Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindinsight
提交
4a2b0a59
M
mindinsight
项目概览
MindSpore
/
mindinsight
通知
7
Star
3
Fork
2
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindinsight
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4a2b0a59
编写于
5月 25, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
5月 25, 2020
浏览文件
操作
浏览文件
下载
差异文件
!161 add ut for profiler analyser
Merge pull request !161 from chenchao99/profiler_ut
上级
715c61dc
1b91492a
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
631 addition
and
0 deletion
+631
-0
tests/ut/profiler/__init__.py
tests/ut/profiler/__init__.py
+14
-0
tests/ut/profiler/analyser/__init__.py
tests/ut/profiler/analyser/__init__.py
+14
-0
tests/ut/profiler/analyser/resource/aicore_intermediate_0_detail.csv
...ofiler/analyser/resource/aicore_intermediate_0_detail.csv
+11
-0
tests/ut/profiler/analyser/resource/aicore_intermediate_0_type.csv
...profiler/analyser/resource/aicore_intermediate_0_type.csv
+6
-0
tests/ut/profiler/analyser/resource/framework_raw_0.csv
tests/ut/profiler/analyser/resource/framework_raw_0.csv
+11
-0
tests/ut/profiler/analyser/test_analyser_aicore_detail.py
tests/ut/profiler/analyser/test_analyser_aicore_detail.py
+301
-0
tests/ut/profiler/analyser/test_analyser_aicore_type.py
tests/ut/profiler/analyser/test_analyser_aicore_type.py
+274
-0
未找到文件。
tests/ut/profiler/__init__.py
0 → 100644
浏览文件 @
4a2b0a59
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
tests/ut/profiler/analyser/__init__.py
0 → 100644
浏览文件 @
4a2b0a59
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
tests/ut/profiler/analyser/resource/aicore_intermediate_0_detail.csv
0 → 100644
浏览文件 @
4a2b0a59
full_op_time,execution_time
Default/AtomicAddrClean-op104,0.00133
Default/AtomicAddrClean-op105,0.000987
Default/AtomicAddrClean-op106,0.001129
Default/Cast-op10,0.00466
Default/network-WithLossCell/_backbone-LeNet5/conv1-Conv2d/Cast-op12,0.002366
Gradients/Default/network-WithLossCell/_backbone-LeNet5/conv1-Conv2d/gradConv2D/Cast-op53,0.004879
Default/TransData-op11,0.006366
Gradients/Default/network-WithLossCell/_backbone-LeNet5/gradReshape/TransData-op44,0.006782
Default/network-WithLossCell/_backbone-LeNet5/conv1-Conv2d/Conv2D-op13,0.05651
Default/network-WithLossCell/_backbone-LeNet5/fc3-Dense/MatMul-op9,0.370864
tests/ut/profiler/analyser/resource/aicore_intermediate_0_type.csv
0 → 100644
浏览文件 @
4a2b0a59
op_type,execution_time,execution_frequency,percent
AtomicAddrClean,0.007283,6,0.49
Cast,0.053395,13,3.63
TransData,0.121800,5,8.23
Conv2D,0.063656,2,4.33
MatMul,1.085982,9,73.80
tests/ut/profiler/analyser/resource/framework_raw_0.csv
0 → 100644
浏览文件 @
4a2b0a59
task_id,stream_id,block_dim,full_op_name,op_name,op_type,subgraph,op_info
30290,0,1,Default/AtomicAddrClean-op104,AtomicAddrClean-op104,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}"
30295,0,1,Default/AtomicAddrClean-op105,AtomicAddrClean-op105,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""10""}}"
30300,0,1,Default/AtomicAddrClean-op106,AtomicAddrClean-op106,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""84""}}"
30268,0,32,Default/Cast-op10,Cast-op10,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1,32,32""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,32,32""}}"
30271,0,9,Default/network-WithLossCell/_backbone-LeNet5/conv1-Conv2d/Cast-op12,Cast-op12,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""25,1,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""25,1,16,16""}}"
30320,0,32,Gradients/Default/network-WithLossCell/_backbone-LeNet5/conv1-Conv2d/gradConv2D/Cast-op53,Cast-op53,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1,28,28,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,28,28,16""}}"
30269,0,32,Default/TransData-op11,TransData-op11,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,32,32""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,32,32""}}"
30308,0,32,Gradients/Default/network-WithLossCell/_backbone-LeNet5/gradReshape/TransData-op44,TransData-op44,TransData,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,16,5,5""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,5,5,16""}}"
30272,0,32,Default/network-WithLossCell/_backbone-LeNet5/conv1-Conv2d/Conv2D-op13,Conv2D-op13,Conv2D,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,32,32,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""25,1,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,28,28,16""}}"
30286,0,1,Default/network-WithLossCell/_backbone-LeNet5/fc3-Dense/MatMul-op9,MatMul-op9,MatMul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,120""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""84,120""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""84""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,84""}}"
tests/ut/profiler/analyser/test_analyser_aicore_detail.py
0 → 100644
浏览文件 @
4a2b0a59
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Test the analyser module."""
import
csv
import
json
import
os
from
unittest
import
TestCase
from
mindinsight.profiler.analyser.analyser
import
AicoreDetailAnalyser
from
mindinsight.profiler.analyser.analyser_factory
import
AnalyserFactory
def
get_detail_infos
(
indexes
=
None
,
sort_name
=
None
,
sort_type
=
True
):
"""
Get AICORE operator detail information.
Args:
indexes (list[int]): The operator indexes. Default: None.
sort_name (str): The sort name. Default: None.
sort_type (bool): The sort type. If the parameter is `True`, the results
are sorted in descending order, else `False`. Default: True.
Returns:
list[list], the AICORE operator detail information.
"""
profiling_dir
=
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'resource'
)
framework_path
=
os
.
path
.
join
(
profiling_dir
,
'framework_raw_0.csv'
)
detail_path
=
os
.
path
.
join
(
profiling_dir
,
'aicore_intermediate_0_detail.csv'
)
with
open
(
framework_path
,
'r'
)
as
fm_file
,
open
(
detail_path
,
'r'
)
as
detail_file
:
fm_csv_reader
=
csv
.
reader
(
fm_file
)
detail_csv_reader
=
csv
.
reader
(
detail_file
)
_
=
next
(
fm_csv_reader
)
_
=
next
(
detail_csv_reader
)
cache
=
[]
for
fm_info
,
detail_info
in
zip
(
fm_csv_reader
,
detail_csv_reader
):
cache
.
append
(
[
fm_info
[
4
],
fm_info
[
5
],
float
(
detail_info
[
1
]),
fm_info
[
6
],
fm_info
[
3
],
json
.
loads
(
fm_info
[
7
])
if
fm_info
[
7
]
else
None
]
)
if
indexes
:
result
=
[
cache
[
index
]
for
index
in
indexes
]
else
:
result
=
cache
if
sort_name
:
sort_index
=
AicoreDetailAnalyser
.
__col_names__
.
index
(
sort_name
)
result
.
sort
(
key
=
lambda
item
:
item
[
sort_index
],
reverse
=
sort_type
)
return
result
class
TestAicoreDetailAnalyser
(
TestCase
):
"""Test the class of `AicoreDetailAnalyser`."""
def
setUp
(
self
)
->
None
:
"""Initialization before test case execution."""
profiling_dir
=
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'resource'
)
self
.
_analyser
=
AnalyserFactory
.
instance
().
get_analyser
(
'aicore_detail'
,
profiling_dir
,
'0'
)
def
test_query_success_1
(
self
):
"""Test the success of the querying function."""
expect_result
=
{
'col_name'
:
AicoreDetailAnalyser
.
__col_names__
,
'object'
:
get_detail_infos
(),
'size'
:
10
}
result
=
self
.
_analyser
.
query
({})
self
.
assertDictEqual
(
expect_result
,
result
)
result
=
self
.
_analyser
.
query
()
self
.
assertDictEqual
(
expect_result
,
result
)
def
test_query_success_2
(
self
):
"""Test the success of the querying function."""
expect_result
=
{
'col_name'
:
AicoreDetailAnalyser
.
__col_names__
,
'object'
:
get_detail_infos
(
indexes
=
[
9
]),
'size'
:
1
}
condition
=
{
'filter_condition'
:
{
'op_type'
:
{
'in'
:
[
'MatMul'
]
}
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
condition
=
{
'filter_condition'
:
{
'op_type'
:
{
'not_in'
:
[
'AtomicAddrClean'
,
'Cast'
,
'TransData'
,
'Conv2D'
]
}
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
condition
=
{
'filter_condition'
:
{
'op_name'
:
{
'partial_match_str_in'
:
[
'op9'
]
}
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
def
test_query_success_3
(
self
):
"""Test the success of the querying function."""
expect_result
=
{
'col_name'
:
AicoreDetailAnalyser
.
__col_names__
,
'object'
:
get_detail_infos
(
sort_name
=
'execution_time'
,
sort_type
=
True
),
'size'
:
10
}
condition
=
{
'sort_condition'
:
{
'name'
:
'execution_time'
,
'type'
:
'descending'
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
expect_result
=
{
'col_name'
:
AicoreDetailAnalyser
.
__col_names__
,
'object'
:
get_detail_infos
(
sort_name
=
'op_name'
,
sort_type
=
False
),
'size'
:
10
}
condition
=
{
'sort_condition'
:
{
'name'
:
'op_name'
,
'type'
:
'ascending'
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
def
test_query_success_4
(
self
):
"""Test the success of the querying function."""
expect_result
=
{
'col_name'
:
AicoreDetailAnalyser
.
__col_names__
,
'object'
:
get_detail_infos
(
indexes
=
[
2
,
3
]),
'size'
:
10
}
condition
=
{
'group_condition'
:
{
'limit'
:
2
,
'offset'
:
1
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
expect_result
=
{
'col_name'
:
AicoreDetailAnalyser
.
__col_names__
,
'object'
:
[],
'size'
:
10
}
condition
=
{
'group_condition'
:
{
'limit'
:
2
,
'offset'
:
5
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
def
test_query_success_5
(
self
):
"""Test the success of the querying function."""
expect_result
=
{
'col_name'
:
AicoreDetailAnalyser
.
__col_names__
,
'object'
:
get_detail_infos
(
indexes
=
[
1
,
2
],
sort_name
=
'execution_time'
,
sort_type
=
True
),
'size'
:
4
}
condition
=
{
'filter_condition'
:
{
'op_name'
:
{
'partial_match_str_in'
:
[
'Atomic'
,
'Conv'
]
}
},
'sort_condition'
:
{
'name'
:
'execution_time'
},
'group_condition'
:
{
'limit'
:
2
,
'offset'
:
1
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
expect_result
=
{
'col_name'
:
AicoreDetailAnalyser
.
__col_names__
,
'object'
:
get_detail_infos
(
indexes
=
[
0
,
1
,
2
,
8
],
sort_name
=
'execution_time'
,
sort_type
=
True
),
'size'
:
4
}
condition
=
{
'filter_condition'
:
{
'op_type'
:
{
'in'
:
[
'Conv2D'
,
'AtomicAddrClean'
,
'TransData'
]
},
'op_name'
:
{
'partial_match_str_in'
:
[
'Atomic'
,
'Conv'
]
}
},
'sort_condition'
:
{
'name'
:
'execution_time'
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
def
test_query_success_6
(
self
):
"""Test the success of the querying function."""
detail_infos
=
get_detail_infos
(
indexes
=
[
9
])
expect_result
=
{
'col_name'
:
AicoreDetailAnalyser
.
__col_names__
[
0
:
5
],
'object'
:
[
item
[
0
:
5
]
for
item
in
detail_infos
],
'size'
:
1
}
condition
=
{
'filter_condition'
:
{
'op_type'
:
{
'in'
:
[
'MatMul'
]
},
'is_display_detail'
:
False
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
expect_result
=
{
'col_name'
:
AicoreDetailAnalyser
.
__col_names__
[
0
:
4
],
'object'
:
[
item
[
0
:
4
]
for
item
in
detail_infos
],
'size'
:
1
}
condition
=
{
'filter_condition'
:
{
'op_type'
:
{
'in'
:
[
'MatMul'
]
},
'is_display_detail'
:
False
,
'is_display_full_op_name'
:
False
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
def
test_query_and_sort_by_op_type
(
self
):
"""Test the success of the querying and sorting function by operator type."""
detail_infos
=
get_detail_infos
(
indexes
=
[
9
,
0
,
2
,
1
,
5
,
3
,
4
])
expect_result
=
{
'col_name'
:
AicoreDetailAnalyser
.
__col_names__
[
0
:
4
],
'object'
:
[
item
[
0
:
4
]
for
item
in
detail_infos
]
}
filter_condition
=
{
'op_type'
:
{
'in'
:
[
'AtomicAddrClean'
,
'Cast'
,
'MatMul'
],
'not_in'
:
[
'TransData'
]
},
'is_display_detail'
:
False
,
'is_display_full_op_name'
:
False
}
op_type_order
=
[
'MatMul'
,
'AtomicAddrClean'
,
'Cast'
]
result
=
self
.
_analyser
.
query_and_sort_by_op_type
(
filter_condition
,
op_type_order
)
self
.
assertDictEqual
(
expect_result
,
result
)
def
test_col_names
(
self
):
"""Test the querying column names function."""
self
.
assertListEqual
(
AicoreDetailAnalyser
.
__col_names__
,
self
.
_analyser
.
col_names
)
def
test_data
(
self
):
"""Test the querying data function."""
expect_result
=
get_detail_infos
()
self
.
assertListEqual
(
expect_result
,
self
.
_analyser
.
data
)
tests/ut/profiler/analyser/test_analyser_aicore_type.py
0 → 100644
浏览文件 @
4a2b0a59
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Test the analyser module."""
import
csv
import
os
from
unittest
import
TestCase
from
mindinsight.profiler.analyser.analyser
import
AicoreTypeAnalyser
from
mindinsight.profiler.analyser.analyser_factory
import
AnalyserFactory
def
get_type_infos
(
indexes
=
None
,
sort_name
=
None
,
sort_type
=
True
):
"""
Get AICORE operator type information.
Args:
indexes (list[int]): The operator indexes. Default: None.
sort_name (str): The sort name. Default: None.
sort_type (bool): The sort type. If the parameter is `True`, the results
are sorted in descending order, else `False`. Default: True.
Returns:
list[list], the AICORE operator type information.
"""
profiling_dir
=
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'resource'
)
aicore_type_path
=
os
.
path
.
join
(
profiling_dir
,
'aicore_intermediate_0_type.csv'
)
with
open
(
aicore_type_path
,
'r'
)
as
aicore_type_path
:
csv_reader
=
csv
.
reader
(
aicore_type_path
)
_
=
next
(
csv_reader
)
cache
=
[]
for
type_info
in
csv_reader
:
cache
.
append
(
[
type_info
[
0
],
float
(
type_info
[
1
]),
int
(
type_info
[
2
]),
float
(
type_info
[
3
])]
)
if
indexes
:
result
=
[
cache
[
index
]
for
index
in
indexes
]
else
:
result
=
cache
if
sort_name
:
sort_index
=
AicoreTypeAnalyser
.
__col_names__
.
index
(
sort_name
)
result
.
sort
(
key
=
lambda
item
:
item
[
sort_index
],
reverse
=
sort_type
)
return
result
class
TestAicoreTypeAnalyser
(
TestCase
):
"""Test the class of `AicoreTypeAnalyser`."""
def
setUp
(
self
)
->
None
:
"""Initialization before test case execution."""
profiling_dir
=
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'resource'
)
self
.
_analyser
=
AnalyserFactory
.
instance
().
get_analyser
(
'aicore_type'
,
profiling_dir
,
'0'
)
def
test_query_success_1
(
self
):
"""Test the success of the querying function."""
expect_result
=
{
'col_name'
:
AicoreTypeAnalyser
.
__col_names__
,
'object'
:
get_type_infos
(),
'size'
:
5
}
condition
=
{}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
result
=
self
.
_analyser
.
query
()
self
.
assertDictEqual
(
expect_result
,
result
)
def
test_query_success_2
(
self
):
"""Test the success of the querying function."""
expect_result
=
{
'col_name'
:
AicoreTypeAnalyser
.
__col_names__
,
'object'
:
get_type_infos
(
indexes
=
[
1
]),
'size'
:
1
}
condition
=
{
'filter_condition'
:
{
'op_type'
:
{
'in'
:
[
'Cast'
]
}
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
expect_result
=
{
'col_name'
:
AicoreTypeAnalyser
.
__col_names__
,
'object'
:
get_type_infos
(
indexes
=
[
0
,
2
,
3
,
4
]),
'size'
:
4
}
condition
=
{
'filter_condition'
:
{
'op_type'
:
{
'not_in'
:
[
'Cast'
]
}
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
expect_result
=
{
'col_name'
:
AicoreTypeAnalyser
.
__col_names__
,
'object'
:
get_type_infos
(
indexes
=
[
0
,
1
,
3
]),
'size'
:
3
}
condition
=
{
'filter_condition'
:
{
'op_type'
:
{
'partial_match_str_in'
:
[
'C'
]
}
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
def
test_query_success_3
(
self
):
"""Test the success of the querying function."""
expect_result
=
{
'col_name'
:
AicoreTypeAnalyser
.
__col_names__
,
'object'
:
get_type_infos
(
indexes
=
[
1
,
3
]),
'size'
:
2
}
condition
=
{
'filter_condition'
:
{
'op_type'
:
{
'in'
:
[
'Cast'
,
'Conv2D'
]
}
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
expect_result
=
{
'col_name'
:
AicoreTypeAnalyser
.
__col_names__
,
'object'
:
get_type_infos
(
indexes
=
[
0
,
2
,
4
]),
'size'
:
3
}
condition
=
{
'filter_condition'
:
{
'op_type'
:
{
'not_in'
:
[
'Cast'
,
'Conv2D'
]
}
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
expect_result
=
{
'col_name'
:
AicoreTypeAnalyser
.
__col_names__
,
'object'
:
get_type_infos
(
indexes
=
[
2
,
3
]),
'size'
:
2
}
condition
=
{
'filter_condition'
:
{
'op_type'
:
{
'partial_match_str_in'
:
[
'Trans'
,
'Conv'
]
}
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
def
test_query_success_4
(
self
):
"""Test the success of the querying function."""
expect_result
=
{
'col_name'
:
AicoreTypeAnalyser
.
__col_names__
,
'object'
:
get_type_infos
(
sort_name
=
'op_type'
,
sort_type
=
True
),
'size'
:
5
}
condition
=
{
'sort_condition'
:
{
'name'
:
'op_type'
,
'type'
:
'descending'
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
expect_result
=
{
'col_name'
:
AicoreTypeAnalyser
.
__col_names__
,
'object'
:
get_type_infos
(
sort_name
=
'execution_time'
,
sort_type
=
False
),
'size'
:
5
}
condition
=
{
'sort_condition'
:
{
'name'
:
'execution_time'
,
'type'
:
'ascending'
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
def
test_query_success_5
(
self
):
"""Test the success of the querying function."""
expect_result
=
{
'col_name'
:
AicoreTypeAnalyser
.
__col_names__
,
'object'
:
get_type_infos
(
indexes
=
[
0
,
1
]),
'size'
:
5
}
condition
=
{
'group_condition'
:
{
'limit'
:
2
,
'offset'
:
0
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
expect_result
=
{
'col_name'
:
AicoreTypeAnalyser
.
__col_names__
,
'object'
:
get_type_infos
(
indexes
=
[
3
,
4
]),
'size'
:
5
}
condition
=
{
'group_condition'
:
{
'limit'
:
3
,
'offset'
:
1
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
def
test_query_success_6
(
self
):
"""Test the success of the querying function."""
expect_result
=
{
'col_name'
:
AicoreTypeAnalyser
.
__col_names__
,
'object'
:
get_type_infos
(
indexes
=
[
1
,
3
],
sort_name
=
'execution_time'
,
sort_type
=
True
),
'size'
:
3
}
condition
=
{
'filter_condition'
:
{
'op_type'
:
{
'partial_match_str_in'
:
[
'C'
]
}
},
'sort_condition'
:
{
'name'
:
'execution_time'
},
'group_condition'
:
{
'limit'
:
2
,
'offset'
:
0
}
}
result
=
self
.
_analyser
.
query
(
condition
)
self
.
assertDictEqual
(
expect_result
,
result
)
def
test_col_names
(
self
):
"""Test the querying column names function."""
self
.
assertListEqual
(
AicoreTypeAnalyser
.
__col_names__
,
self
.
_analyser
.
col_names
)
def
test_data
(
self
):
"""Test the querying data function."""
expect_result
=
get_type_infos
()
self
.
assertListEqual
(
expect_result
,
self
.
_analyser
.
data
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录