sonixb.c 46.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 *		sonix sn9c102 (bayer) library
 *		Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
 * Add Pas106 Stefano Mozzi (C) 2004
 *
 * V4L2 by Jean-Francois Moine <http://moinejf.free.fr>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Some documentation on known sonixb registers:

Reg	Use
0x10	high nibble red gain low nibble blue gain
0x11	low nibble green gain
0x12	hstart
0x13	vstart
0x15	hsize (hsize = register-value * 16)
0x16	vsize (vsize = register-value * 16)
0x17	bit 0 toggle compression quality (according to sn9c102 driver)
0x18	bit 7 enables compression, bit 4-5 set image down scaling:
	00 scale 1, 01 scale 1/2, 10, scale 1/4
0x19	high-nibble is sensor clock divider, changes exposure on sensors which
	use a clock generated by the bridge. Some sensors have their own clock.
0x1c	auto_exposure area (for avg_lum) startx (startx = register-value * 32)
0x1d	auto_exposure area (for avg_lum) starty (starty = register-value * 32)
0x1e	auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
0x1f	auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
*/

43 44
#define MODULE_NAME "sonixb"

45
#include <linux/input.h>
46 47 48 49 50 51 52 53 54
#include "gspca.h"

MODULE_AUTHOR("Michel Xhaard <mxhaard@users.sourceforge.net>");
MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
MODULE_LICENSE("GPL");

/* specific webcam descriptor */
struct sd {
	struct gspca_dev gspca_dev;	/* !! must be the first item */
55
	atomic_t avg_lum;
56
	int prev_avg_lum;
57 58
	int exp_too_low_cnt;
	int exp_too_high_cnt;
59 60
	int header_read;
	u8 header[12]; /* Header without sof marker */
61

62
	unsigned short exposure;
63
	unsigned char gain;
64
	unsigned char brightness;
65 66
	unsigned char autogain;
	unsigned char autogain_ignore_frames;
67
	unsigned char frames_to_drop;
68
	unsigned char freq;		/* light freq filter setting */
69

70 71 72 73 74 75
	__u8 bridge;			/* Type of bridge */
#define BRIDGE_101 0
#define BRIDGE_102 0 /* We make no difference between 101 and 102 */
#define BRIDGE_103 1

	__u8 sensor;			/* Type of image sensor chip */
76 77 78 79 80 81 82 83 84
#define SENSOR_HV7131D 0
#define SENSOR_HV7131R 1
#define SENSOR_OV6650 2
#define SENSOR_OV7630 3
#define SENSOR_PAS106 4
#define SENSOR_PAS202 5
#define SENSOR_TAS5110C 6
#define SENSOR_TAS5110D 7
#define SENSOR_TAS5130CXX 8
85
	__u8 reg11;
86 87
};

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
typedef const __u8 sensor_init_t[8];

struct sensor_data {
	const __u8 *bridge_init[2];
	int bridge_init_size[2];
	sensor_init_t *sensor_init;
	int sensor_init_size;
	sensor_init_t *sensor_bridge_init[2];
	int sensor_bridge_init_size[2];
	int flags;
	unsigned ctrl_dis;
	__u8 sensor_addr;
};

/* sensor_data flags */
103
#define F_GAIN 0x01		/* has gain */
104
#define F_SIF  0x02		/* sif or vga */
105
#define F_COARSE_EXPO 0x04	/* exposure control is coarse */
106 107 108

/* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
#define MODE_RAW 0x10		/* raw bayer mode */
109
#define MODE_REDUCED_SIF 0x20	/* vga mode (320x240 / 160x120) on sif cam */
110 111

/* ctrl_dis helper macros */
112 113
#define NO_EXPO ((1 << EXPOSURE_IDX) | (1 << COARSE_EXPOSURE_IDX) | \
		 (1 << AUTOGAIN_IDX))
114 115
#define NO_FREQ (1 << FREQ_IDX)
#define NO_BRIGHTNESS (1 << BRIGHTNESS_IDX)
116

117 118 119 120 121 122 123 124 125
#define COMP2 0x8f
#define COMP 0xc7		/* 0x87 //0x07 */
#define COMP1 0xc9		/* 0x89 //0x09 */

#define MCK_INIT 0x63
#define MCK_INIT1 0x20		/*fixme: Bayer - 0x50 for JPEG ??*/

#define SYS_CLK 0x04

126 127 128 129 130 131 132 133 134 135 136 137
#define SENS(bridge_1, bridge_3, sensor, sensor_1, \
	sensor_3, _flags, _ctrl_dis, _sensor_addr) \
{ \
	.bridge_init = { bridge_1, bridge_3 }, \
	.bridge_init_size = { sizeof(bridge_1), sizeof(bridge_3) }, \
	.sensor_init = sensor, \
	.sensor_init_size = sizeof(sensor), \
	.sensor_bridge_init = { sensor_1, sensor_3,}, \
	.sensor_bridge_init_size = { sizeof(sensor_1), sizeof(sensor_3)}, \
	.flags = _flags, .ctrl_dis = _ctrl_dis, .sensor_addr = _sensor_addr \
}

138
/* We calculate the autogain at the end of the transfer of a frame, at this
139 140 141 142
   moment a frame with the old settings is being captured and transmitted. So
   if we adjust the gain or exposure we must ignore atleast the next frame for
   the new settings to come into effect before doing any other adjustments. */
#define AUTOGAIN_IGNORE_FRAMES 1
143

144 145 146
/* V4L2 controls supported by the driver */
static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
147 148 149 150 151 152
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val);
153 154
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
155

156
static const struct ctrl sd_ctrls[] = {
157
#define BRIGHTNESS_IDX 0
158 159 160 161 162 163 164 165
	{
	    {
		.id      = V4L2_CID_BRIGHTNESS,
		.type    = V4L2_CTRL_TYPE_INTEGER,
		.name    = "Brightness",
		.minimum = 0,
		.maximum = 255,
		.step    = 1,
166 167
#define BRIGHTNESS_DEF 127
		.default_value = BRIGHTNESS_DEF,
168 169 170 171
	    },
	    .set = sd_setbrightness,
	    .get = sd_getbrightness,
	},
172
#define GAIN_IDX 1
173 174
	{
	    {
175
		.id      = V4L2_CID_GAIN,
176
		.type    = V4L2_CTRL_TYPE_INTEGER,
177
		.name    = "Gain",
178
		.minimum = 0,
179
		.maximum = 255,
180
		.step    = 1,
181
#define GAIN_DEF 127
182
#define GAIN_KNEE 230
183
		.default_value = GAIN_DEF,
184
	    },
185 186 187
	    .set = sd_setgain,
	    .get = sd_getgain,
	},
188
#define EXPOSURE_IDX 2
189 190 191 192 193
	{
		{
			.id = V4L2_CID_EXPOSURE,
			.type = V4L2_CTRL_TYPE_INTEGER,
			.name = "Exposure",
194 195
#define EXPOSURE_DEF  66 /*  33 ms / 30 fps (except on PASXXX) */
#define EXPOSURE_KNEE 200 /* 100 ms / 10 fps (except on PASXXX) */
196
			.minimum = 0,
197
			.maximum = 1023,
198 199 200 201 202 203 204
			.step = 1,
			.default_value = EXPOSURE_DEF,
			.flags = 0,
		},
		.set = sd_setexposure,
		.get = sd_getexposure,
	},
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
#define COARSE_EXPOSURE_IDX 3
	{
		{
			.id = V4L2_CID_EXPOSURE,
			.type = V4L2_CTRL_TYPE_INTEGER,
			.name = "Exposure",
#define COARSE_EXPOSURE_DEF  2 /* 30 fps */
			.minimum = 2,
			.maximum = 15,
			.step = 1,
			.default_value = COARSE_EXPOSURE_DEF,
			.flags = 0,
		},
		.set = sd_setexposure,
		.get = sd_getexposure,
	},
#define AUTOGAIN_IDX 4
222 223 224 225 226 227 228 229
	{
		{
			.id = V4L2_CID_AUTOGAIN,
			.type = V4L2_CTRL_TYPE_BOOLEAN,
			.name = "Automatic Gain (and Exposure)",
			.minimum = 0,
			.maximum = 1,
			.step = 1,
230 231
#define AUTOGAIN_DEF 1
			.default_value = AUTOGAIN_DEF,
232 233 234 235
			.flags = 0,
		},
		.set = sd_setautogain,
		.get = sd_getautogain,
236
	},
237
#define FREQ_IDX 5
238 239 240 241 242 243 244 245
	{
		{
			.id	 = V4L2_CID_POWER_LINE_FREQUENCY,
			.type    = V4L2_CTRL_TYPE_MENU,
			.name    = "Light frequency filter",
			.minimum = 0,
			.maximum = 2,	/* 0: 0, 1: 50Hz, 2:60Hz */
			.step    = 1,
246
#define FREQ_DEF 0
247 248 249 250 251
			.default_value = FREQ_DEF,
		},
		.set = sd_setfreq,
		.get = sd_getfreq,
	},
252 253
};

254
static const struct v4l2_pix_format vga_mode[] = {
255 256
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
257
		.sizeimage = 160 * 120,
258 259
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2 | MODE_RAW},
260 261
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
262
		.sizeimage = 160 * 120 * 5 / 4,
263 264 265 266
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2},
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
267
		.sizeimage = 320 * 240 * 5 / 4,
268 269 270 271
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 640,
272
		.sizeimage = 640 * 480 * 5 / 4,
273 274
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
275
};
276
static const struct v4l2_pix_format sif_mode[] = {
277 278 279 280 281 282 283 284 285 286
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_REDUCED_SIF},
287 288
	{176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 176,
289
		.sizeimage = 176 * 144,
290 291
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW},
292 293
	{176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 176,
294
		.sizeimage = 176 * 144 * 5 / 4,
295 296
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
297 298 299 300 301
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0 | MODE_REDUCED_SIF},
302 303
	{352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 352,
304
		.sizeimage = 352 * 288 * 5 / 4,
305 306
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
307 308
};

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
static const __u8 initHv7131d[] = {
	0x04, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
	0x00, 0x00, 0x00, 0x02, 0x02, 0x00,
	0x28, 0x1e, 0x60, 0x8e, 0x42,
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c
};
static const __u8 hv7131d_sensor_init[][8] = {
	{0xa0, 0x11, 0x01, 0x04, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x28, 0x00, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x30, 0x30, 0x00, 0x00, 0x00, 0x17}, /* reset level */
	{0xa0, 0x11, 0x34, 0x02, 0x00, 0x00, 0x00, 0x17}, /* pixel bias volt */
};

static const __u8 initHv7131r[] = {
325 326
	0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
327
	0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
328 329 330
	0x28, 0x1e, 0x60, 0x8a, 0x20,
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c
};
331
static const __u8 hv7131r_sensor_init[][8] = {
332 333 334 335 336 337 338 339 340
	{0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
	{0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
	{0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
	{0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
	{0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
};
static const __u8 initOv6650[] = {
	0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
	0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
341
	0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
342
	0x10, 0x1d, 0x10, 0x02, 0x02, 0x09, 0x07
343
};
344
static const __u8 ov6650_sensor_init[][8] = {
345
	/* Bright, contrast, etc are set through SCBB interface.
346
	 * AVCAP on win2 do not send any data on this controls. */
347
	/* Anyway, some registers appears to alter bright and constrat */
348 349

	/* Reset sensor */
350
	{0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
351
	/* Set clock register 0x11 low nibble is clock divider */
352
	{0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
353
	/* Next some unknown stuff */
354 355 356 357 358 359 360
	{0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
/*	{0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
		 * THIS SET GREEN SCREEN
		 * (pixels could be innverted in decode kind of "brg",
		 * but blue wont be there. Avoid this data ... */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
361
	{0xa0, 0x60, 0x30, 0x3d, 0x0a, 0xd8, 0xa4, 0x10},
362 363 364 365 366 367 368 369 370
	/* Enable rgb brightness control */
	{0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
	/* HDG: Note windows uses the line below, which sets both register 0x60
	   and 0x61 I believe these registers of the ov6650 are identical as
	   those of the ov7630, because if this is true the windows settings
	   add a bit additional red gain and a lot additional blue gain, which
	   matches my findings that the windows settings make blue much too
	   blue and red a little too red.
	{0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
371
	/* Some more unknown stuff */
372 373 374
	{0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
	{0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
};
375

376 377 378
static const __u8 initOv7630[] = {
	0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,	/* r01 .. r08 */
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,	/* r09 .. r10 */
379
	0x00, 0x01, 0x01, 0x0a,				/* r11 .. r14 */
380
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
381
	0x68, COMP2, MCK_INIT1,				/* r17 .. r19 */
382 383 384 385
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c		/* r1a .. r1f */
};
static const __u8 initOv7630_3[] = {
	0x44, 0x44, 0x00, 0x1a, 0x20, 0x20, 0x20, 0x80,	/* r01 .. r08 */
386
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,	/* r09 .. r10 */
387
	0x00, 0x02, 0x01, 0x0a,				/* r11 .. r14 */
388
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
389 390 391 392
	0x68, 0x8f, MCK_INIT1,				/* r17 .. r19 */
	0x1d, 0x10, 0x02, 0x03, 0x0f, 0x0c, 0x00,	/* r1a .. r20 */
	0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, /* r21 .. r28 */
	0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0, 0xf0, 0xff  /* r29 .. r30 */
393
};
394
static const __u8 ov7630_sensor_init[][8] = {
395 396 397
	{0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
	{0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
/*	{0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10},	   jfm */
398
	{0xd0, 0x21, 0x12, 0x1c, 0x00, 0x80, 0x34, 0x10},	/* jfm */
399 400 401 402 403 404 405
	{0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
	{0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
406 407
	{0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
/*	{0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10},	 * jfm */
408 409 410 411 412 413 414 415
	{0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
	{0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
	{0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
	{0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
	{0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
};

416 417 418 419
static const __u8 ov7630_sensor_init_3[][8] = {
	{0xa0, 0x21, 0x13, 0x80, 0x00,	0x00, 0x00, 0x10},
};

420 421 422
static const __u8 initPas106[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
423
	0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
424
	0x16, 0x12, 0x24, COMP1, MCK_INIT1,
425
	0x18, 0x10, 0x02, 0x02, 0x09, 0x07
426 427
};
/* compression 0x86 mckinit1 0x2b */
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

/* "Known" PAS106B registers:
  0x02 clock divider
  0x03 Variable framerate bits 4-11
  0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !!
       The variable framerate control must never be set lower then 300,
       which sets the framerate at 90 / reg02, otherwise vsync is lost.
  0x05 Shutter Time Line Offset, this can be used as an exposure control:
       0 = use full frame time, 255 = no exposure at all
       Note this may never be larger then "var-framerate control" / 2 - 2.
       When var-framerate control is < 514, no exposure is reached at the max
       allowed value for the framerate control value, rather then at 255.
  0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but
       only a very little bit, leave at 0xcd
  0x07 offset sign bit (bit0 1 > negative offset)
  0x08 offset
  0x09 Blue Gain
  0x0a Green1 Gain
  0x0b Green2 Gain
  0x0c Red Gain
  0x0e Global gain
  0x13 Write 1 to commit settings to sensor
*/

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
static const __u8 pas106_sensor_init[][8] = {
	/* Pixel Clock Divider 6 */
	{ 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time MSB (also seen as 0x12) */
	{ 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time LSB (also seen as 0x05) */
	{ 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Line Offset (also seen as 0x6d) */
	{ 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Pixel Offset (also seen as 0xb1) */
	{ 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Sign (also seen 0x00) */
	{ 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Level (also seen 0x01) */
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain B Pixel 5 a */
	{ 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G1 Pixel 1 5 */
	{ 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G2 Pixel 1 0 5 */
	{ 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain R Pixel 3 1 */
	{ 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color GainH  Pixel */
	{ 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* Global Gain */
	{ 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
	/* Contrast */
	{ 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* H&V synchro polarity */
	{ 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* DAC scale */
	{ 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
	/* Validate Settings */
	{ 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
492
};
493

494 495 496
static const __u8 initPas202[] = {
	0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
497
	0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
498
	0x28, 0x1e, 0x20, 0x89, 0x20,
499 500
	0x00, 0x00, 0x02, 0x03, 0x0f, 0x0c
};
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518

/* "Known" PAS202BCB registers:
  0x02 clock divider
  0x04 Variable framerate bits 6-11 (*)
  0x05 Var framerate  bits 0-5, one must leave the 2 msb's at 0 !!
  0x07 Blue Gain
  0x08 Green Gain
  0x09 Red Gain
  0x0b offset sign bit (bit0 1 > negative offset)
  0x0c offset
  0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too,
       leave at 1 otherwise we get a jump in our exposure control
  0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all
  0x10 Master gain 0 - 31
  0x11 write 1 to apply changes
  (*) The variable framerate control must never be set lower then 500
      which sets the framerate at 30 / reg02, otherwise vsync is lost.
*/
519
static const __u8 pas202_sensor_init[][8] = {
520 521 522 523
	/* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like
	   to set it lower, but for some reason the bridge starts missing
	   vsync's then */
	{0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10},
524 525
	{0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
	{0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
526
	{0xd0, 0x40, 0x0c, 0x00, 0x0c, 0x01, 0x32, 0x10},
527 528 529 530 531 532 533 534
	{0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
};

535
static const __u8 initTas5110c[] = {
536 537
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
538
	0x00, 0x00, 0x00, 0x45, 0x09, 0x0a,
539 540 541
	0x16, 0x12, 0x60, 0x86, 0x2b,
	0x14, 0x0a, 0x02, 0x02, 0x09, 0x07
};
542 543 544 545
/* Same as above, except a different hstart */
static const __u8 initTas5110d[] = {
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
546
	0x00, 0x00, 0x00, 0x41, 0x09, 0x0a,
547 548 549
	0x16, 0x12, 0x60, 0x86, 0x2b,
	0x14, 0x0a, 0x02, 0x02, 0x09, 0x07
};
550 551 552 553 554 555 556 557 558
static const __u8 tas5110_sensor_init[][8] = {
	{0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
	{0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
	{0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17},
};

static const __u8 initTas5130[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
559
	0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a,
560 561 562 563
	0x28, 0x1e, 0x60, COMP, MCK_INIT,
	0x18, 0x10, 0x04, 0x03, 0x11, 0x0c
};
static const __u8 tas5130_sensor_init[][8] = {
564
/*	{0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
565 566 567 568 569 570
					* shutter 0x47 short exposure? */
	{0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
					/* shutter 0x01 long exposure */
	{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
};

571
static struct sensor_data sensor_data[] = {
572 573
SENS(initHv7131d, NULL, hv7131d_sensor_init, NULL, NULL, F_GAIN, NO_BRIGHTNESS|NO_FREQ, 0),
SENS(initHv7131r, NULL, hv7131r_sensor_init, NULL, NULL, 0, NO_BRIGHTNESS|NO_EXPO|NO_FREQ, 0),
574
SENS(initOv6650, NULL, ov6650_sensor_init, NULL, NULL, F_GAIN|F_SIF, 0, 0x60),
575 576
SENS(initOv7630, initOv7630_3, ov7630_sensor_init, NULL, ov7630_sensor_init_3,
	F_GAIN, 0, 0x21),
577
SENS(initPas106, NULL, pas106_sensor_init, NULL, NULL, F_GAIN|F_SIF, NO_FREQ,
578
	0),
579 580
SENS(initPas202, initPas202, pas202_sensor_init, NULL, NULL, F_GAIN,
	NO_FREQ, 0),
581 582 583 584
SENS(initTas5110c, NULL, tas5110_sensor_init, NULL, NULL,
	F_GAIN|F_SIF|F_COARSE_EXPO, NO_BRIGHTNESS|NO_FREQ, 0),
SENS(initTas5110d, NULL, tas5110_sensor_init, NULL, NULL,
	F_GAIN|F_SIF|F_COARSE_EXPO, NO_BRIGHTNESS|NO_FREQ, 0),
585 586 587 588
SENS(initTas5130, NULL, tas5130_sensor_init, NULL, NULL, 0, NO_EXPO|NO_FREQ,
	0),
};

589 590 591
/* get one byte in gspca_dev->usb_buf */
static void reg_r(struct gspca_dev *gspca_dev,
		  __u16 value)
592
{
593 594
	usb_control_msg(gspca_dev->dev,
			usb_rcvctrlpipe(gspca_dev->dev, 0),
595 596 597 598
			0,			/* request */
			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
599
			gspca_dev->usb_buf, 1,
600 601 602
			500);
}

603 604 605 606
static void reg_w(struct gspca_dev *gspca_dev,
		  __u16 value,
		  const __u8 *buffer,
		  int len)
607
{
608
#ifdef GSPCA_DEBUG
609
	if (len > USB_BUF_SZ) {
610 611 612 613
		PDEBUG(D_ERR|D_PACK, "reg_w: buffer overflow");
		return;
	}
#endif
614 615 616 617 618 619 620 621 622 623 624 625
	memcpy(gspca_dev->usb_buf, buffer, len);
	usb_control_msg(gspca_dev->dev,
			usb_sndctrlpipe(gspca_dev->dev, 0),
			0x08,			/* request */
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
			gspca_dev->usb_buf, len,
			500);
}

static int i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer)
626 627 628 629
{
	int retry = 60;

	/* is i2c ready */
630
	reg_w(gspca_dev, 0x08, buffer, 8);
631 632
	while (retry--) {
		msleep(10);
633
		reg_r(gspca_dev, 0x08);
634 635 636
		if (gspca_dev->usb_buf[0] & 0x04) {
			if (gspca_dev->usb_buf[0] & 0x08)
				return -1;
637
			return 0;
638
		}
639 640 641 642
	}
	return -1;
}

643
static void i2c_w_vector(struct gspca_dev *gspca_dev,
644 645 646
			const __u8 buffer[][8], int len)
{
	for (;;) {
647
		reg_w(gspca_dev, 0x08, *buffer, 8);
648 649 650 651 652 653 654 655 656 657 658 659 660
		len -= 8;
		if (len <= 0)
			break;
		buffer++;
	}
}

static void setbrightness(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 value;

	switch (sd->sensor) {
661
	case  SENSOR_OV6650:
662 663
	case  SENSOR_OV7630: {
		__u8 i2cOV[] =
664
			{0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
665 666

		/* change reg 0x06 */
667
		i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
668
		i2cOV[3] = sd->brightness;
669
		if (i2c_w(gspca_dev, i2cOV) < 0)
670 671 672
			goto err;
		break;
	    }
673
	case SENSOR_PAS106:
674
	case SENSOR_PAS202: {
675 676
		__u8 i2cpbright[] =
			{0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16};
677
		__u8 i2cpdoit[] =
678 679
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};

680 681 682 683 684 685
		/* PAS106 uses reg 7 and 8 instead of b and c */
		if (sd->sensor == SENSOR_PAS106) {
			i2cpbright[2] = 7;
			i2cpdoit[2] = 0x13;
		}

686 687 688 689 690 691 692 693 694
		if (sd->brightness < 127) {
			/* change reg 0x0b, signreg */
			i2cpbright[3] = 0x01;
			/* set reg 0x0c, offset */
			i2cpbright[4] = 127 - sd->brightness;
		} else
			i2cpbright[4] = sd->brightness - 127;

		if (i2c_w(gspca_dev, i2cpbright) < 0)
695
			goto err;
696
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
697 698 699
			goto err;
		break;
	    }
700
	case SENSOR_TAS5130CXX: {
701 702 703 704 705 706
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

		value = 0xff - sd->brightness;
		i2c[4] = value;
		PDEBUG(D_CONF, "brightness %d : %d", value, i2c[4]);
707
		if (i2c_w(gspca_dev, i2c) < 0)
708 709 710 711 712 713 714 715
			goto err;
		break;
	    }
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error brightness");
}
716 717 718 719

static void setsensorgain(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
720
	unsigned char gain = sd->gain;
721 722

	switch (sd->sensor) {
723 724 725 726 727 728 729
	case SENSOR_HV7131D: {
		__u8 i2c[] =
			{0xc0, 0x11, 0x31, 0x00, 0x00, 0x00, 0x00, 0x17};

		i2c[3] = 0x3f - (sd->gain / 4);
		i2c[4] = 0x3f - (sd->gain / 4);
		i2c[5] = 0x3f - (sd->gain / 4);
730

731 732 733 734
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
735 736
	case SENSOR_TAS5110C:
	case SENSOR_TAS5110D: {
737 738 739
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

740
		i2c[4] = 255 - gain;
741
		if (i2c_w(gspca_dev, i2c) < 0)
742
			goto err;
743 744
		break;
	    }
745

746 747 748
	case SENSOR_OV6650:
		gain >>= 1;
		/* fall thru */
749
	case SENSOR_OV7630: {
750
		__u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
751

752
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
753
		i2c[3] = gain >> 2;
754 755 756 757
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
758
	case SENSOR_PAS106:
759 760
	case SENSOR_PAS202: {
		__u8 i2cpgain[] =
761
			{0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15};
762 763
		__u8 i2cpcolorgain[] =
			{0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15};
764 765 766 767 768 769 770 771 772 773
		__u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};

		/* PAS106 uses different regs (and has split green gains) */
		if (sd->sensor == SENSOR_PAS106) {
			i2cpgain[2] = 0x0e;
			i2cpcolorgain[0] = 0xd0;
			i2cpcolorgain[2] = 0x09;
			i2cpdoit[2] = 0x13;
		}
774 775 776 777 778

		i2cpgain[3] = sd->gain >> 3;
		i2cpcolorgain[3] = sd->gain >> 4;
		i2cpcolorgain[4] = sd->gain >> 4;
		i2cpcolorgain[5] = sd->gain >> 4;
779
		i2cpcolorgain[6] = sd->gain >> 4;
780 781 782 783 784 785 786 787 788

		if (i2c_w(gspca_dev, i2cpgain) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpcolorgain) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
			goto err;
		break;
	    }
789 790 791 792 793 794 795
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error gain");
}

static void setgain(struct gspca_dev *gspca_dev)
796 797 798
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 gain;
799 800 801 802 803 804 805
	__u8 buf[2] = { 0, 0 };

	if (sensor_data[sd->sensor].flags & F_GAIN) {
		/* Use the sensor gain to do the actual gain */
		setsensorgain(gspca_dev);
		return;
	}
806

807
	gain = sd->gain >> 4;
808

809
	/* red and blue gain */
810
	buf[0] = gain << 4 | gain;
811
	/* green gain */
812 813
	buf[1] = gain;
	reg_w(gspca_dev, 0x10, buf, 2);
814 815 816 817 818 819 820
}

static void setexposure(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	case SENSOR_HV7131D: {
		/* Note the datasheet wrongly says line mode exposure uses reg
		   0x26 and 0x27, testing has shown 0x25 + 0x26 */
		__u8 i2c[] = {0xc0, 0x11, 0x25, 0x00, 0x00, 0x00, 0x00, 0x17};
		/* The HV7131D's exposure goes from 0 - 65535, we scale our
		   exposure of 0-1023 to 0-6138. There are 2 reasons for this:
		   1) This puts our exposure knee of 200 at approx the point
		      where the framerate starts dropping
		   2) At 6138 the framerate has already dropped to 2 fps,
		      going any lower makes little sense */
		__u16 reg = sd->exposure * 6;
		i2c[3] = reg >> 8;
		i2c[4] = reg & 0xff;
		if (i2c_w(gspca_dev, i2c) != 0)
			goto err;
		break;
	    }
838 839
	case SENSOR_TAS5110C:
	case SENSOR_TAS5110D: {
840 841 842
		/* register 19's high nibble contains the sn9c10x clock divider
		   The high nibble configures the no fps according to the
		   formula: 60 / high_nibble. With a maximum of 30 fps */
843
		__u8 reg = sd->exposure;
844
		reg = (reg << 4) | 0x0b;
845
		reg_w(gspca_dev, 0x19, &reg, 1);
846 847
		break;
	    }
848
	case SENSOR_OV6650:
849
	case SENSOR_OV7630: {
850 851
		/* The ov6650 / ov7630 have 2 registers which both influence
		   exposure, register 11, whose low nibble sets the nr off fps
852 853 854 855 856 857 858 859 860 861 862 863
		   according to: fps = 30 / (low_nibble + 1)

		   The fps configures the maximum exposure setting, but it is
		   possible to use less exposure then what the fps maximum
		   allows by setting register 10. register 10 configures the
		   actual exposure as quotient of the full exposure, with 0
		   being no exposure at all (not very usefull) and reg10_max
		   being max exposure possible at that framerate.

		   The code maps our 0 - 510 ms exposure ctrl to these 2
		   registers, trying to keep fps as high as possible.
		*/
864 865 866
		__u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
		int reg10, reg11, reg10_max;

867 868 869 870 871
		/* ov6645 datasheet says reg10_max is 9a, but that uses
		   tline * 2 * reg10 as formula for calculating texpo, the
		   ov6650 probably uses the same formula as the 7730 which uses
		   tline * 4 * reg10, which explains why the reg10max we've
		   found experimentally for the ov6650 is exactly half that of
872
		   the ov6645. The ov7630 datasheet says the max is 0x41. */
873 874 875 876 877
		if (sd->sensor == SENSOR_OV6650) {
			reg10_max = 0x4d;
			i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
		} else
			reg10_max = 0x41;
878

879
		reg11 = (15 * sd->exposure + 999) / 1000;
880 881 882 883 884
		if (reg11 < 1)
			reg11 = 1;
		else if (reg11 > 16)
			reg11 = 16;

885 886 887 888 889
		/* In 640x480, if the reg11 has less than 4, the image is
		   unstable (the bridge goes into a higher compression mode
		   which we have not reverse engineered yet). */
		if (gspca_dev->width == 640 && reg11 < 4)
			reg11 = 4;
890

891
		/* frame exposure time in ms = 1000 * reg11 / 30    ->
892 893
		reg10 = (sd->exposure / 2) * reg10_max / (1000 * reg11 / 30) */
		reg10 = (sd->exposure * 15 * reg10_max) / (1000 * reg11);
894

895 896 897 898 899 900
		/* Don't allow this to get below 10 when using autogain, the
		   steps become very large (relatively) when below 10 causing
		   the image to oscilate from much too dark, to much too bright
		   and back again. */
		if (sd->autogain && reg10 < 10)
			reg10 = 10;
901 902 903 904
		else if (reg10 > reg10_max)
			reg10 = reg10_max;

		/* Write reg 10 and reg11 low nibble */
905
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
906 907
		i2c[3] = reg10;
		i2c[4] |= reg11 - 1;
908 909

		/* If register 11 didn't change, don't change it */
910
		if (sd->reg11 == reg11)
911 912 913 914 915
			i2c[0] = 0xa0;

		if (i2c_w(gspca_dev, i2c) == 0)
			sd->reg11 = reg11;
		else
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
			goto err;
		break;
	    }
	case SENSOR_PAS202: {
		__u8 i2cpframerate[] =
			{0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16};
		__u8 i2cpexpo[] =
			{0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16};
		const __u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
		int framerate_ctrl;

		/* The exposure knee for the autogain algorithm is 200
		   (100 ms / 10 fps on other sensors), for values below this
		   use the control for setting the partial frame expose time,
		   above that use variable framerate. This way we run at max
		   framerate (640x480@7.5 fps, 320x240@10fps) until the knee
		   is reached. Using the variable framerate control above 200
		   is better then playing around with both clockdiv + partial
		   frame exposure times (like we are doing with the ov chips),
		   as that sometimes leads to jumps in the exposure control,
		   which are bad for auto exposure. */
		if (sd->exposure < 200) {
			i2cpexpo[3] = 255 - (sd->exposure * 255) / 200;
			framerate_ctrl = 500;
		} else {
			/* The PAS202's exposure control goes from 0 - 4095,
			   but anything below 500 causes vsync issues, so scale
			   our 200-1023 to 500-4095 */
			framerate_ctrl = (sd->exposure - 200) * 1000 / 229 +
					 500;
		}

		i2cpframerate[3] = framerate_ctrl >> 6;
		i2cpframerate[4] = framerate_ctrl & 0x3f;
		if (i2c_w(gspca_dev, i2cpframerate) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpexpo) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
			goto err;
957 958
		break;
	    }
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	case SENSOR_PAS106: {
		__u8 i2cpframerate[] =
			{0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14};
		__u8 i2cpexpo[] =
			{0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14};
		const __u8 i2cpdoit[] =
			{0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14};
		int framerate_ctrl;

		/* For values below 150 use partial frame exposure, above
		   that use framerate ctrl */
		if (sd->exposure < 150) {
			i2cpexpo[3] = 150 - sd->exposure;
			framerate_ctrl = 300;
		} else {
			/* The PAS106's exposure control goes from 0 - 4095,
			   but anything below 300 causes vsync issues, so scale
			   our 150-1023 to 300-4095 */
			framerate_ctrl = (sd->exposure - 150) * 1000 / 230 +
					 300;
		}

		i2cpframerate[3] = framerate_ctrl >> 4;
		i2cpframerate[4] = framerate_ctrl & 0x0f;
		if (i2c_w(gspca_dev, i2cpframerate) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpexpo) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
			goto err;
		break;
	    }
991
	}
992 993 994
	return;
err:
	PDEBUG(D_ERR, "i2c error exposure");
995 996
}

997 998 999 1000 1001
static void setfreq(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
1002
	case SENSOR_OV6650:
1003
	case SENSOR_OV7630: {
1004
		/* Framerate adjust register for artificial light 50 hz flicker
1005 1006 1007
		   compensation, for the ov6650 this is identical to ov6630
		   0x2b register, see ov6630 datasheet.
		   0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
1008
		__u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
1009 1010 1011 1012 1013 1014 1015
		switch (sd->freq) {
		default:
/*		case 0:			 * no filter*/
/*		case 2:			 * 60 hz */
			i2c[3] = 0;
			break;
		case 1:			/* 50 hz */
1016 1017
			i2c[3] = (sd->sensor == SENSOR_OV6650)
					? 0x4f : 0x8a;
1018 1019
			break;
		}
1020
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
1021 1022 1023 1024 1025 1026 1027
		if (i2c_w(gspca_dev, i2c) < 0)
			PDEBUG(D_ERR, "i2c error setfreq");
		break;
	    }
	}
}

1028 1029
#include "coarse_expo_autogain.h"

1030 1031
static void do_autogain(struct gspca_dev *gspca_dev)
{
1032
	int deadzone, desired_avg_lum, result;
1033 1034 1035
	struct sd *sd = (struct sd *) gspca_dev;
	int avg_lum = atomic_read(&sd->avg_lum);

1036 1037 1038 1039 1040
	if (avg_lum == -1 || !sd->autogain)
		return;

	if (sd->autogain_ignore_frames > 0) {
		sd->autogain_ignore_frames--;
1041
		return;
1042
	}
1043

1044 1045 1046
	/* SIF / VGA sensors have a different autoexposure area and thus
	   different avg_lum values for the same picture brightness */
	if (sensor_data[sd->sensor].flags & F_SIF) {
1047 1048 1049
		deadzone = 500;
		/* SIF sensors tend to overexpose, so keep this small */
		desired_avg_lum = 5000;
1050
	} else {
1051
		deadzone = 1500;
1052
		desired_avg_lum = 18000;
1053 1054
	}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	if (sensor_data[sd->sensor].flags & F_COARSE_EXPO)
		result = gspca_coarse_grained_expo_autogain(gspca_dev, avg_lum,
				sd->brightness * desired_avg_lum / 127,
				deadzone);
	else
		result = gspca_auto_gain_n_exposure(gspca_dev, avg_lum,
				sd->brightness * desired_avg_lum / 127,
				deadzone, GAIN_KNEE, EXPOSURE_KNEE);

	if (result) {
1065
		PDEBUG(D_FRAM, "autogain: gain changed: gain: %d expo: %d",
1066
			(int)sd->gain, (int)sd->exposure);
1067
		sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
1068
	}
1069 1070 1071 1072 1073 1074 1075 1076
}

/* this function is called at probe time */
static int sd_config(struct gspca_dev *gspca_dev,
			const struct usb_device_id *id)
{
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam;
1077 1078 1079 1080

	reg_r(gspca_dev, 0x00);
	if (gspca_dev->usb_buf[0] != 0x10)
		return -ENODEV;
1081

1082
	/* copy the webcam info from the device id */
1083 1084 1085
	sd->sensor = id->driver_info >> 8;
	sd->bridge = id->driver_info & 0xff;
	gspca_dev->ctrl_dis = sensor_data[sd->sensor].ctrl_dis;
1086 1087

	cam = &gspca_dev->cam;
1088
	if (!(sensor_data[sd->sensor].flags & F_SIF)) {
1089
		cam->cam_mode = vga_mode;
1090
		cam->nmodes = ARRAY_SIZE(vga_mode);
1091 1092
	} else {
		cam->cam_mode = sif_mode;
1093
		cam->nmodes = ARRAY_SIZE(sif_mode);
1094
	}
1095 1096
	cam->npkt = 36;			/* 36 packets per ISOC message */

1097 1098
	sd->brightness = BRIGHTNESS_DEF;
	sd->gain = GAIN_DEF;
1099 1100 1101 1102 1103 1104 1105
	if (sensor_data[sd->sensor].flags & F_COARSE_EXPO) {
		sd->exposure = COARSE_EXPOSURE_DEF;
		gspca_dev->ctrl_dis |= (1 << EXPOSURE_IDX);
	} else {
		sd->exposure = EXPOSURE_DEF;
		gspca_dev->ctrl_dis |= (1 << COARSE_EXPOSURE_IDX);
	}
1106 1107 1108 1109
	if (gspca_dev->ctrl_dis & (1 << AUTOGAIN_IDX))
		sd->autogain = 0; /* Disable do_autogain callback */
	else
		sd->autogain = AUTOGAIN_DEF;
1110
	sd->freq = FREQ_DEF;
1111

1112 1113 1114
	return 0;
}

1115 1116
/* this function is called at probe and resume time */
static int sd_init(struct gspca_dev *gspca_dev)
1117
{
1118 1119 1120 1121
	const __u8 stop = 0x09; /* Disable stream turn of LED */

	reg_w(gspca_dev, 0x01, &stop, 1);

1122 1123 1124 1125
	return 0;
}

/* -- start the camera -- */
1126
static int sd_start(struct gspca_dev *gspca_dev)
1127 1128
{
	struct sd *sd = (struct sd *) gspca_dev;
1129
	struct cam *cam = &gspca_dev->cam;
1130
	int mode, l;
1131
	const __u8 *sn9c10x;
1132
	__u8 reg12_19[8];
1133

1134
	mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
1135 1136
	sn9c10x = sensor_data[sd->sensor].bridge_init[sd->bridge];
	l = sensor_data[sd->sensor].bridge_init_size[sd->bridge];
1137 1138
	memcpy(reg12_19, &sn9c10x[0x12 - 1], 8);
	reg12_19[6] = sn9c10x[0x18 - 1] | (mode << 4);
1139
	/* Special cases where reg 17 and or 19 value depends on mode */
1140
	switch (sd->sensor) {
1141 1142 1143 1144
	case SENSOR_TAS5130CXX:
		/* probably not mode specific at all most likely the upper
		   nibble of 0x19 is exposure (clock divider) just as with
		   the tas5110, we need someone to test this. */
1145
		reg12_19[7] = mode ? 0x23 : 0x43;
1146 1147
		break;
	}
1148
	/* Disable compression when the raw bayer format has been selected */
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
		reg12_19[6] &= ~0x80;

	/* Vga mode emulation on SIF sensor? */
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
		reg12_19[0] += 16; /* 0x12: hstart adjust */
		reg12_19[1] += 24; /* 0x13: vstart adjust */
		reg12_19[3] = 320 / 16; /* 0x15: hsize */
		reg12_19[4] = 240 / 16; /* 0x16: vsize */
	}
1159

1160
	/* reg 0x01 bit 2 video transfert on */
1161
	reg_w(gspca_dev, 0x01, &sn9c10x[0x01 - 1], 1);
1162
	/* reg 0x17 SensorClk enable inv Clk 0x60 */
1163
	reg_w(gspca_dev, 0x17, &sn9c10x[0x17 - 1], 1);
1164
	/* Set the registers from the template */
1165
	reg_w(gspca_dev, 0x01, sn9c10x, l);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

	/* Init the sensor */
	i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
			sensor_data[sd->sensor].sensor_init_size);
	if (sensor_data[sd->sensor].sensor_bridge_init[sd->bridge])
		i2c_w_vector(gspca_dev,
			sensor_data[sd->sensor].sensor_bridge_init[sd->bridge],
			sensor_data[sd->sensor].sensor_bridge_init_size[
				sd->bridge]);

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	/* Mode specific sensor setup */
	switch (sd->sensor) {
	case SENSOR_PAS202: {
		const __u8 i2cpclockdiv[] =
			{0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10};
		/* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */
		if (mode)
			i2c_w(gspca_dev, i2cpclockdiv);
	    }
	}
1186
	/* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
1187
	reg_w(gspca_dev, 0x15, &reg12_19[3], 2);
1188
	/* compression register */
1189
	reg_w(gspca_dev, 0x18, &reg12_19[6], 1);
1190
	/* H_start */
1191
	reg_w(gspca_dev, 0x12, &reg12_19[0], 1);
1192
	/* V_START */
1193
	reg_w(gspca_dev, 0x13, &reg12_19[1], 1);
1194 1195
	/* reset 0x17 SensorClk enable inv Clk 0x60 */
				/*fixme: ov7630 [17]=68 8f (+20 if 102)*/
1196
	reg_w(gspca_dev, 0x17, &reg12_19[5], 1);
1197
	/*MCKSIZE ->3 */	/*fixme: not ov7630*/
1198
	reg_w(gspca_dev, 0x19, &reg12_19[7], 1);
1199
	/* AE_STRX AE_STRY AE_ENDX AE_ENDY */
1200
	reg_w(gspca_dev, 0x1c, &sn9c10x[0x1c - 1], 4);
1201
	/* Enable video transfert */
1202
	reg_w(gspca_dev, 0x01, &sn9c10x[0], 1);
1203
	/* Compression */
1204
	reg_w(gspca_dev, 0x18, &reg12_19[6], 2);
1205 1206
	msleep(20);

1207 1208
	sd->reg11 = -1;

1209
	setgain(gspca_dev);
1210
	setbrightness(gspca_dev);
1211
	setexposure(gspca_dev);
1212
	setfreq(gspca_dev);
1213

1214
	sd->frames_to_drop = 0;
1215
	sd->autogain_ignore_frames = 0;
1216 1217
	sd->exp_too_high_cnt = 0;
	sd->exp_too_low_cnt = 0;
1218
	atomic_set(&sd->avg_lum, -1);
1219
	return 0;
1220 1221 1222 1223
}

static void sd_stopN(struct gspca_dev *gspca_dev)
{
1224
	sd_init(gspca_dev);
1225 1226
}

1227
static u8* find_sof(struct gspca_dev *gspca_dev, u8 *data, int len)
1228
{
1229
	struct sd *sd = (struct sd *) gspca_dev;
1230
	int i, header_size = (sd->bridge == BRIDGE_103) ? 18 : 12;
1231

1232 1233 1234 1235 1236 1237 1238 1239 1240
	/* frames start with:
	 *	ff ff 00 c4 c4 96	synchro
	 *	00		(unknown)
	 *	xx		(frame sequence / size / compression)
	 *	(xx)		(idem - extra byte for sn9c103)
	 *	ll mm		brightness sum inside auto exposure
	 *	ll mm		brightness sum outside auto exposure
	 *	(xx xx xx xx xx)	audio values for snc103
	 */
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	for (i = 0; i < len; i++) {
		switch (sd->header_read) {
		case 0:
			if (data[i] == 0xff)
				sd->header_read++;
			break;
		case 1:
			if (data[i] == 0xff)
				sd->header_read++;
			else
				sd->header_read = 0;
			break;
		case 2:
			if (data[i] == 0x00)
				sd->header_read++;
			else if (data[i] != 0xff)
				sd->header_read = 0;
			break;
		case 3:
			if (data[i] == 0xc4)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		case 4:
			if (data[i] == 0xc4)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		case 5:
			if (data[i] == 0x96)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		default:
			sd->header[sd->header_read - 6] = data[i];
			sd->header_read++;
			if (sd->header_read == header_size) {
				sd->header_read = 0;
				return data + i + 1;
1289 1290 1291
			}
		}
	}
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	return NULL;
}

static void sd_pkt_scan(struct gspca_dev *gspca_dev,
			u8 *data,			/* isoc packet */
			int len)			/* iso packet length */
{
	int fr_h_sz = 0, lum_offset = 0, len_after_sof = 0;
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam = &gspca_dev->cam;
	u8 *sof;

	sof = find_sof(gspca_dev, data, len);
	if (sof) {
		if (sd->bridge == BRIDGE_103) {
			fr_h_sz = 18;
			lum_offset = 3;
		} else {
			fr_h_sz = 12;
			lum_offset = 2;
		}

		len_after_sof = len - (sof - data);
		len = (sof - data) - fr_h_sz;
		if (len < 0)
			len = 0;
	}
1319 1320 1321 1322

	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
		/* In raw mode we sometimes get some garbage after the frame
		   ignore this */
1323
		int used;
1324 1325
		int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;

1326
		used = gspca_dev->image_len;
1327 1328 1329 1330
		if (used + len > size)
			len = size - used;
	}

1331
	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358

	if (sof) {
		int  lum = sd->header[lum_offset] +
			  (sd->header[lum_offset + 1] << 8);

		/* When exposure changes midway a frame we
		   get a lum of 0 in this case drop 2 frames
		   as the frames directly after an exposure
		   change have an unstable image. Sometimes lum
		   *really* is 0 (cam used in low light with
		   low exposure setting), so do not drop frames
		   if the previous lum was 0 too. */
		if (lum == 0 && sd->prev_avg_lum != 0) {
			lum = -1;
			sd->frames_to_drop = 2;
			sd->prev_avg_lum = 0;
		} else
			sd->prev_avg_lum = lum;
		atomic_set(&sd->avg_lum, lum);

		if (sd->frames_to_drop)
			sd->frames_to_drop--;
		else
			gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);

		gspca_frame_add(gspca_dev, FIRST_PACKET, sof, len_after_sof);
	}
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
}

static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->brightness = val;
	if (gspca_dev->streaming)
		setbrightness(gspca_dev);
	return 0;
}

static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->brightness;
	return 0;
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->gain = val;
	if (gspca_dev->streaming)
		setgain(gspca_dev);
	return 0;
}

static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val)
1390 1391 1392
{
	struct sd *sd = (struct sd *) gspca_dev;

1393 1394 1395 1396 1397 1398 1399 1400 1401
	*val = sd->gain;
	return 0;
}

static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->exposure = val;
1402
	if (gspca_dev->streaming)
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
		setexposure(gspca_dev);
	return 0;
}

static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->exposure;
	return 0;
}

static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->autogain = val;
1420 1421 1422
	sd->exp_too_high_cnt = 0;
	sd->exp_too_low_cnt = 0;

1423 1424 1425 1426
	/* when switching to autogain set defaults to make sure
	   we are on a valid point of the autogain gain /
	   exposure knee graph, and give this change time to
	   take effect before doing autogain. */
1427
	if (sd->autogain && !(sensor_data[sd->sensor].flags & F_COARSE_EXPO)) {
1428 1429 1430 1431 1432 1433 1434 1435 1436
		sd->exposure = EXPOSURE_DEF;
		sd->gain = GAIN_DEF;
		if (gspca_dev->streaming) {
			sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
			setexposure(gspca_dev);
			setgain(gspca_dev);
		}
	}

1437 1438 1439
	return 0;
}

1440
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val)
1441 1442 1443
{
	struct sd *sd = (struct sd *) gspca_dev;

1444
	*val = sd->autogain;
1445 1446 1447
	return 0;
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->freq = val;
	if (gspca_dev->streaming)
		setfreq(gspca_dev);
	return 0;
}

static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->freq;
	return 0;
}

static int sd_querymenu(struct gspca_dev *gspca_dev,
			struct v4l2_querymenu *menu)
{
	switch (menu->id) {
	case V4L2_CID_POWER_LINE_FREQUENCY:
		switch (menu->index) {
		case 0:		/* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
			strcpy((char *) menu->name, "NoFliker");
			return 0;
		case 1:		/* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
			strcpy((char *) menu->name, "50 Hz");
			return 0;
		case 2:		/* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
			strcpy((char *) menu->name, "60 Hz");
			return 0;
		}
		break;
	}
	return -EINVAL;
}

1487
#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static int sd_int_pkt_scan(struct gspca_dev *gspca_dev,
			u8 *data,		/* interrupt packet data */
			int len)		/* interrupt packet length */
{
	int ret = -EINVAL;

	if (len == 1 && data[0] == 1) {
		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 1);
		input_sync(gspca_dev->input_dev);
		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
		input_sync(gspca_dev->input_dev);
		ret = 0;
	}

	return ret;
}
#endif

1506
/* sub-driver description */
1507
static const struct sd_desc sd_desc = {
1508 1509 1510 1511
	.name = MODULE_NAME,
	.ctrls = sd_ctrls,
	.nctrls = ARRAY_SIZE(sd_ctrls),
	.config = sd_config,
1512
	.init = sd_init,
1513 1514 1515
	.start = sd_start,
	.stopN = sd_stopN,
	.pkt_scan = sd_pkt_scan,
1516
	.querymenu = sd_querymenu,
1517
	.dq_callback = do_autogain,
1518
#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
1519 1520
	.int_pkt_scan = sd_int_pkt_scan,
#endif
1521 1522 1523
};

/* -- module initialisation -- */
1524 1525 1526
#define SB(sensor, bridge) \
	.driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge

1527

1528
static const struct usb_device_id device_table[] __devinitconst = {
1529 1530 1531
	{USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C, 102)}, /* TAS5110C1B */
	{USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C, 101)}, /* TAS5110C1B */
	{USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D, 101)}, /* TAS5110D */
1532 1533 1534
	{USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
	{USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
	{USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
1535
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1536 1537 1538
	{USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
	{USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
	{USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
1539
#endif
1540 1541
	{USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
	{USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
1542 1543
	{USB_DEVICE(0x0c45, 0x602a), SB(HV7131D, 102)},
	/* {USB_DEVICE(0x0c45, 0x602b), SB(MI0343, 102)}, */
1544
	{USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1545 1546
	{USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
	{USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
1547
	/* {USB_DEVICE(0x0c45, 0x602b), SB(MI03XX, 102)}, */ /* MI0343 MI0360 MI0330 */
1548
	{USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
1549
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1550
	{USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
1551
#endif
1552
	{USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1553 1554 1555 1556 1557
	{}
};
MODULE_DEVICE_TABLE(usb, device_table);

/* -- device connect -- */
1558
static int __devinit sd_probe(struct usb_interface *intf,
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
			const struct usb_device_id *id)
{
	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
				THIS_MODULE);
}

static struct usb_driver sd_driver = {
	.name = MODULE_NAME,
	.id_table = device_table,
	.probe = sd_probe,
	.disconnect = gspca_disconnect,
1570 1571 1572 1573
#ifdef CONFIG_PM
	.suspend = gspca_suspend,
	.resume = gspca_resume,
#endif
1574 1575 1576 1577 1578
};

/* -- module insert / remove -- */
static int __init sd_mod_init(void)
{
1579
	return usb_register(&sd_driver);
1580 1581 1582 1583 1584 1585 1586 1587
}
static void __exit sd_mod_exit(void)
{
	usb_deregister(&sd_driver);
}

module_init(sd_mod_init);
module_exit(sd_mod_exit);