdsconf.sor.link = (conf & 0x00000030) >> 4;
		break;
	case 0xe:
		/* weird g80 mobile type that "nv" treats as a terminator */
5474
		dcb->entries--;
5475
		return false;
5476 5477
	default:
		break;
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
	}

	/* unsure what DCB version introduces this, 3.0? */
	if (conf & 0x100000)
		entry->i2c_upper_default = true;

	return true;
}

static bool
5488
parse_dcb15_entry(struct drm_device *dev, struct dcb_table *dcb,
5489 5490
		  uint32_t conn, uint32_t conf, struct dcb_entry *entry)
{
5491 5492 5493 5494 5495 5496 5497 5498 5499
	switch (conn & 0x0000000f) {
	case 0:
		entry->type = OUTPUT_ANALOG;
		break;
	case 1:
		entry->type = OUTPUT_TV;
		break;
	case 2:
	case 3:
5500
		entry->type = OUTPUT_LVDS;
5501 5502 5503 5504
		break;
	case 4:
		switch ((conn & 0x000000f0) >> 4) {
		case 0:
5505
			entry->type = OUTPUT_TMDS;
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
			break;
		case 1:
			entry->type = OUTPUT_LVDS;
			break;
		default:
			NV_ERROR(dev, "Unknown DCB subtype 4/%d\n",
				 (conn & 0x000000f0) >> 4);
			return false;
		}
		break;
	default:
		NV_ERROR(dev, "Unknown DCB type %d\n", conn & 0x0000000f);
		return false;
5519
	}
5520 5521 5522 5523 5524 5525

	entry->i2c_index = (conn & 0x0003c000) >> 14;
	entry->heads = ((conn & 0x001c0000) >> 18) + 1;
	entry->or = entry->heads; /* same as heads, hopefully safe enough */
	entry->location = (conn & 0x01e00000) >> 21;
	entry->bus = (conn & 0x0e000000) >> 25;
5526 5527 5528 5529 5530 5531
	entry->duallink_possible = false;

	switch (entry->type) {
	case OUTPUT_ANALOG:
		entry->crtconf.maxfreq = (conf & 0xffff) * 10;
		break;
5532 5533
	case OUTPUT_TV:
		entry->tvconf.has_component_output = false;
5534 5535 5536 5537 5538 5539 5540 5541
		break;
	case OUTPUT_TMDS:
		/*
		 * Invent a DVI-A output, by copying the fields of the DVI-D
		 * output; reported to work by math_b on an NV20(!).
		 */
		fabricate_vga_output(dcb, entry->i2c_index, entry->heads);
		break;
5542 5543 5544 5545 5546 5547
	case OUTPUT_LVDS:
		if ((conn & 0x00003f00) != 0x10)
			entry->lvdsconf.use_straps_for_mode = true;
		entry->lvdsconf.use_power_scripts = true;
		break;
	default:
5548 5549 5550 5551 5552 5553
		break;
	}

	return true;
}

5554
static bool parse_dcb_entry(struct drm_device *dev, struct dcb_table *dcb,
5555 5556
			    uint32_t conn, uint32_t conf)
{
5557
	struct dcb_entry *entry = new_dcb_entry(dcb);
5558 5559
	bool ret;

5560 5561
	if (dcb->version >= 0x20)
		ret = parse_dcb20_entry(dev, dcb, conn, conf, entry);
5562
	else
5563
		ret = parse_dcb15_entry(dev, dcb, conn, conf, entry);
5564 5565 5566
	if (!ret)
		return ret;

5567 5568
	read_dcb_i2c_entry(dev, dcb->version, dcb->i2c_table,
			   entry->i2c_index, &dcb->i2c[entry->i2c_index]);
5569 5570 5571 5572 5573

	return true;
}

static
5574
void merge_like_dcb_entries(struct drm_device *dev, struct dcb_table *dcb)
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621
{
	/*
	 * DCB v2.0 lists each output combination separately.
	 * Here we merge compatible entries to have fewer outputs, with
	 * more options
	 */

	int i, newentries = 0;

	for (i = 0; i < dcb->entries; i++) {
		struct dcb_entry *ient = &dcb->entry[i];
		int j;

		for (j = i + 1; j < dcb->entries; j++) {
			struct dcb_entry *jent = &dcb->entry[j];

			if (jent->type == 100) /* already merged entry */
				continue;

			/* merge heads field when all other fields the same */
			if (jent->i2c_index == ient->i2c_index &&
			    jent->type == ient->type &&
			    jent->location == ient->location &&
			    jent->or == ient->or) {
				NV_TRACE(dev, "Merging DCB entries %d and %d\n",
					 i, j);
				ient->heads |= jent->heads;
				jent->type = 100; /* dummy value */
			}
		}
	}

	/* Compact entries merged into others out of dcb */
	for (i = 0; i < dcb->entries; i++) {
		if (dcb->entry[i].type == 100)
			continue;

		if (newentries != i) {
			dcb->entry[newentries] = dcb->entry[i];
			dcb->entry[newentries].index = newentries;
		}
		newentries++;
	}

	dcb->entries = newentries;
}

5622 5623
static int
parse_dcb_table(struct drm_device *dev, struct nvbios *bios, bool twoHeads)
5624
{
5625
	struct drm_nouveau_private *dev_priv = dev->dev_private;
5626
	struct dcb_table *dcb = &bios->dcb;
5627
	uint16_t dcbptr = 0, i2ctabptr = 0;
5628 5629 5630 5631 5632 5633 5634
	uint8_t *dcbtable;
	uint8_t headerlen = 0x4, entries = DCB_MAX_NUM_ENTRIES;
	bool configblock = true;
	int recordlength = 8, confofs = 4;
	int i;

	/* get the offset from 0x36 */
5635 5636 5637 5638 5639
	if (dev_priv->card_type > NV_04) {
		dcbptr = ROM16(bios->data[0x36]);
		if (dcbptr == 0x0000)
			NV_WARN(dev, "No output data (DCB) found in BIOS\n");
	}
5640

5641
	/* this situation likely means a really old card, pre DCB */
5642
	if (dcbptr == 0x0) {
5643
		NV_INFO(dev, "Assuming a CRT output exists\n");
5644 5645
		fabricate_vga_output(dcb, LEGACY_I2C_CRT, 1);

5646
		if (nv04_tv_identify(dev, bios->legacy.i2c_indices.tv) >= 0)
5647 5648 5649 5650 5651 5652 5653 5654
			fabricate_tv_output(dcb, twoHeads);

		return 0;
	}

	dcbtable = &bios->data[dcbptr];

	/* get DCB version */
5655
	dcb->version = dcbtable[0];
5656
	NV_TRACE(dev, "Found Display Configuration Block version %d.%d\n",
5657
		 dcb->version >> 4, dcb->version & 0xf);
5658

5659
	if (dcb->version >= 0x20) { /* NV17+ */
5660 5661
		uint32_t sig;

5662
		if (dcb->version >= 0x30) { /* NV40+ */
5663 5664 5665 5666 5667
			headerlen = dcbtable[1];
			entries = dcbtable[2];
			recordlength = dcbtable[3];
			i2ctabptr = ROM16(dcbtable[4]);
			sig = ROM32(dcbtable[6]);
5668 5669
			dcb->gpio_table_ptr = ROM16(dcbtable[10]);
			dcb->connector_table_ptr = ROM16(dcbtable[20]);
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
		} else {
			i2ctabptr = ROM16(dcbtable[2]);
			sig = ROM32(dcbtable[4]);
			headerlen = 8;
		}

		if (sig != 0x4edcbdcb) {
			NV_ERROR(dev, "Bad Display Configuration Block "
					"signature (%08X)\n", sig);
			return -EINVAL;
		}
5681
	} else if (dcb->version >= 0x15) { /* some NV11 and NV20 */
5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
		char sig[8] = { 0 };

		strncpy(sig, (char *)&dcbtable[-7], 7);
		i2ctabptr = ROM16(dcbtable[2]);
		recordlength = 10;
		confofs = 6;

		if (strcmp(sig, "DEV_REC")) {
			NV_ERROR(dev, "Bad Display Configuration Block "
					"signature (%s)\n", sig);
			return -EINVAL;
		}
	} else {
		/*
		 * v1.4 (some NV15/16, NV11+) seems the same as v1.5, but always
		 * has the same single (crt) entry, even when tv-out present, so
		 * the conclusion is this version cannot really be used.
		 * v1.2 tables (some NV6/10, and NV15+) normally have the same
		 * 5 entries, which are not specific to the card and so no use.
		 * v1.2 does have an I2C table that read_dcb_i2c_table can
		 * handle, but cards exist (nv11 in #14821) with a bad i2c table
		 * pointer, so use the indices parsed in parse_bmp_structure.
		 * v1.1 (NV5+, maybe some NV4) is entirely unhelpful
		 */
		NV_TRACEWARN(dev, "No useful information in BIOS output table; "
				  "adding all possible outputs\n");
		fabricate_vga_output(dcb, LEGACY_I2C_CRT, 1);

		/*
		 * Attempt to detect TV before DVI because the test
		 * for the former is more accurate and it rules the
		 * latter out.
		 */
		if (nv04_tv_identify(dev,
				     bios->legacy.i2c_indices.tv) >= 0)
			fabricate_tv_output(dcb, twoHeads);

		else if (bios->tmds.output0_script_ptr ||
			 bios->tmds.output1_script_ptr)
			fabricate_dvi_i_output(dcb, twoHeads);

		return 0;
	}

	if (!i2ctabptr)
		NV_WARN(dev, "No pointer to DCB I2C port table\n");
	else {
5729 5730 5731
		dcb->i2c_table = &bios->data[i2ctabptr];
		if (dcb->version >= 0x30)
			dcb->i2c_default_indices = dcb->i2c_table[4];
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
	}

	if (entries > DCB_MAX_NUM_ENTRIES)
		entries = DCB_MAX_NUM_ENTRIES;

	for (i = 0; i < entries; i++) {
		uint32_t connection, config = 0;

		connection = ROM32(dcbtable[headerlen + recordlength * i]);
		if (configblock)
			config = ROM32(dcbtable[headerlen + confofs + recordlength * i]);

		/* seen on an NV11 with DCB v1.5 */
		if (connection == 0x00000000)
			break;

		/* seen on an NV17 with DCB v2.0 */
		if (connection == 0xffffffff)
			break;

		if ((connection & 0x0000000f) == 0x0000000f)
			continue;

		NV_TRACEWARN(dev, "Raw DCB entry %d: %08x %08x\n",
			     dcb->entries, connection, config);

5758
		if (!parse_dcb_entry(dev, dcb, connection, config))
5759 5760 5761 5762 5763 5764 5765
			break;
	}

	/*
	 * apart for v2.1+ not being known for requiring merging, this
	 * guarantees dcbent->index is the index of the entry in the rom image
	 */
5766
	if (dcb->version < 0x21)
5767 5768
		merge_like_dcb_entries(dev, dcb);

5769 5770 5771 5772 5773 5774
	if (!dcb->entries)
		return -ENXIO;

	parse_dcb_gpio_table(bios);
	parse_dcb_connector_table(bios);
	return 0;
5775 5776 5777 5778 5779
}

static void
fixup_legacy_connector(struct nvbios *bios)
{
5780
	struct dcb_table *dcb = &bios->dcb;
5781
	int i, i2c, i2c_conn[DCB_MAX_NUM_I2C_ENTRIES] = { };
5782 5783 5784 5785 5786 5787 5788

	/*
	 * DCB 3.0 also has the table in most cases, but there are some cards
	 * where the table is filled with stub entries, and the DCB entriy
	 * indices are all 0.  We don't need the connector indices on pre-G80
	 * chips (yet?) so limit the use to DCB 4.0 and above.
	 */
5789
	if (dcb->version >= 0x40)
5790 5791
		return;

5792 5793
	dcb->connector.entries = 0;

5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
	/*
	 * No known connector info before v3.0, so make it up.  the rule here
	 * is: anything on the same i2c bus is considered to be on the same
	 * connector.  any output without an associated i2c bus is assigned
	 * its own unique connector index.
	 */
	for (i = 0; i < dcb->entries; i++) {
		/*
		 * Ignore the I2C index for on-chip TV-out, as there
		 * are cards with bogus values (nv31m in bug 23212),
		 * and it's otherwise useless.
		 */
		if (dcb->entry[i].type == OUTPUT_TV &&
5807
		    dcb->entry[i].location == DCB_LOC_ON_CHIP)
5808
			dcb->entry[i].i2c_index = 0xf;
5809 5810 5811 5812
		i2c = dcb->entry[i].i2c_index;

		if (i2c_conn[i2c]) {
			dcb->entry[i].connector = i2c_conn[i2c] - 1;
5813 5814 5815
			continue;
		}

5816 5817 5818
		dcb->entry[i].connector = dcb->connector.entries++;
		if (i2c != 0xf)
			i2c_conn[i2c] = dcb->connector.entries;
5819 5820
	}

5821 5822 5823 5824 5825
	/* Fake the connector table as well as just connector indices */
	for (i = 0; i < dcb->connector.entries; i++) {
		dcb->connector.entry[i].index = i;
		dcb->connector.entry[i].type = divine_connector_type(bios, i);
		dcb->connector.entry[i].gpio_tag = 0xff;
5826 5827 5828 5829 5830 5831
	}
}

static void
fixup_legacy_i2c(struct nvbios *bios)
{
5832
	struct dcb_table *dcb = &bios->dcb;
5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
	int i;

	for (i = 0; i < dcb->entries; i++) {
		if (dcb->entry[i].i2c_index == LEGACY_I2C_CRT)
			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.crt;
		if (dcb->entry[i].i2c_index == LEGACY_I2C_PANEL)
			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.panel;
		if (dcb->entry[i].i2c_index == LEGACY_I2C_TV)
			dcb->entry[i].i2c_index = bios->legacy.i2c_indices.tv;
	}
}

static int load_nv17_hwsq_ucode_entry(struct drm_device *dev, struct nvbios *bios, uint16_t hwsq_offset, int entry)
{
	/*
	 * The header following the "HWSQ" signature has the number of entries,
	 * and the entry size
	 *
	 * An entry consists of a dword to write to the sequencer control reg
	 * (0x00001304), followed by the ucode bytes, written sequentially,
	 * starting at reg 0x00001400
	 */

	uint8_t bytes_to_write;
	uint16_t hwsq_entry_offset;
	int i;

	if (bios->data[hwsq_offset] <= entry) {
		NV_ERROR(dev, "Too few entries in HW sequencer table for "
				"requested entry\n");
		return -ENOENT;
	}

	bytes_to_write = bios->data[hwsq_offset + 1];

	if (bytes_to_write != 36) {
		NV_ERROR(dev, "Unknown HW sequencer entry size\n");
		return -EINVAL;
	}

	NV_TRACE(dev, "Loading NV17 power sequencing microcode\n");

	hwsq_entry_offset = hwsq_offset + 2 + entry * bytes_to_write;

	/* set sequencer control */
	bios_wr32(bios, 0x00001304, ROM32(bios->data[hwsq_entry_offset]));
	bytes_to_write -= 4;

	/* write ucode */
	for (i = 0; i < bytes_to_write; i += 4)
		bios_wr32(bios, 0x00001400 + i, ROM32(bios->data[hwsq_entry_offset + i + 4]));

	/* twiddle NV_PBUS_DEBUG_4 */
	bios_wr32(bios, NV_PBUS_DEBUG_4, bios_rd32(bios, NV_PBUS_DEBUG_4) | 0x18);

	return 0;
}

static int load_nv17_hw_sequencer_ucode(struct drm_device *dev,
					struct nvbios *bios)
{
	/*
	 * BMP based cards, from NV17, need a microcode loading to correctly
	 * control the GPIO etc for LVDS panels
	 *
	 * BIT based cards seem to do this directly in the init scripts
	 *
	 * The microcode entries are found by the "HWSQ" signature.
	 */

	const uint8_t hwsq_signature[] = { 'H', 'W', 'S', 'Q' };
	const int sz = sizeof(hwsq_signature);
	int hwsq_offset;

	hwsq_offset = findstr(bios->data, bios->length, hwsq_signature, sz);
	if (!hwsq_offset)
		return 0;

	/* always use entry 0? */
	return load_nv17_hwsq_ucode_entry(dev, bios, hwsq_offset + sz, 0);
}

uint8_t *nouveau_bios_embedded_edid(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
5918
	struct nvbios *bios = &dev_priv->vbios;
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
	const uint8_t edid_sig[] = {
			0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 };
	uint16_t offset = 0;
	uint16_t newoffset;
	int searchlen = NV_PROM_SIZE;

	if (bios->fp.edid)
		return bios->fp.edid;

	while (searchlen) {
		newoffset = findstr(&bios->data[offset], searchlen,
								edid_sig, 8);
		if (!newoffset)
			return NULL;
		offset += newoffset;
		if (!nv_cksum(&bios->data[offset], EDID1_LEN))
			break;

		searchlen -= offset;
		offset++;
	}

	NV_TRACE(dev, "Found EDID in BIOS\n");

	return bios->fp.edid = &bios->data[offset];
}

void
nouveau_bios_run_init_table(struct drm_device *dev, uint16_t table,
			    struct dcb_entry *dcbent)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
5951
	struct nvbios *bios = &dev_priv->vbios;
5952 5953
	struct init_exec iexec = { true, false };

5954
	mutex_lock(&bios->lock);
5955 5956 5957
	bios->display.output = dcbent;
	parse_init_table(bios, table, &iexec);
	bios->display.output = NULL;
5958
	mutex_unlock(&bios->lock);
5959 5960 5961 5962 5963
}

static bool NVInitVBIOS(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
5964
	struct nvbios *bios = &dev_priv->vbios;
5965 5966

	memset(bios, 0, sizeof(struct nvbios));
5967
	mutex_init(&bios->lock);
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
	bios->dev = dev;

	if (!NVShadowVBIOS(dev, bios->data))
		return false;

	bios->length = NV_PROM_SIZE;
	return true;
}

static int nouveau_parse_vbios_struct(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
5980
	struct nvbios *bios = &dev_priv->vbios;
5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
	const uint8_t bit_signature[] = { 0xff, 0xb8, 'B', 'I', 'T' };
	const uint8_t bmp_signature[] = { 0xff, 0x7f, 'N', 'V', 0x0 };
	int offset;

	offset = findstr(bios->data, bios->length,
					bit_signature, sizeof(bit_signature));
	if (offset) {
		NV_TRACE(dev, "BIT BIOS found\n");
		return parse_bit_structure(bios, offset + 6);
	}

	offset = findstr(bios->data, bios->length,
					bmp_signature, sizeof(bmp_signature));
	if (offset) {
		NV_TRACE(dev, "BMP BIOS found\n");
		return parse_bmp_structure(dev, bios, offset);
	}

	NV_ERROR(dev, "No known BIOS signature found\n");
	return -ENODEV;
}

int
nouveau_run_vbios_init(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
6007
	struct nvbios *bios = &dev_priv->vbios;
6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037
	int i, ret = 0;

	NVLockVgaCrtcs(dev, false);
	if (nv_two_heads(dev))
		NVSetOwner(dev, bios->state.crtchead);

	if (bios->major_version < 5)	/* BMP only */
		load_nv17_hw_sequencer_ucode(dev, bios);

	if (bios->execute) {
		bios->fp.last_script_invoc = 0;
		bios->fp.lvds_init_run = false;
	}

	parse_init_tables(bios);

	/*
	 * Runs some additional script seen on G8x VBIOSen.  The VBIOS'
	 * parser will run this right after the init tables, the binary
	 * driver appears to run it at some point later.
	 */
	if (bios->some_script_ptr) {
		struct init_exec iexec = {true, false};

		NV_INFO(dev, "Parsing VBIOS init table at offset 0x%04X\n",
			bios->some_script_ptr);
		parse_init_table(bios, bios->some_script_ptr, &iexec);
	}

	if (dev_priv->card_type >= NV_50) {
6038
		for (i = 0; i < bios->dcb.entries; i++) {
6039
			nouveau_bios_run_display_table(dev,
6040
						       &bios->dcb.entry[i],
6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
						       0, 0);
		}
	}

	NVLockVgaCrtcs(dev, true);

	return ret;
}

static void
nouveau_bios_i2c_devices_takedown(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
6054
	struct nvbios *bios = &dev_priv->vbios;
6055 6056 6057
	struct dcb_i2c_entry *entry;
	int i;

6058
	entry = &bios->dcb.i2c[0];
6059 6060 6061 6062 6063 6064 6065 6066
	for (i = 0; i < DCB_MAX_NUM_I2C_ENTRIES; i++, entry++)
		nouveau_i2c_fini(dev, entry);
}

int
nouveau_bios_init(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
6067
	struct nvbios *bios = &dev_priv->vbios;
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
	uint32_t saved_nv_pextdev_boot_0;
	bool was_locked;
	int ret;

	if (!NVInitVBIOS(dev))
		return -ENODEV;

	ret = nouveau_parse_vbios_struct(dev);
	if (ret)
		return ret;

	ret = parse_dcb_table(dev, bios, nv_two_heads(dev));
	if (ret)
		return ret;

	fixup_legacy_i2c(bios);
	fixup_legacy_connector(bios);

	if (!bios->major_version)	/* we don't run version 0 bios */
		return 0;

	/* these will need remembering across a suspend */
	saved_nv_pextdev_boot_0 = bios_rd32(bios, NV_PEXTDEV_BOOT_0);
	bios->state.saved_nv_pfb_cfg0 = bios_rd32(bios, NV_PFB_CFG0);

	/* init script execution disabled */
	bios->execute = false;

	/* ... unless card isn't POSTed already */
	if (dev_priv->card_type >= NV_10 &&
	    NVReadVgaCrtc(dev, 0, 0x00) == 0 &&
	    NVReadVgaCrtc(dev, 0, 0x1a) == 0) {
		NV_INFO(dev, "Adaptor not initialised\n");
		if (dev_priv->card_type < NV_50) {
			NV_ERROR(dev, "Unable to POST this chipset\n");
			return -ENODEV;
		}

		NV_INFO(dev, "Running VBIOS init tables\n");
		bios->execute = true;
	}

	bios_wr32(bios, NV_PEXTDEV_BOOT_0, saved_nv_pextdev_boot_0);

	ret = nouveau_run_vbios_init(dev);
6113
	if (ret)
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136
		return ret;

	/* feature_byte on BMP is poor, but init always sets CR4B */
	was_locked = NVLockVgaCrtcs(dev, false);
	if (bios->major_version < 5)
		bios->is_mobile = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_4B) & 0x40;

	/* all BIT systems need p_f_m_t for digital_min_front_porch */
	if (bios->is_mobile || bios->major_version >= 5)
		ret = parse_fp_mode_table(dev, bios);
	NVLockVgaCrtcs(dev, was_locked);

	/* allow subsequent scripts to execute */
	bios->execute = true;

	return 0;
}

void
nouveau_bios_takedown(struct drm_device *dev)
{
	nouveau_bios_i2c_devices_takedown(dev);
}