test_model_lineage.py 22.4 KB
Newer Older
G
gaocongli 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Unittest for model_lineage.py"""
import os
import shutil
import unittest
from unittest import mock, TestCase
from unittest.mock import MagicMock

from mindinsight.lineagemgr.collection.model.model_lineage import TrainLineage, EvalLineage, \
    AnalyzeObject
from mindinsight.lineagemgr.common.exceptions.exceptions import \
    LineageLogError, LineageGetModelFileError, MindInsightException
from mindspore.common.tensor import Tensor
from mindspore.dataset.engine import MindDataset, Dataset
from mindspore.nn import Optimizer, WithLossCell, TrainOneStepWithLossScaleCell, \
    SoftmaxCrossEntropyWithLogits
from mindspore.train.callback import RunContext, ModelCheckpoint, SummaryStep
from mindspore.train.summary import SummaryRecord


34 35
@mock.patch('builtins.open')
@mock.patch('os.makedirs')
G
gaocongli 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
class TestModelLineage(TestCase):
    """Test TrainLineage and EvalLineage class in model_lineage.py."""

    @classmethod
    def setUpClass(cls):
        cls.lineage_list = ['train_network', 'loss_fn', 'optimizer', 'train_dataset',
                            'valid_dataset', 'epoch', 'valid_step',
                            'hybrid_parallel', 'data_parallel_size', 'auto_parallel',
                            'device_number', 'batch_num', 'summary_log_path',
                            'model_ckpt']
        cls.run_context = {key: None for key in cls.lineage_list}
        cls.run_context['net_outputs'] = Tensor()
        cls.my_run_context = RunContext
        cls.my_train_module = TrainLineage
        cls.my_eval_module = EvalLineage
        cls.my_analyze_module = AnalyzeObject
        cls.my_summary_record = SummaryRecord
        cls.summary_log_path = '/path/to/summary_log'

    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_summary_record')
56
    def test_summary_record_exception(self, *args):
G
gaocongli 已提交
57
        """Test SummaryRecord with exception."""
58
        args[0].return_value = None
G
gaocongli 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        summary_record = self.my_summary_record(self.summary_log_path)
        with self.assertRaises(MindInsightException) as context:
            self.my_train_module(summary_record=summary_record, raise_exception=1)
        self.assertTrue(f'Invalid value for raise_exception.' in str(context.exception))

    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.ds')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'LineageSummary.record_dataset_graph')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'validate_summary_record')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'AnalyzeObject.get_optimizer_by_network')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'AnalyzeObject.analyze_optimizer')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_network')
    def test_begin(self, *args):
        """Test TrainLineage.begin method."""
        args[1].return_value = None
        args[2].return_value = Optimizer(Tensor(0.1))
        args[3].return_value = None
        args[5].serialize.return_value = {}
        run_context = {'optimizer': Optimizer(Tensor(0.1)),
                       'epoch_num': 10}
        train_lineage = self.my_train_module(self.my_summary_record(self.summary_log_path))
        train_lineage.begin(self.my_run_context(run_context))
        args[4].assert_called()

    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.ds')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'LineageSummary.record_dataset_graph')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'validate_summary_record')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'AnalyzeObject.get_optimizer_by_network')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'AnalyzeObject.analyze_optimizer')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_network')
    def test_begin_error(self, *args):
        """Test TrainLineage.begin method."""
        args[1].return_value = None
        args[2].return_value = Optimizer(Tensor(0.1))
        args[3].return_value = None
        args[4].side_effect = Exception
        args[5].serialize.return_value = {}
        run_context = {'optimizer': Optimizer(Tensor(0.1)),
                       'epoch_num': 10}
        train_lineage = self.my_train_module(self.my_summary_record(self.summary_log_path), True)
        with self.assertRaisesRegex(LineageLogError, 'Dataset graph log error'):
            train_lineage.begin(self.my_run_context(run_context))
        train_lineage = self.my_train_module(self.my_summary_record(self.summary_log_path))
        train_lineage.begin(self.my_run_context(run_context))
        args[4].assert_called()

    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_summary_record')
    def test_begin_exception(self, *args):
        """Test TrainLineage.begin method with exception."""
        args[0].return_value = None
        train_lineage = self.my_train_module(self.my_summary_record(self.summary_log_path), True)
        with self.assertRaises(Exception) as context:
            train_lineage.begin(self.run_context)
        self.assertTrue('Invalid TrainLineage run_context.' in str(context.exception))

        run_context = {key: None for key in self.lineage_list}
        run_context['optimizer'] = 1
        with self.assertRaises(Exception) as context:
            train_lineage.begin(self.my_run_context(run_context))
        self.assertTrue('The parameter optimizer is invalid.' in str(context.exception))

    @mock.patch(
        'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_model_size')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_file_path')
    @mock.patch(
        'mindinsight.lineagemgr.collection.model.model_lineage.LineageSummary.record_train_lineage')
    @mock.patch(
        'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_dataset')
    @mock.patch(
        'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_optimizer')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_network')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_train_run_context')
    @mock.patch('builtins.float')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_summary_record')
    def test_train_end(self, *args):
        """Test TrainLineage.end method."""
        args[1].return_value = 2.0
        args[2].return_value = True
        args[3].return_value = True
        args[4].return_value = None
        args[5].return_value = None
        args[6].return_value = None
        args[7].return_value = (None, None)
        args[8].return_value = 10
        train_lineage = self.my_train_module(self.my_summary_record(self.summary_log_path), True)
        train_lineage.end(self.my_run_context(self.run_context))
        args[6].assert_called()

    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_summary_record')
155
    def test_train_end_exception(self, *args):
G
gaocongli 已提交
156
        """Test TrainLineage.end method when exception."""
157
        args[0].return_value = True
G
gaocongli 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
        train_lineage = self.my_train_module(self.my_summary_record(self.summary_log_path), True)
        with self.assertRaises(Exception) as context:
            train_lineage.end(self.run_context)
        self.assertTrue('Invalid TrainLineage run_context.' in str(context.exception))

    @mock.patch(
        'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_model_size')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_file_path')
    @mock.patch(
        'mindinsight.lineagemgr.collection.model.model_lineage.LineageSummary.record_train_lineage')
    @mock.patch(
        'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_dataset')
    @mock.patch(
        'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_optimizer')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_network')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_train_run_context')
    @mock.patch('builtins.float')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_summary_record')
    def test_train_end_exception_log_error(self, *args):
        """Test TrainLineage.end method with logging errors."""
        args[1].return_value = 2.0
        args[2].return_value = True
        args[3].return_value = True
        args[4].return_value = None
        args[5].return_value = None
        args[6].side_effect = Exception
        args[7].return_value = (None, None)
        args[8].return_value = 10
        train_lineage = self.my_train_module(self.my_summary_record(self.summary_log_path), True)
        with self.assertRaises(LineageLogError) as context:
            train_lineage.end(self.my_run_context(self.run_context))
        self.assertTrue('End error in TrainLineage:' in str(context.exception))

    @mock.patch(
        'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_model_size')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_file_path')
    @mock.patch(
        'mindinsight.lineagemgr.collection.model.model_lineage.LineageSummary.record_train_lineage')
    @mock.patch(
        'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_dataset')
    @mock.patch(
        'mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.analyze_optimizer')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_network')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_train_run_context')
    @mock.patch('builtins.float')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_summary_record')
    def test_train_end_exception_log_error2(self, *args):
        """Test TrainLineage.end method with logging errors."""
        args[1].return_value = 2.0
        args[2].return_value = True
        args[3].return_value = True
        args[4].return_value = None
        args[5].return_value = None
        args[6].side_effect = IOError
        args[7].return_value = (None, None)
        args[8].return_value = 10
        run_context = {key: None for key in self.lineage_list}
        run_context['loss_fn'] = MagicMock()
        run_context['net_outputs'] = Tensor(0.11)
        train_lineage = self.my_train_module(self.my_summary_record(self.summary_log_path), True)
        with self.assertRaises(LineageLogError) as context:
            train_lineage.end(self.my_run_context(run_context))
        self.assertTrue('End error in TrainLineage:' in str(context.exception))

    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_summary_record')
223
    def test_eval_exception_train_id_none(self, *args):
G
gaocongli 已提交
224
        """Test EvalLineage.end method with initialization error."""
225
        args[0].return_value = True
G
gaocongli 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        with self.assertRaises(MindInsightException) as context:
            self.my_eval_module(self.my_summary_record(self.summary_log_path), raise_exception=2)
        self.assertTrue('Invalid value for raise_exception.' in str(context.exception))

    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'AnalyzeObject.analyze_dataset')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_summary_record')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_eval_run_context')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'LineageSummary.record_evaluation_lineage')
    def test_eval_end(self, *args):
        """Test EvalLineage.end method."""
        args[1].return_value = True
        args[2].return_value = True
        args[3].return_value = None
        args[0].return_value = None
        eval_lineage = self.my_eval_module(self.my_summary_record(self.summary_log_path))
        eval_lineage.end(self.my_run_context(self.run_context))
        args[0].assert_called()

    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_summary_record')
247
    def test_eval_end_except_run_context(self, *args):
G
gaocongli 已提交
248
        """Test EvalLineage.end method when run_context is invalid.."""
249
        args[0].return_value = True
G
gaocongli 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        eval_lineage = self.my_eval_module(self.my_summary_record(self.summary_log_path), True)
        with self.assertRaises(Exception) as context:
            eval_lineage.end(self.run_context)
        self.assertTrue('Invalid EvalLineage run_context.' in str(context.exception))

    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'AnalyzeObject.analyze_dataset')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_summary_record')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_eval_run_context')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'LineageSummary.record_evaluation_lineage')
    def test_eval_end_except_log_error(self, *args):
        """Test EvalLineage.end method with logging error."""
        args[0].side_effect = Exception
        args[1].return_value = True
        args[2].return_value = True
        args[3].return_value = None
        eval_lineage = self.my_eval_module(self.my_summary_record(self.summary_log_path), True)
        with self.assertRaises(LineageLogError) as context:
            eval_lineage.end(self.my_run_context(self.run_context))
        self.assertTrue('End error in EvalLineage' in str(context.exception))

    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'AnalyzeObject.analyze_dataset')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_summary_record')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.validate_eval_run_context')
    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'LineageSummary.record_evaluation_lineage')
    def test_eval_end_except_log_error2(self, *args):
        """Test EvalLineage.end method with logging error."""
        args[0].side_effect = IOError
        args[1].return_value = True
        args[2].return_value = True
        args[3].return_value = None
        eval_lineage = self.my_eval_module(self.my_summary_record(self.summary_log_path), True)
        with self.assertRaises(LineageLogError) as context:
            eval_lineage.end(self.my_run_context(self.run_context))
        self.assertTrue('End error in EvalLineage' in str(context.exception))

289
    def test_epoch_is_zero(self, *args):
G
gaocongli 已提交
290
        """Test TrainLineage.end method."""
291
        args[0].return_value = None
G
gaocongli 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        run_context = self.run_context
        run_context['epoch_num'] = 0
        with self.assertRaises(MindInsightException):
            train_lineage = self.my_train_module(self.my_summary_record(self.summary_log_path), True)
            train_lineage.end(self.my_run_context(run_context))

    def tearDown(self):
        """Teardown."""
        if os.path.exists(self.summary_log_path):
            try:
                shutil.rmtree(self.summary_log_path)
            except IOError:
                pass


class TestAnalyzer(TestCase):
    """Test Analyzer class in model_lineage.py."""

    def setUp(self):
        """SetUp config."""
        self.analyzer = AnalyzeObject()

    def test_analyze_optimizer(self):
        """Test analyze_optimizer method."""
        optimizer = Optimizer(Tensor(0.12))
        res = self.analyzer.analyze_optimizer(optimizer)
        assert res == 0.12

    def test_get_dataset_path(self):
        """Test get_dataset_path method."""
        dataset = MindDataset(
            dataset_file='/path/to/mindrecord'
        )
        res = self.analyzer.get_dataset_path(dataset)
        assert res == '/path/to/mindrecord'

    def test_get_dataset_path_wrapped(self):
        """Test get_dataset_path_wrapped method."""
        dataset = Dataset()
        dataset.input.append(
            MindDataset(
                dataset_size=10,
                dataset_file='/path/to/cifar10'
            ))

        res = self.analyzer.get_dataset_path_wrapped(dataset)
        assert res == '/path/to/cifar10'

    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.'
                'AnalyzeObject.get_dataset_path_wrapped')
    def test_analyze_dataset(self, mock_get_path):
        """Test analyze_dataset method."""
        mock_get_path.return_value = '/path/to/mindinsightset'
        dataset = MindDataset(
            dataset_size=10,
            dataset_file='/path/to/mindinsightset'
        )
        res1 = self.analyzer.analyze_dataset(dataset, {'step_num': 10, 'epoch': 2}, 'train')
        res2 = self.analyzer.analyze_dataset(dataset, {'step_num': 5}, 'valid')
351
        assert res1 == {'step_num': 10,
G
gaocongli 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
                        'train_dataset_path': '/path/to',
                        'train_dataset_size': 50,
                        'epoch': 2}
        assert res2 == {'step_num': 5, 'valid_dataset_path': '/path/to',
                        'valid_dataset_size': 50}

    def test_get_dataset_path_dataset(self):
        """Test get_dataset_path method with Dataset."""
        dataset = Dataset(
            dataset_size=10,
            dataset_path='/path/to/cifar10'
        )

        with self.assertRaises(IndexError):
            self.analyzer.get_dataset_path(output_dataset=dataset)

    def test_get_dataset_path_mindrecord(self):
        """Test get_dataset_path method with MindDataset."""
        dataset = MindDataset(
            dataset_file='/path/to/cifar10'
        )
        dataset_path = self.analyzer.get_dataset_path(output_dataset=dataset)
        self.assertEqual(dataset_path, '/path/to/cifar10')

    def test_get_file_path(self):
        """Test get_file_path method."""
        model_ckpt = ModelCheckpoint(prefix='', directory='/path/to')
        summary_step = SummaryStep(MagicMock(full_file_name='/path/to/summary.log'))
        list_callback = [model_ckpt, summary_step]
        ckpt_file_path, _ = AnalyzeObject.get_file_path(list_callback)
        self.assertEqual(ckpt_file_path, '/path/to/test_model.ckpt')

    @mock.patch('os.path.getsize')
    def test_get_file_size(self, os_get_size_mock):
        """Test get_file_size method."""
        os_get_size_mock.return_value = 128
        file_size = AnalyzeObject.get_file_size('/file/path')
        self.assertEqual(file_size, 128)

    @mock.patch('os.path.getsize')
    def test_get_file_size_except(self, os_get_size_mock):
        """Test failed to get the size of file."""
        os_get_size_mock.side_effect = OSError
        analyzer = AnalyzeObject
        with self.assertRaises(LineageGetModelFileError) as context:
            analyzer.get_file_size('/file/path')
        self.assertTrue('Error when get model file size:' in str(context.exception))

    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_file_size')
    def test_get_model_size(self, get_file_size_mock):
        """Test get_model_size method."""
        get_file_size_mock.return_value = 128
        analyzer = AnalyzeObject
        file_size = analyzer.get_model_size(ckpt_file_path='/file/path')
        self.assertEqual(file_size, 128)

    @mock.patch('mindinsight.lineagemgr.collection.model.model_lineage.AnalyzeObject.get_file_size')
    def test_get_model_size_no_ckpt(self, get_file_size_mock):
        """Test get_model_size method without ckpt file."""
        get_file_size_mock.return_value = 0
        analyzer = AnalyzeObject
        file_size = analyzer.get_model_size(ckpt_file_path='')
        self.assertEqual(file_size, 0)

    @mock.patch('builtins.vars')
    def test_get_optimizer_by_network(self, mock_vars):
        """Test get_optimizer_by_network."""
        mock_optimizer = Optimizer(Tensor(0.1))
        mock_cells = MagicMock()
        mock_cells.items.return_value = [{'key': mock_optimizer}]
        mock_vars.return_value = {
            '_cells': {
                'key': mock_optimizer
            }
        }
        res = AnalyzeObject.get_optimizer_by_network(MagicMock())
        self.assertEqual(res, mock_optimizer)

    @mock.patch('builtins.vars')
    def test_get_loss_fn_by_network(self, mock_vars):
        """Test get_loss_fn_by_network."""
        mock_cell1 = {'_cells': {'key': SoftmaxCrossEntropyWithLogits(0.2)}}
        mock_cell2 = {'_cells': {'opt': Optimizer(Tensor(0.1))}}
        mock_cell3 = {'_cells': {'loss': SoftmaxCrossEntropyWithLogits(0.1)}}
        mock_vars.side_effect = [mock_cell1, mock_cell2, mock_cell3]
        res = AnalyzeObject.get_loss_fn_by_network(MagicMock())
        self.assertEqual(res, mock_cell3['_cells']['loss'])

    @mock.patch('builtins.vars')
    def test_get_backbone_network_with_loss_cell(self, mock_vars):
        """Test get_backbone_network with loss_cell."""
        mock_cell = {'_cells': {'key': WithLossCell(MagicMock(),
                                                    SoftmaxCrossEntropyWithLogits(0.1))}
                     }
        mock_vars.return_value = mock_cell
        res = AnalyzeObject.get_backbone_network(MagicMock())
        self.assertEqual(res, 'MagicMock')

    @mock.patch('builtins.vars')
    def test_get_backbone_network(self, mock_vars):
        """Test get_backbone_network."""
        mock_net = TrainOneStepWithLossScaleCell()
        mock_net.network = MagicMock()
        mock_cell = {
            '_cells': {
                'key': mock_net
            }
        }
        mock_vars.return_value = mock_cell
        res = AnalyzeObject.get_backbone_network(MagicMock())
        self.assertEqual(res, 'MagicMock')


if __name__ == '__main__':
    unittest.main(verbosity=2)