diff --git a/tests/ut/profiler/__init__.py b/tests/ut/profiler/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e30774307ca2107b3a81c071ad33c042ef924790 --- /dev/null +++ b/tests/ut/profiler/__init__.py @@ -0,0 +1,14 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ diff --git a/tests/ut/profiler/analyser/__init__.py b/tests/ut/profiler/analyser/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e30774307ca2107b3a81c071ad33c042ef924790 --- /dev/null +++ b/tests/ut/profiler/analyser/__init__.py @@ -0,0 +1,14 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ diff --git a/tests/ut/profiler/analyser/resource/aicore_intermediate_0_detail.csv b/tests/ut/profiler/analyser/resource/aicore_intermediate_0_detail.csv new file mode 100644 index 0000000000000000000000000000000000000000..ec117c5346b175d0715a19e5249ef82b5e5fa3a4 --- /dev/null +++ b/tests/ut/profiler/analyser/resource/aicore_intermediate_0_detail.csv @@ -0,0 +1,11 @@ +full_op_time,execution_time +Default/AtomicAddrClean-op104,0.00133 +Default/AtomicAddrClean-op105,0.000987 +Default/AtomicAddrClean-op106,0.001129 +Default/Cast-op10,0.00466 +Default/network-WithLossCell/_backbone-LeNet5/conv1-Conv2d/Cast-op12,0.002366 +Gradients/Default/network-WithLossCell/_backbone-LeNet5/conv1-Conv2d/gradConv2D/Cast-op53,0.004879 +Default/TransData-op11,0.006366 +Gradients/Default/network-WithLossCell/_backbone-LeNet5/gradReshape/TransData-op44,0.006782 +Default/network-WithLossCell/_backbone-LeNet5/conv1-Conv2d/Conv2D-op13,0.05651 +Default/network-WithLossCell/_backbone-LeNet5/fc3-Dense/MatMul-op9,0.370864 diff --git a/tests/ut/profiler/analyser/resource/aicore_intermediate_0_type.csv b/tests/ut/profiler/analyser/resource/aicore_intermediate_0_type.csv new file mode 100644 index 0000000000000000000000000000000000000000..56bf368a6c2c6e9844992ff26cdcede84711a7c4 --- /dev/null +++ b/tests/ut/profiler/analyser/resource/aicore_intermediate_0_type.csv @@ -0,0 +1,6 @@ +op_type,execution_time,execution_frequency,percent +AtomicAddrClean,0.007283,6,0.49 +Cast,0.053395,13,3.63 +TransData,0.121800,5,8.23 +Conv2D,0.063656,2,4.33 +MatMul,1.085982,9,73.80 diff --git a/tests/ut/profiler/analyser/resource/framework_raw_0.csv b/tests/ut/profiler/analyser/resource/framework_raw_0.csv new file mode 100644 index 0000000000000000000000000000000000000000..5b60ecef49dc854a140531fa64c67a3df0521e34 --- /dev/null +++ b/tests/ut/profiler/analyser/resource/framework_raw_0.csv @@ -0,0 +1,11 @@ +task_id,stream_id,block_dim,full_op_name,op_name,op_type,subgraph,op_info +30290,0,1,Default/AtomicAddrClean-op104,AtomicAddrClean-op104,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": """"}}" +30295,0,1,Default/AtomicAddrClean-op105,AtomicAddrClean-op105,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""10""}}" +30300,0,1,Default/AtomicAddrClean-op106,AtomicAddrClean-op106,AtomicAddrClean,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""84""}}" +30268,0,32,Default/Cast-op10,Cast-op10,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1,32,32""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,32,32""}}" +30271,0,9,Default/network-WithLossCell/_backbone-LeNet5/conv1-Conv2d/Cast-op12,Cast-op12,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""25,1,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""25,1,16,16""}}" +30320,0,32,Gradients/Default/network-WithLossCell/_backbone-LeNet5/conv1-Conv2d/gradConv2D/Cast-op53,Cast-op53,Cast,Gradients,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,1,28,28,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,28,28,16""}}" +30269,0,32,Default/TransData-op11,TransData-op11,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,32,32""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,32,32""}}" +30308,0,32,Gradients/Default/network-WithLossCell/_backbone-LeNet5/gradReshape/TransData-op44,TransData-op44,TransData,Gradients,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,16,5,5""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,5,5,16""}}" +30272,0,32,Default/network-WithLossCell/_backbone-LeNet5/conv1-Conv2d/Conv2D-op13,Conv2D-op13,Conv2D,Default,"{""input_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,32,32,16""}, ""input_1"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""25,1,16,16""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,28,28,16""}}" +30286,0,1,Default/network-WithLossCell/_backbone-LeNet5/fc3-Dense/MatMul-op9,MatMul-op9,MatMul,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,120""}, ""input_1"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""84,120""}, ""input_2"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""84""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,84""}}" diff --git a/tests/ut/profiler/analyser/test_analyser_aicore_detail.py b/tests/ut/profiler/analyser/test_analyser_aicore_detail.py new file mode 100644 index 0000000000000000000000000000000000000000..71be4f92ab19e506bc4b2a4d91141d5f71006d23 --- /dev/null +++ b/tests/ut/profiler/analyser/test_analyser_aicore_detail.py @@ -0,0 +1,301 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""Test the analyser module.""" +import csv +import json +import os +from unittest import TestCase + +from mindinsight.profiler.analyser.analyser import AicoreDetailAnalyser +from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory + + +def get_detail_infos(indexes=None, sort_name=None, sort_type=True): + """ + Get AICORE operator detail information. + + Args: + indexes (list[int]): The operator indexes. Default: None. + sort_name (str): The sort name. Default: None. + sort_type (bool): The sort type. If the parameter is `True`, the results + are sorted in descending order, else `False`. Default: True. + Returns: + list[list], the AICORE operator detail information. + """ + profiling_dir = os.path.join(os.path.dirname(__file__), 'resource') + framework_path = os.path.join(profiling_dir, 'framework_raw_0.csv') + detail_path = os.path.join(profiling_dir, 'aicore_intermediate_0_detail.csv') + + with open(framework_path, 'r') as fm_file, open(detail_path, 'r') as detail_file: + fm_csv_reader = csv.reader(fm_file) + detail_csv_reader = csv.reader(detail_file) + _ = next(fm_csv_reader) + _ = next(detail_csv_reader) + cache = [] + for fm_info, detail_info in zip(fm_csv_reader, detail_csv_reader): + cache.append( + [fm_info[4], fm_info[5], float(detail_info[1]), fm_info[6], + fm_info[3], json.loads(fm_info[7]) if fm_info[7] else None] + ) + + if indexes: + result = [cache[index] for index in indexes] + else: + result = cache + + if sort_name: + sort_index = AicoreDetailAnalyser.__col_names__.index(sort_name) + result.sort(key=lambda item: item[sort_index], reverse=sort_type) + + return result + + +class TestAicoreDetailAnalyser(TestCase): + """Test the class of `AicoreDetailAnalyser`.""" + def setUp(self) -> None: + """Initialization before test case execution.""" + profiling_dir = os.path.join(os.path.dirname(__file__), 'resource') + self._analyser = AnalyserFactory.instance().get_analyser( + 'aicore_detail', profiling_dir, '0' + ) + + def test_query_success_1(self): + """Test the success of the querying function.""" + expect_result = { + 'col_name': AicoreDetailAnalyser.__col_names__, + 'object': get_detail_infos(), + 'size': 10 + } + result = self._analyser.query({}) + self.assertDictEqual(expect_result, result) + + result = self._analyser.query() + self.assertDictEqual(expect_result, result) + + def test_query_success_2(self): + """Test the success of the querying function.""" + expect_result = { + 'col_name': AicoreDetailAnalyser.__col_names__, + 'object': get_detail_infos(indexes=[9]), + 'size': 1 + } + condition = { + 'filter_condition': { + 'op_type': { + 'in': ['MatMul'] + } + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + condition = { + 'filter_condition': { + 'op_type': { + 'not_in': ['AtomicAddrClean', 'Cast', 'TransData', 'Conv2D'] + } + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + condition = { + 'filter_condition': { + 'op_name': { + 'partial_match_str_in': ['op9'] + } + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + def test_query_success_3(self): + """Test the success of the querying function.""" + expect_result = { + 'col_name': AicoreDetailAnalyser.__col_names__, + 'object': get_detail_infos(sort_name='execution_time', sort_type=True), + 'size': 10 + } + condition = { + 'sort_condition': { + 'name': 'execution_time', + 'type': 'descending' + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + expect_result = { + 'col_name': AicoreDetailAnalyser.__col_names__, + 'object': get_detail_infos(sort_name='op_name', sort_type=False), + 'size': 10 + } + condition = { + 'sort_condition': { + 'name': 'op_name', + 'type': 'ascending' + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + def test_query_success_4(self): + """Test the success of the querying function.""" + expect_result = { + 'col_name': AicoreDetailAnalyser.__col_names__, + 'object': get_detail_infos(indexes=[2, 3]), + 'size': 10 + } + condition = { + 'group_condition': { + 'limit': 2, + 'offset': 1 + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + expect_result = { + 'col_name': AicoreDetailAnalyser.__col_names__, + 'object': [], + 'size': 10 + } + condition = { + 'group_condition': { + 'limit': 2, + 'offset': 5 + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + def test_query_success_5(self): + """Test the success of the querying function.""" + expect_result = { + 'col_name': AicoreDetailAnalyser.__col_names__, + 'object': get_detail_infos( + indexes=[1, 2], sort_name='execution_time', sort_type=True + ), + 'size': 4 + } + condition = { + 'filter_condition': { + 'op_name': { + 'partial_match_str_in': ['Atomic', 'Conv'] + } + }, + 'sort_condition': { + 'name': 'execution_time' + }, + 'group_condition': { + 'limit': 2, + 'offset': 1 + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + expect_result = { + 'col_name': AicoreDetailAnalyser.__col_names__, + 'object': get_detail_infos( + indexes=[0, 1, 2, 8], sort_name='execution_time', sort_type=True + ), + 'size': 4 + } + condition = { + 'filter_condition': { + 'op_type': { + 'in': ['Conv2D', 'AtomicAddrClean', 'TransData'] + }, + 'op_name': { + 'partial_match_str_in': ['Atomic', 'Conv'] + } + }, + 'sort_condition': { + 'name': 'execution_time' + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + def test_query_success_6(self): + """Test the success of the querying function.""" + detail_infos = get_detail_infos(indexes=[9]) + + expect_result = { + 'col_name': AicoreDetailAnalyser.__col_names__[0:5], + 'object': [item[0:5] for item in detail_infos], + 'size': 1 + } + condition = { + 'filter_condition': { + 'op_type': { + 'in': ['MatMul'] + }, + 'is_display_detail': False + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + expect_result = { + 'col_name': AicoreDetailAnalyser.__col_names__[0:4], + 'object': [item[0:4] for item in detail_infos], + 'size': 1 + } + condition = { + 'filter_condition': { + 'op_type': { + 'in': ['MatMul'] + }, + 'is_display_detail': False, + 'is_display_full_op_name': False + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + def test_query_and_sort_by_op_type(self): + """Test the success of the querying and sorting function by operator type.""" + detail_infos = get_detail_infos(indexes=[9, 0, 2, 1, 5, 3, 4]) + expect_result = { + 'col_name': AicoreDetailAnalyser.__col_names__[0:4], + 'object': [item[0:4] for item in detail_infos] + } + + filter_condition = { + 'op_type': { + 'in': ['AtomicAddrClean', 'Cast', 'MatMul'], + 'not_in': ['TransData'] + }, + 'is_display_detail': False, + 'is_display_full_op_name': False + } + op_type_order = ['MatMul', 'AtomicAddrClean', 'Cast'] + result = self._analyser.query_and_sort_by_op_type( + filter_condition, op_type_order + ) + self.assertDictEqual(expect_result, result) + + def test_col_names(self): + """Test the querying column names function.""" + self.assertListEqual( + AicoreDetailAnalyser.__col_names__, self._analyser.col_names + ) + + def test_data(self): + """Test the querying data function.""" + expect_result = get_detail_infos() + self.assertListEqual(expect_result, self._analyser.data) diff --git a/tests/ut/profiler/analyser/test_analyser_aicore_type.py b/tests/ut/profiler/analyser/test_analyser_aicore_type.py new file mode 100644 index 0000000000000000000000000000000000000000..2cef00a370859915994d669c3027cc1daa1c496e --- /dev/null +++ b/tests/ut/profiler/analyser/test_analyser_aicore_type.py @@ -0,0 +1,274 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""Test the analyser module.""" +import csv +import os +from unittest import TestCase + +from mindinsight.profiler.analyser.analyser import AicoreTypeAnalyser +from mindinsight.profiler.analyser.analyser_factory import AnalyserFactory + + +def get_type_infos(indexes=None, sort_name=None, sort_type=True): + """ + Get AICORE operator type information. + + Args: + indexes (list[int]): The operator indexes. Default: None. + sort_name (str): The sort name. Default: None. + sort_type (bool): The sort type. If the parameter is `True`, the results + are sorted in descending order, else `False`. Default: True. + Returns: + list[list], the AICORE operator type information. + """ + profiling_dir = os.path.join(os.path.dirname(__file__), 'resource') + aicore_type_path = os.path.join( + profiling_dir, 'aicore_intermediate_0_type.csv' + ) + + with open(aicore_type_path, 'r') as aicore_type_path: + csv_reader = csv.reader(aicore_type_path) + _ = next(csv_reader) + cache = [] + for type_info in csv_reader: + cache.append( + [type_info[0], float(type_info[1]), int(type_info[2]), + float(type_info[3])] + ) + + if indexes: + result = [cache[index] for index in indexes] + else: + result = cache + + if sort_name: + sort_index = AicoreTypeAnalyser.__col_names__.index(sort_name) + result.sort(key=lambda item: item[sort_index], reverse=sort_type) + + return result + + +class TestAicoreTypeAnalyser(TestCase): + """Test the class of `AicoreTypeAnalyser`.""" + def setUp(self) -> None: + """Initialization before test case execution.""" + profiling_dir = os.path.join(os.path.dirname(__file__), 'resource') + self._analyser = AnalyserFactory.instance().get_analyser( + 'aicore_type', profiling_dir, '0' + ) + + def test_query_success_1(self): + """Test the success of the querying function.""" + expect_result = { + 'col_name': AicoreTypeAnalyser.__col_names__, + 'object': get_type_infos(), + 'size': 5 + } + condition = {} + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + result = self._analyser.query() + self.assertDictEqual(expect_result, result) + + def test_query_success_2(self): + """Test the success of the querying function.""" + expect_result = { + 'col_name': AicoreTypeAnalyser.__col_names__, + 'object': get_type_infos(indexes=[1]), + 'size': 1 + } + condition = { + 'filter_condition': { + 'op_type': { + 'in': ['Cast'] + } + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + expect_result = { + 'col_name': AicoreTypeAnalyser.__col_names__, + 'object': get_type_infos(indexes=[0, 2, 3, 4]), + 'size': 4 + } + condition = { + 'filter_condition': { + 'op_type': { + 'not_in': ['Cast'] + } + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + expect_result = { + 'col_name': AicoreTypeAnalyser.__col_names__, + 'object': get_type_infos(indexes=[0, 1, 3]), + 'size': 3 + } + condition = { + 'filter_condition': { + 'op_type': { + 'partial_match_str_in': ['C'] + } + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + def test_query_success_3(self): + """Test the success of the querying function.""" + expect_result = { + 'col_name': AicoreTypeAnalyser.__col_names__, + 'object': get_type_infos(indexes=[1, 3]), + 'size': 2 + } + condition = { + 'filter_condition': { + 'op_type': { + 'in': ['Cast', 'Conv2D'] + } + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + expect_result = { + 'col_name': AicoreTypeAnalyser.__col_names__, + 'object': get_type_infos(indexes=[0, 2, 4]), + 'size': 3 + } + condition = { + 'filter_condition': { + 'op_type': { + 'not_in': ['Cast', 'Conv2D'] + } + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + expect_result = { + 'col_name': AicoreTypeAnalyser.__col_names__, + 'object': get_type_infos(indexes=[2, 3]), + 'size': 2 + } + condition = { + 'filter_condition': { + 'op_type': { + 'partial_match_str_in': ['Trans', 'Conv'] + } + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + def test_query_success_4(self): + """Test the success of the querying function.""" + expect_result = { + 'col_name': AicoreTypeAnalyser.__col_names__, + 'object': get_type_infos(sort_name='op_type', sort_type=True), + 'size': 5} + condition = { + 'sort_condition': { + 'name': 'op_type', + 'type': 'descending' + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + expect_result = { + 'col_name': AicoreTypeAnalyser.__col_names__, + 'object': get_type_infos(sort_name='execution_time', sort_type=False), + 'size': 5 + } + condition = { + 'sort_condition': { + 'name': 'execution_time', + 'type': 'ascending' + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + def test_query_success_5(self): + """Test the success of the querying function.""" + expect_result = { + 'col_name': AicoreTypeAnalyser.__col_names__, + 'object': get_type_infos(indexes=[0, 1]), + 'size': 5 + } + condition = { + 'group_condition': { + 'limit': 2, + 'offset': 0 + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + expect_result = { + 'col_name': AicoreTypeAnalyser.__col_names__, + 'object': get_type_infos(indexes=[3, 4]), + 'size': 5 + } + condition = { + 'group_condition': { + 'limit': 3, + 'offset': 1 + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + def test_query_success_6(self): + """Test the success of the querying function.""" + expect_result = { + 'col_name': AicoreTypeAnalyser.__col_names__, + 'object': get_type_infos( + indexes=[1, 3], sort_name='execution_time', sort_type=True + ), + 'size': 3 + } + condition = { + 'filter_condition': { + 'op_type': { + 'partial_match_str_in': ['C'] + } + }, + 'sort_condition': { + 'name': 'execution_time' + }, + 'group_condition': { + 'limit': 2, + 'offset': 0 + } + } + result = self._analyser.query(condition) + self.assertDictEqual(expect_result, result) + + def test_col_names(self): + """Test the querying column names function.""" + self.assertListEqual( + AicoreTypeAnalyser.__col_names__, self._analyser.col_names + ) + + def test_data(self): + """Test the querying data function.""" + expect_result = get_type_infos() + self.assertListEqual(expect_result, self._analyser.data)