Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindarmour
提交
ae80c360
M
mindarmour
项目概览
MindSpore
/
mindarmour
通知
4
Star
2
Fork
3
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindarmour
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ae80c360
编写于
8月 20, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
8月 20, 2020
浏览文件
操作
浏览文件
下载
差异文件
!78 Add membership inference feature
Merge pull request !78 from liuluobin/master
上级
bc225f15
55c31a33
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
1477 addition
and
5 deletion
+1477
-5
example/membership_inference_demo/eval.py
example/membership_inference_demo/eval.py
+132
-0
example/membership_inference_demo/main.py
example/membership_inference_demo/main.py
+122
-0
example/membership_inference_demo/train.py
example/membership_inference_demo/train.py
+198
-0
example/membership_inference_demo/vgg/__init__.py
example/membership_inference_demo/vgg/__init__.py
+14
-0
example/membership_inference_demo/vgg/config.py
example/membership_inference_demo/vgg/config.py
+45
-0
example/membership_inference_demo/vgg/crossentropy.py
example/membership_inference_demo/vgg/crossentropy.py
+39
-0
example/membership_inference_demo/vgg/dataset.py
example/membership_inference_demo/vgg/dataset.py
+75
-0
example/membership_inference_demo/vgg/linear_warmup.py
example/membership_inference_demo/vgg/linear_warmup.py
+23
-0
example/membership_inference_demo/vgg/utils/util.py
example/membership_inference_demo/vgg/utils/util.py
+36
-0
example/membership_inference_demo/vgg/utils/var_init.py
example/membership_inference_demo/vgg/utils/var_init.py
+214
-0
example/membership_inference_demo/vgg/vgg.py
example/membership_inference_demo/vgg/vgg.py
+142
-0
example/membership_inference_demo/vgg/warmup_cosine_annealing_lr.py
...mbership_inference_demo/vgg/warmup_cosine_annealing_lr.py
+40
-0
example/membership_inference_demo/vgg/warmup_step_lr.py
example/membership_inference_demo/vgg/warmup_step_lr.py
+84
-0
mindarmour/diff_privacy/evaluation/attacker.py
mindarmour/diff_privacy/evaluation/attacker.py
+5
-5
mindarmour/diff_privacy/evaluation/membership_inference.py
mindarmour/diff_privacy/evaluation/membership_inference.py
+197
-0
tests/ut/python/diff_privacy/test_membership_inference.py
tests/ut/python/diff_privacy/test_membership_inference.py
+111
-0
未找到文件。
example/membership_inference_demo/eval.py
0 → 100644
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Eval"""
import
os
import
argparse
import
datetime
import
mindspore.nn
as
nn
from
mindspore
import
context
from
mindspore.nn.optim.momentum
import
Momentum
from
mindspore.train.model
import
Model
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
functional
as
F
from
mindspore.common
import
dtype
as
mstype
from
mindarmour.utils
import
LogUtil
from
vgg.vgg
import
vgg16
from
vgg.dataset
import
vgg_create_dataset100
from
vgg.config
import
cifar_cfg
as
cfg
class
ParameterReduce
(
nn
.
Cell
):
"""ParameterReduce"""
def
__init__
(
self
):
super
(
ParameterReduce
,
self
).
__init__
()
self
.
cast
=
P
.
Cast
()
self
.
reduce
=
P
.
AllReduce
()
def
construct
(
self
,
x
):
one
=
self
.
cast
(
F
.
scalar_to_array
(
1.0
),
mstype
.
float32
)
out
=
x
*
one
ret
=
self
.
reduce
(
out
)
return
ret
def
parse_args
(
cloud_args
=
None
):
"""parse_args"""
parser
=
argparse
.
ArgumentParser
(
'mindspore classification test'
)
parser
.
add_argument
(
'--device_target'
,
type
=
str
,
default
=
'Ascend'
,
choices
=
[
'Ascend'
,
'GPU'
],
help
=
'device where the code will be implemented. (Default: Ascend)'
)
# dataset related
parser
.
add_argument
(
'--data_path'
,
type
=
str
,
default
=
''
,
help
=
'eval data dir'
)
parser
.
add_argument
(
'--per_batch_size'
,
default
=
32
,
type
=
int
,
help
=
'batch size for per npu'
)
# network related
parser
.
add_argument
(
'--graph_ckpt'
,
type
=
int
,
default
=
1
,
help
=
'graph ckpt or feed ckpt'
)
parser
.
add_argument
(
'--pre_trained'
,
default
=
''
,
type
=
str
,
help
=
'fully path of pretrained model to load. '
'If it is a direction, it will test all ckpt'
)
# logging related
parser
.
add_argument
(
'--log_path'
,
type
=
str
,
default
=
'outputs/'
,
help
=
'path to save log'
)
parser
.
add_argument
(
'--rank'
,
type
=
int
,
default
=
0
,
help
=
'local rank of distributed'
)
parser
.
add_argument
(
'--group_size'
,
type
=
int
,
default
=
1
,
help
=
'world size of distributed'
)
args_opt
=
parser
.
parse_args
()
args_opt
=
merge_args
(
args_opt
,
cloud_args
)
args_opt
.
image_size
=
cfg
.
image_size
args_opt
.
num_classes
=
cfg
.
num_classes
args_opt
.
per_batch_size
=
cfg
.
batch_size
args_opt
.
momentum
=
cfg
.
momentum
args_opt
.
weight_decay
=
cfg
.
weight_decay
args_opt
.
buffer_size
=
cfg
.
buffer_size
args_opt
.
pad_mode
=
cfg
.
pad_mode
args_opt
.
padding
=
cfg
.
padding
args_opt
.
has_bias
=
cfg
.
has_bias
args_opt
.
batch_norm
=
cfg
.
batch_norm
args_opt
.
initialize_mode
=
cfg
.
initialize_mode
args_opt
.
has_dropout
=
cfg
.
has_dropout
args_opt
.
image_size
=
list
(
map
(
int
,
args_opt
.
image_size
.
split
(
','
)))
return
args_opt
def
merge_args
(
args
,
cloud_args
):
"""merge_args"""
args_dict
=
vars
(
args
)
if
isinstance
(
cloud_args
,
dict
):
for
key
in
cloud_args
.
keys
():
val
=
cloud_args
[
key
]
if
key
in
args_dict
and
val
:
arg_type
=
type
(
args_dict
[
key
])
if
arg_type
is
not
type
(
None
):
val
=
arg_type
(
val
)
args_dict
[
key
]
=
val
return
args
def
test
(
cloud_args
=
None
):
"""test"""
args
=
parse_args
(
cloud_args
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
enable_auto_mixed_precision
=
True
,
device_target
=
args
.
device_target
,
save_graphs
=
False
)
if
os
.
getenv
(
'DEVICE_ID'
,
"not_set"
).
isdigit
():
context
.
set_context
(
device_id
=
int
(
os
.
getenv
(
'DEVICE_ID'
)))
args
.
outputs_dir
=
os
.
path
.
join
(
args
.
log_path
,
datetime
.
datetime
.
now
().
strftime
(
'%Y-%m-%d_time_%H_%M_%S'
))
args
.
logger
=
LogUtil
.
get_instance
()
args
.
logger
.
set_level
(
20
)
net
=
vgg16
(
num_classes
=
args
.
num_classes
,
args
=
args
)
opt
=
Momentum
(
filter
(
lambda
x
:
x
.
requires_grad
,
net
.
get_parameters
()),
0.01
,
args
.
momentum
,
weight_decay
=
args
.
weight_decay
)
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
sparse
=
True
,
reduction
=
'mean'
,
is_grad
=
False
)
model
=
Model
(
net
,
loss_fn
=
loss
,
optimizer
=
opt
,
metrics
=
{
'acc'
})
param_dict
=
load_checkpoint
(
args
.
pre_trained
)
load_param_into_net
(
net
,
param_dict
)
net
.
set_train
(
False
)
dataset_test
=
vgg_create_dataset100
(
args
.
data_path
,
args
.
image_size
,
args
.
per_batch_size
,
training
=
False
)
res
=
model
.
eval
(
dataset_test
)
print
(
"result: "
,
res
)
if
__name__
==
"__main__"
:
test
()
example/membership_inference_demo/main.py
0 → 100644
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Examples of membership inference
"""
import
argparse
import
sys
from
vgg.vgg
import
vgg16
from
vgg.config
import
cifar_cfg
as
cfg
from
vgg.utils.util
import
get_param_groups
from
vgg.dataset
import
vgg_create_dataset100
import
numpy
as
np
from
mindspore.train
import
Model
from
mindspore.train.serialization
import
load_param_into_net
,
load_checkpoint
import
mindspore.nn
as
nn
from
mindarmour.diff_privacy.evaluation.membership_inference
import
MembershipInference
from
mindarmour.utils
import
LogUtil
logging
=
LogUtil
.
get_instance
()
logging
.
set_level
(
20
)
sys
.
path
.
append
(
"../../"
)
TAG
=
"membership inference example"
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
(
"main case arg parser."
)
parser
.
add_argument
(
"--device_target"
,
type
=
str
,
default
=
"Ascend"
,
choices
=
[
"Ascend"
])
parser
.
add_argument
(
"--data_path"
,
type
=
str
,
required
=
True
,
help
=
"Data home path for Cifar100."
)
parser
.
add_argument
(
"--pre_trained"
,
type
=
str
,
required
=
True
,
help
=
"Checkpoint path."
)
args
=
parser
.
parse_args
()
args
.
num_classes
=
cfg
.
num_classes
args
.
batch_norm
=
cfg
.
batch_norm
args
.
has_dropout
=
cfg
.
has_dropout
args
.
has_bias
=
cfg
.
has_bias
args
.
initialize_mode
=
cfg
.
initialize_mode
args
.
padding
=
cfg
.
padding
args
.
pad_mode
=
cfg
.
pad_mode
args
.
weight_decay
=
cfg
.
weight_decay
args
.
loss_scale
=
cfg
.
loss_scale
# load the pretrained model
net
=
vgg16
(
args
.
num_classes
,
args
)
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
opt
=
nn
.
Momentum
(
params
=
get_param_groups
(
net
),
learning_rate
=
0.1
,
momentum
=
0.9
,
weight_decay
=
args
.
weight_decay
,
loss_scale
=
args
.
loss_scale
)
load_param_into_net
(
net
,
load_checkpoint
(
args
.
pre_trained
))
model
=
Model
(
network
=
net
,
loss_fn
=
loss
,
optimizer
=
opt
)
logging
.
info
(
TAG
,
"The model is loaded."
)
attacker
=
MembershipInference
(
model
)
config
=
[
{
"method"
:
"knn"
,
"params"
:
{
"n_neighbors"
:
[
3
,
5
,
7
]
}
},
{
"method"
:
"lr"
,
"params"
:
{
"C"
:
np
.
logspace
(
-
4
,
2
,
10
)
}
},
{
"method"
:
"mlp"
,
"params"
:
{
"hidden_layer_sizes"
:
[(
64
,),
(
32
,
32
)],
"solver"
:
[
"adam"
],
"alpha"
:
[
0.0001
,
0.001
,
0.01
]
}
},
{
"method"
:
"rf"
,
"params"
:
{
"n_estimators"
:
[
100
],
"max_features"
:
[
"auto"
,
"sqrt"
],
"max_depth"
:
[
5
,
10
,
20
,
None
],
"min_samples_split"
:
[
2
,
5
,
10
],
"min_samples_leaf"
:
[
1
,
2
,
4
]
}
}
]
# load and split dataset
train_dataset
=
vgg_create_dataset100
(
data_home
=
args
.
data_path
,
image_size
=
(
224
,
224
),
batch_size
=
64
,
num_samples
=
10000
,
shuffle
=
False
)
test_dataset
=
vgg_create_dataset100
(
data_home
=
args
.
data_path
,
image_size
=
(
224
,
224
),
batch_size
=
64
,
num_samples
=
10000
,
shuffle
=
False
,
training
=
False
)
train_train
,
eval_train
=
train_dataset
.
split
([
0.8
,
0.2
])
train_test
,
eval_test
=
test_dataset
.
split
([
0.8
,
0.2
])
logging
.
info
(
TAG
,
"Data loading is complete."
)
logging
.
info
(
TAG
,
"Start training the inference model."
)
attacker
.
train
(
train_train
,
train_test
,
config
)
logging
.
info
(
TAG
,
"The inference model is training complete."
)
logging
.
info
(
TAG
,
"Start the evaluation phase"
)
metrics
=
[
"precision"
,
"accuracy"
,
"recall"
]
result
=
attacker
.
eval
(
eval_train
,
eval_test
,
metrics
)
# Show the metrics for each attack method.
count
=
len
(
config
)
for
i
in
range
(
count
):
print
(
"Method: {}, {}"
.
format
(
config
[
i
][
"method"
],
result
[
i
]))
example/membership_inference_demo/train.py
0 → 100644
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
#################train vgg16 example on cifar10########################
python train.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
"""
import
argparse
import
datetime
import
os
import
random
import
numpy
as
np
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
from
mindspore
import
context
from
mindspore.nn.optim.momentum
import
Momentum
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
from
mindspore.train.model
import
Model
from
mindspore.train.serialization
import
load_param_into_net
,
load_checkpoint
from
mindarmour.utils
import
LogUtil
from
vgg.dataset
import
vgg_create_dataset100
from
vgg.warmup_step_lr
import
warmup_step_lr
from
vgg.warmup_cosine_annealing_lr
import
warmup_cosine_annealing_lr
from
vgg.warmup_step_lr
import
lr_steps
from
vgg.utils.util
import
get_param_groups
from
vgg.vgg
import
vgg16
from
vgg.config
import
cifar_cfg
as
cfg
TAG
=
"train"
random
.
seed
(
1
)
np
.
random
.
seed
(
1
)
def
parse_args
(
cloud_args
=
None
):
"""parameters"""
parser
=
argparse
.
ArgumentParser
(
'mindspore classification training'
)
parser
.
add_argument
(
'--device_target'
,
type
=
str
,
default
=
'Ascend'
,
choices
=
[
'Ascend'
,
'GPU'
],
help
=
'device where the code will be implemented. (Default: Ascend)'
)
parser
.
add_argument
(
'--device_id'
,
type
=
int
,
default
=
1
,
help
=
'device id of GPU or Ascend. (Default: None)'
)
# dataset related
parser
.
add_argument
(
'--data_path'
,
type
=
str
,
default
=
''
,
help
=
'train data dir'
)
# network related
parser
.
add_argument
(
'--pre_trained'
,
default
=
''
,
type
=
str
,
help
=
'model_path, local pretrained model to load'
)
parser
.
add_argument
(
'--lr_gamma'
,
type
=
float
,
default
=
0.1
,
help
=
'decrease lr by a factor of exponential lr_scheduler'
)
parser
.
add_argument
(
'--eta_min'
,
type
=
float
,
default
=
0.
,
help
=
'eta_min in cosine_annealing scheduler'
)
parser
.
add_argument
(
'--T_max'
,
type
=
int
,
default
=
150
,
help
=
'T-max in cosine_annealing scheduler'
)
# logging and checkpoint related
parser
.
add_argument
(
'--log_interval'
,
type
=
int
,
default
=
100
,
help
=
'logging interval'
)
parser
.
add_argument
(
'--ckpt_path'
,
type
=
str
,
default
=
'outputs/'
,
help
=
'checkpoint save location'
)
parser
.
add_argument
(
'--ckpt_interval'
,
type
=
int
,
default
=
2
,
help
=
'ckpt_interval'
)
parser
.
add_argument
(
'--is_save_on_master'
,
type
=
int
,
default
=
1
,
help
=
'save ckpt on master or all rank'
)
args_opt
=
parser
.
parse_args
()
args_opt
=
merge_args
(
args_opt
,
cloud_args
)
args_opt
.
rank
=
0
args_opt
.
group_size
=
1
args_opt
.
label_smooth
=
cfg
.
label_smooth
args_opt
.
label_smooth_factor
=
cfg
.
label_smooth_factor
args_opt
.
lr_scheduler
=
cfg
.
lr_scheduler
args_opt
.
loss_scale
=
cfg
.
loss_scale
args_opt
.
max_epoch
=
cfg
.
max_epoch
args_opt
.
warmup_epochs
=
cfg
.
warmup_epochs
args_opt
.
lr
=
cfg
.
lr
args_opt
.
lr_init
=
cfg
.
lr_init
args_opt
.
lr_max
=
cfg
.
lr_max
args_opt
.
momentum
=
cfg
.
momentum
args_opt
.
weight_decay
=
cfg
.
weight_decay
args_opt
.
per_batch_size
=
cfg
.
batch_size
args_opt
.
num_classes
=
cfg
.
num_classes
args_opt
.
buffer_size
=
cfg
.
buffer_size
args_opt
.
ckpt_save_max
=
cfg
.
keep_checkpoint_max
args_opt
.
pad_mode
=
cfg
.
pad_mode
args_opt
.
padding
=
cfg
.
padding
args_opt
.
has_bias
=
cfg
.
has_bias
args_opt
.
batch_norm
=
cfg
.
batch_norm
args_opt
.
initialize_mode
=
cfg
.
initialize_mode
args_opt
.
has_dropout
=
cfg
.
has_dropout
args_opt
.
lr_epochs
=
list
(
map
(
int
,
cfg
.
lr_epochs
.
split
(
','
)))
args_opt
.
image_size
=
list
(
map
(
int
,
cfg
.
image_size
.
split
(
','
)))
return
args_opt
def
merge_args
(
args_opt
,
cloud_args
):
"""dictionary"""
args_dict
=
vars
(
args_opt
)
if
isinstance
(
cloud_args
,
dict
):
for
key_arg
in
cloud_args
.
keys
():
val
=
cloud_args
[
key_arg
]
if
key_arg
in
args_dict
and
val
:
arg_type
=
type
(
args_dict
[
key_arg
])
if
arg_type
is
not
None
:
val
=
arg_type
(
val
)
args_dict
[
key_arg
]
=
val
return
args_opt
if
__name__
==
'__main__'
:
args
=
parse_args
()
device_num
=
int
(
os
.
environ
.
get
(
"DEVICE_NUM"
,
1
))
context
.
set_context
(
device_id
=
args
.
device_id
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
args
.
device_target
)
# select for master rank save ckpt or all rank save, compatiable for model parallel
args
.
rank_save_ckpt_flag
=
0
if
args
.
is_save_on_master
:
if
args
.
rank
==
0
:
args
.
rank_save_ckpt_flag
=
1
else
:
args
.
rank_save_ckpt_flag
=
1
# logger
args
.
outputs_dir
=
os
.
path
.
join
(
args
.
ckpt_path
,
datetime
.
datetime
.
now
().
strftime
(
'%Y-%m-%d_time_%H_%M_%S'
))
args
.
logger
=
LogUtil
.
get_instance
()
args
.
logger
.
set_level
(
20
)
# load train data set
dataset
=
vgg_create_dataset100
(
args
.
data_path
,
args
.
image_size
,
args
.
per_batch_size
,
args
.
rank
,
args
.
group_size
)
batch_num
=
dataset
.
get_dataset_size
()
args
.
steps_per_epoch
=
dataset
.
get_dataset_size
()
# network
args
.
logger
.
info
(
TAG
,
'start create network'
)
# get network and init
network
=
vgg16
(
args
.
num_classes
,
args
)
# pre_trained
if
args
.
pre_trained
:
load_param_into_net
(
network
,
load_checkpoint
(
args
.
pre_trained
))
# lr scheduler
if
args
.
lr_scheduler
==
'exponential'
:
lr
=
warmup_step_lr
(
args
.
lr
,
args
.
lr_epochs
,
args
.
steps_per_epoch
,
args
.
warmup_epochs
,
args
.
max_epoch
,
gamma
=
args
.
lr_gamma
,
)
elif
args
.
lr_scheduler
==
'cosine_annealing'
:
lr
=
warmup_cosine_annealing_lr
(
args
.
lr
,
args
.
steps_per_epoch
,
args
.
warmup_epochs
,
args
.
max_epoch
,
args
.
T_max
,
args
.
eta_min
)
elif
args
.
lr_scheduler
==
'step'
:
lr
=
lr_steps
(
0
,
lr_init
=
args
.
lr_init
,
lr_max
=
args
.
lr_max
,
warmup_epochs
=
args
.
warmup_epochs
,
total_epochs
=
args
.
max_epoch
,
steps_per_epoch
=
batch_num
)
else
:
raise
NotImplementedError
(
args
.
lr_scheduler
)
# optimizer
opt
=
Momentum
(
params
=
get_param_groups
(
network
),
learning_rate
=
Tensor
(
lr
),
momentum
=
args
.
momentum
,
weight_decay
=
args
.
weight_decay
,
loss_scale
=
args
.
loss_scale
)
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
sparse
=
True
,
reduction
=
'mean'
,
is_grad
=
False
)
model
=
Model
(
network
,
loss_fn
=
loss
,
optimizer
=
opt
,
metrics
=
{
'acc'
},
amp_level
=
"O2"
,
keep_batchnorm_fp32
=
False
,
loss_scale_manager
=
None
)
# checkpoint save
if
args
.
rank_save_ckpt_flag
:
ckpt_config
=
CheckpointConfig
(
save_checkpoint_steps
=
args
.
ckpt_interval
*
args
.
steps_per_epoch
,
keep_checkpoint_max
=
args
.
ckpt_save_max
)
ckpt_cb
=
ModelCheckpoint
(
config
=
ckpt_config
,
directory
=
args
.
outputs_dir
,
prefix
=
'{}'
.
format
(
args
.
rank
))
callbacks
=
ckpt_cb
model
.
train
(
args
.
max_epoch
,
dataset
,
callbacks
=
callbacks
)
example/membership_inference_demo/vgg/__init__.py
0 → 100644
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the License);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# httpwww.apache.orglicensesLICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
example/membership_inference_demo/vgg/config.py
0 → 100755
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
network config setting, will be used in train.py and eval.py
"""
from
easydict
import
EasyDict
as
edict
# config for vgg16, cifar100
cifar_cfg
=
edict
({
"num_classes"
:
100
,
"lr"
:
0.01
,
"lr_init"
:
0.01
,
"lr_max"
:
0.1
,
"lr_epochs"
:
'30,60,90,120'
,
"lr_scheduler"
:
"step"
,
"warmup_epochs"
:
5
,
"batch_size"
:
64
,
"max_epoch"
:
100
,
"momentum"
:
0.9
,
"weight_decay"
:
5e-4
,
"loss_scale"
:
1.0
,
"label_smooth"
:
0
,
"label_smooth_factor"
:
0
,
"buffer_size"
:
10
,
"image_size"
:
'224,224'
,
"pad_mode"
:
'same'
,
"padding"
:
0
,
"has_bias"
:
False
,
"batch_norm"
:
True
,
"keep_checkpoint_max"
:
10
,
"initialize_mode"
:
"XavierUniform"
,
"has_dropout"
:
False
})
example/membership_inference_demo/vgg/crossentropy.py
0 → 100755
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""define loss function for network"""
from
mindspore.nn.loss.loss
import
_Loss
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
functional
as
F
from
mindspore
import
Tensor
from
mindspore.common
import
dtype
as
mstype
import
mindspore.nn
as
nn
class
CrossEntropy
(
_Loss
):
"""the redefined loss function with SoftmaxCrossEntropyWithLogits"""
def
__init__
(
self
,
smooth_factor
=
0.
,
num_classes
=
1001
):
super
(
CrossEntropy
,
self
).
__init__
()
self
.
onehot
=
P
.
OneHot
()
self
.
on_value
=
Tensor
(
1.0
-
smooth_factor
,
mstype
.
float32
)
self
.
off_value
=
Tensor
(
1.0
*
smooth_factor
/
(
num_classes
-
1
),
mstype
.
float32
)
self
.
ce
=
nn
.
SoftmaxCrossEntropyWithLogits
()
self
.
mean
=
P
.
ReduceMean
(
False
)
def
construct
(
self
,
logit
,
label
):
one_hot_label
=
self
.
onehot
(
label
,
F
.
shape
(
logit
)[
1
],
self
.
on_value
,
self
.
off_value
)
loss
=
self
.
ce
(
logit
,
one_hot_label
)
loss
=
self
.
mean
(
loss
,
0
)
return
loss
example/membership_inference_demo/vgg/dataset.py
0 → 100644
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
dataset processing.
"""
import
os
from
mindspore.common
import
dtype
as
mstype
import
mindspore.dataset
as
de
import
mindspore.dataset.transforms.c_transforms
as
C
import
mindspore.dataset.transforms.vision.c_transforms
as
vision
def
vgg_create_dataset100
(
data_home
,
image_size
,
batch_size
,
rank_id
=
0
,
rank_size
=
1
,
repeat_num
=
1
,
training
=
True
,
num_samples
=
None
,
shuffle
=
True
):
"""Data operations."""
de
.
config
.
set_seed
(
1
)
data_dir
=
os
.
path
.
join
(
data_home
,
"train"
)
if
not
training
:
data_dir
=
os
.
path
.
join
(
data_home
,
"test"
)
if
num_samples
is
not
None
:
data_set
=
de
.
Cifar100Dataset
(
data_dir
,
num_shards
=
rank_size
,
shard_id
=
rank_id
,
num_samples
=
num_samples
,
shuffle
=
shuffle
)
else
:
data_set
=
de
.
Cifar100Dataset
(
data_dir
,
num_shards
=
rank_size
,
shard_id
=
rank_id
)
input_columns
=
[
"fine_label"
]
output_columns
=
[
"label"
]
data_set
=
data_set
.
rename
(
input_columns
=
input_columns
,
output_columns
=
output_columns
)
data_set
=
data_set
.
project
([
"image"
,
"label"
])
rescale
=
1.0
/
255.0
shift
=
0.0
# define map operations
random_crop_op
=
vision
.
RandomCrop
((
32
,
32
),
(
4
,
4
,
4
,
4
))
# padding_mode default CONSTANT
random_horizontal_op
=
vision
.
RandomHorizontalFlip
()
resize_op
=
vision
.
Resize
(
image_size
)
# interpolation default BILINEAR
rescale_op
=
vision
.
Rescale
(
rescale
,
shift
)
normalize_op
=
vision
.
Normalize
((
0.4465
,
0.4822
,
0.4914
),
(
0.2010
,
0.1994
,
0.2023
))
changeswap_op
=
vision
.
HWC2CHW
()
type_cast_op
=
C
.
TypeCast
(
mstype
.
int32
)
c_trans
=
[]
if
training
:
c_trans
=
[
random_crop_op
,
random_horizontal_op
]
c_trans
+=
[
resize_op
,
rescale_op
,
normalize_op
,
changeswap_op
]
# apply map operations on images
data_set
=
data_set
.
map
(
input_columns
=
"label"
,
operations
=
type_cast_op
)
data_set
=
data_set
.
map
(
input_columns
=
"image"
,
operations
=
c_trans
)
# apply repeat operations
data_set
=
data_set
.
repeat
(
repeat_num
)
# apply shuffle operations
# data_set = data_set.shuffle(buffer_size=1000)
# apply batch operations
data_set
=
data_set
.
batch
(
batch_size
=
batch_size
,
drop_remainder
=
True
)
return
data_set
example/membership_inference_demo/vgg/linear_warmup.py
0 → 100644
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
linear warm up learning rate.
"""
def
linear_warmup_lr
(
current_step
,
warmup_steps
,
base_lr
,
init_lr
):
lr_inc
=
(
float
(
base_lr
)
-
float
(
init_lr
))
/
float
(
warmup_steps
)
lr
=
float
(
init_lr
)
+
lr_inc
*
current_step
return
lr
example/membership_inference_demo/vgg/utils/util.py
0 → 100644
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Util class or function."""
def
get_param_groups
(
network
):
"""Param groups for optimizer."""
decay_params
=
[]
no_decay_params
=
[]
for
x
in
network
.
trainable_params
():
parameter_name
=
x
.
name
if
parameter_name
.
endswith
(
'.bias'
):
# all bias not using weight decay
no_decay_params
.
append
(
x
)
elif
parameter_name
.
endswith
(
'.gamma'
):
# bn weight bias not using weight decay, be carefully for now x not include BN
no_decay_params
.
append
(
x
)
elif
parameter_name
.
endswith
(
'.beta'
):
# bn weight bias not using weight decay, be carefully for now x not include BN
no_decay_params
.
append
(
x
)
else
:
decay_params
.
append
(
x
)
return
[{
'params'
:
no_decay_params
,
'weight_decay'
:
0.0
},
{
'params'
:
decay_params
}]
example/membership_inference_demo/vgg/utils/var_init.py
0 → 100644
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Initialize.
"""
import
math
from
functools
import
reduce
import
numpy
as
np
import
mindspore.nn
as
nn
from
mindspore.common
import
initializer
as
init
def
_calculate_gain
(
nonlinearity
,
param
=
None
):
r
"""
Return the recommended gain value for the given nonlinearity function.
The values are as follows:
================= ====================================================
nonlinearity gain
================= ====================================================
Linear / Identity :math:`1`
Conv{1,2,3}D :math:`1`
Sigmoid :math:`1`
Tanh :math:`\frac{5}{3}`
ReLU :math:`\sqrt{2}`
Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}`
================= ====================================================
Args:
nonlinearity: the non-linear function
param: optional parameter for the non-linear function
Examples:
>>> gain = calculate_gain('leaky_relu', 0.2) # leaky_relu with negative_slope=0.2
"""
linear_fns
=
[
'linear'
,
'conv1d'
,
'conv2d'
,
'conv3d'
,
'conv_transpose1d'
,
'conv_transpose2d'
,
'conv_transpose3d'
]
if
nonlinearity
in
linear_fns
or
nonlinearity
==
'sigmoid'
:
return
1
if
nonlinearity
==
'tanh'
:
return
5.0
/
3
if
nonlinearity
==
'relu'
:
return
math
.
sqrt
(
2.0
)
if
nonlinearity
==
'leaky_relu'
:
if
param
is
None
:
negative_slope
=
0.01
elif
not
isinstance
(
param
,
bool
)
and
isinstance
(
param
,
int
)
or
isinstance
(
param
,
float
):
negative_slope
=
param
else
:
raise
ValueError
(
"negative_slope {} not a valid number"
.
format
(
param
))
return
math
.
sqrt
(
2.0
/
(
1
+
negative_slope
**
2
))
raise
ValueError
(
"Unsupported nonlinearity {}"
.
format
(
nonlinearity
))
def
_assignment
(
arr
,
num
):
"""Assign the value of `num` to `arr`."""
if
arr
.
shape
==
():
arr
=
arr
.
reshape
((
1
))
arr
[:]
=
num
arr
=
arr
.
reshape
(())
else
:
if
isinstance
(
num
,
np
.
ndarray
):
arr
[:]
=
num
[:]
else
:
arr
[:]
=
num
return
arr
def
_calculate_in_and_out
(
arr
):
"""
Calculate n_in and n_out.
Args:
arr (Array): Input array.
Returns:
Tuple, a tuple with two elements, the first element is `n_in` and the second element is `n_out`.
"""
dim
=
len
(
arr
.
shape
)
if
dim
<
2
:
raise
ValueError
(
"If initialize data with xavier uniform, the dimension of data must greater than 1."
)
n_in
=
arr
.
shape
[
1
]
n_out
=
arr
.
shape
[
0
]
if
dim
>
2
:
counter
=
reduce
(
lambda
x
,
y
:
x
*
y
,
arr
.
shape
[
2
:])
n_in
*=
counter
n_out
*=
counter
return
n_in
,
n_out
def
_select_fan
(
array
,
mode
):
mode
=
mode
.
lower
()
valid_modes
=
[
'fan_in'
,
'fan_out'
]
if
mode
not
in
valid_modes
:
raise
ValueError
(
"Mode {} not supported, please use one of {}"
.
format
(
mode
,
valid_modes
))
fan_in
,
fan_out
=
_calculate_in_and_out
(
array
)
return
fan_in
if
mode
==
'fan_in'
else
fan_out
class
KaimingInit
(
init
.
Initializer
):
r
"""
Base Class. Initialize the array with He kaiming algorithm.
Args:
a: the negative slope of the rectifier used after this layer (only
used with ``'leaky_relu'``)
mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'``
preserves the magnitude of the variance of the weights in the
forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the
backwards pass.
nonlinearity: the non-linear function, recommended to use only with
``'relu'`` or ``'leaky_relu'`` (default).
"""
def
__init__
(
self
,
a
=
0
,
mode
=
'fan_in'
,
nonlinearity
=
'leaky_relu'
):
super
(
KaimingInit
,
self
).
__init__
()
self
.
mode
=
mode
self
.
gain
=
_calculate_gain
(
nonlinearity
,
a
)
def
_initialize
(
self
,
arr
):
pass
class
KaimingUniform
(
KaimingInit
):
r
"""
Initialize the array with He kaiming uniform algorithm. The resulting tensor will
have values sampled from :math:`\mathcal{U}(-\text{bound}, \text{bound})` where
.. math::
\text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}}
Input:
arr (Array): The array to be assigned.
Returns:
Array, assigned array.
Examples:
>>> w = np.empty(3, 5)
>>> KaimingUniform(w, mode='fan_in', nonlinearity='relu')
"""
def
_initialize
(
self
,
arr
):
fan
=
_select_fan
(
arr
,
self
.
mode
)
bound
=
math
.
sqrt
(
3.0
)
*
self
.
gain
/
math
.
sqrt
(
fan
)
np
.
random
.
seed
(
0
)
data
=
np
.
random
.
uniform
(
-
bound
,
bound
,
arr
.
shape
)
_assignment
(
arr
,
data
)
class
KaimingNormal
(
KaimingInit
):
r
"""
Initialize the array with He kaiming normal algorithm. The resulting tensor will
have values sampled from :math:`\mathcal{N}(0, \text{std}^2)` where
.. math::
\text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}}
Input:
arr (Array): The array to be assigned.
Returns:
Array, assigned array.
Examples:
>>> w = np.empty(3, 5)
>>> KaimingNormal(w, mode='fan_out', nonlinearity='relu')
"""
def
_initialize
(
self
,
arr
):
fan
=
_select_fan
(
arr
,
self
.
mode
)
std
=
self
.
gain
/
math
.
sqrt
(
fan
)
np
.
random
.
seed
(
0
)
data
=
np
.
random
.
normal
(
0
,
std
,
arr
.
shape
)
_assignment
(
arr
,
data
)
def
default_recurisive_init
(
custom_cell
):
"""default_recurisive_init"""
for
_
,
cell
in
custom_cell
.
cells_and_names
():
if
isinstance
(
cell
,
nn
.
Conv2d
):
cell
.
weight
.
default_input
=
init
.
initializer
(
KaimingUniform
(
a
=
math
.
sqrt
(
5
)),
cell
.
weight
.
shape
,
cell
.
weight
.
dtype
)
if
cell
.
bias
is
not
None
:
fan_in
,
_
=
_calculate_in_and_out
(
cell
.
weight
)
bound
=
1
/
math
.
sqrt
(
fan_in
)
np
.
random
.
seed
(
0
)
cell
.
bias
.
default_input
=
init
.
initializer
(
init
.
Uniform
(
bound
),
cell
.
bias
.
shape
,
cell
.
bias
.
dtype
)
elif
isinstance
(
cell
,
nn
.
Dense
):
cell
.
weight
.
default_input
=
init
.
initializer
(
KaimingUniform
(
a
=
math
.
sqrt
(
5
)),
cell
.
weight
.
shape
,
cell
.
weight
.
dtype
)
if
cell
.
bias
is
not
None
:
fan_in
,
_
=
_calculate_in_and_out
(
cell
.
weight
)
bound
=
1
/
math
.
sqrt
(
fan_in
)
np
.
random
.
seed
(
0
)
cell
.
bias
.
default_input
=
init
.
initializer
(
init
.
Uniform
(
bound
),
cell
.
bias
.
shape
,
cell
.
bias
.
dtype
)
elif
isinstance
(
cell
,
(
nn
.
BatchNorm2d
,
nn
.
BatchNorm1d
)):
pass
example/membership_inference_demo/vgg/vgg.py
0 → 100644
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Image classifiation.
"""
import
math
import
mindspore.nn
as
nn
import
mindspore.common.dtype
as
mstype
from
mindspore.common
import
initializer
as
init
from
mindspore.common.initializer
import
initializer
from
.utils.var_init
import
default_recurisive_init
,
KaimingNormal
def
_make_layer
(
base
,
args
,
batch_norm
):
"""Make stage network of VGG."""
layers
=
[]
in_channels
=
3
for
v
in
base
:
if
v
==
'M'
:
layers
+=
[
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)]
else
:
weight_shape
=
(
v
,
in_channels
,
3
,
3
)
weight
=
initializer
(
'XavierUniform'
,
shape
=
weight_shape
,
dtype
=
mstype
.
float32
).
to_tensor
()
if
args
.
initialize_mode
==
"KaimingNormal"
:
weight
=
'normal'
conv2d
=
nn
.
Conv2d
(
in_channels
=
in_channels
,
out_channels
=
v
,
kernel_size
=
3
,
padding
=
args
.
padding
,
pad_mode
=
args
.
pad_mode
,
has_bias
=
args
.
has_bias
,
weight_init
=
weight
)
if
batch_norm
:
layers
+=
[
conv2d
,
nn
.
BatchNorm2d
(
v
),
nn
.
ReLU
()]
else
:
layers
+=
[
conv2d
,
nn
.
ReLU
()]
in_channels
=
v
return
nn
.
SequentialCell
(
layers
)
class
Vgg
(
nn
.
Cell
):
"""
VGG network definition.
Args:
base (list): Configuration for different layers, mainly the channel number of Conv layer.
num_classes (int): Class numbers. Default: 1000.
batch_norm (bool): Whether to do the batchnorm. Default: False.
batch_size (int): Batch size. Default: 1.
Returns:
Tensor, infer output tensor.
Examples:
>>> Vgg([64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
>>> num_classes=1000, batch_norm=False, batch_size=1)
"""
def
__init__
(
self
,
base
,
num_classes
=
1000
,
batch_norm
=
False
,
batch_size
=
1
,
args
=
None
,
phase
=
"train"
):
super
(
Vgg
,
self
).
__init__
()
_
=
batch_size
self
.
layers
=
_make_layer
(
base
,
args
,
batch_norm
=
batch_norm
)
self
.
flatten
=
nn
.
Flatten
()
dropout_ratio
=
0.5
if
not
args
.
has_dropout
or
phase
==
"test"
:
dropout_ratio
=
1.0
self
.
classifier
=
nn
.
SequentialCell
([
nn
.
Dense
(
512
*
7
*
7
,
4096
),
nn
.
ReLU
(),
nn
.
Dropout
(
dropout_ratio
),
nn
.
Dense
(
4096
,
4096
),
nn
.
ReLU
(),
nn
.
Dropout
(
dropout_ratio
),
nn
.
Dense
(
4096
,
num_classes
)])
if
args
.
initialize_mode
==
"KaimingNormal"
:
default_recurisive_init
(
self
)
self
.
custom_init_weight
()
def
construct
(
self
,
x
):
x
=
self
.
layers
(
x
)
x
=
self
.
flatten
(
x
)
x
=
self
.
classifier
(
x
)
return
x
def
custom_init_weight
(
self
):
"""
Init the weight of Conv2d and Dense in the net.
"""
for
_
,
cell
in
self
.
cells_and_names
():
if
isinstance
(
cell
,
nn
.
Conv2d
):
cell
.
weight
.
default_input
=
init
.
initializer
(
KaimingNormal
(
a
=
math
.
sqrt
(
5
),
mode
=
'fan_out'
,
nonlinearity
=
'relu'
),
cell
.
weight
.
shape
,
cell
.
weight
.
dtype
)
if
cell
.
bias
is
not
None
:
cell
.
bias
.
default_input
=
init
.
initializer
(
'zeros'
,
cell
.
bias
.
shape
,
cell
.
bias
.
dtype
)
elif
isinstance
(
cell
,
nn
.
Dense
):
cell
.
weight
.
default_input
=
init
.
initializer
(
init
.
Normal
(
0.01
),
cell
.
weight
.
shape
,
cell
.
weight
.
dtype
)
if
cell
.
bias
is
not
None
:
cell
.
bias
.
default_input
=
init
.
initializer
(
'zeros'
,
cell
.
bias
.
shape
,
cell
.
bias
.
dtype
)
cfg
=
{
'11'
:
[
64
,
'M'
,
128
,
'M'
,
256
,
256
,
'M'
,
512
,
512
,
'M'
,
512
,
512
,
'M'
],
'13'
:
[
64
,
64
,
'M'
,
128
,
128
,
'M'
,
256
,
256
,
'M'
,
512
,
512
,
'M'
,
512
,
512
,
'M'
],
'16'
:
[
64
,
64
,
'M'
,
128
,
128
,
'M'
,
256
,
256
,
256
,
'M'
,
512
,
512
,
512
,
'M'
,
512
,
512
,
512
,
'M'
],
'19'
:
[
64
,
64
,
'M'
,
128
,
128
,
'M'
,
256
,
256
,
256
,
256
,
'M'
,
512
,
512
,
512
,
512
,
'M'
,
512
,
512
,
512
,
512
,
'M'
],
}
def
vgg16
(
num_classes
=
1000
,
args
=
None
,
phase
=
"train"
):
"""
Get Vgg16 neural network with batch normalization.
Args:
num_classes (int): Class numbers. Default: 1000.
args(namespace): param for net init.
phase(str): train or test mode.
Returns:
Cell, cell instance of Vgg16 neural network with batch normalization.
Examples:
>>> vgg16(num_classes=1000, args=args)
"""
net
=
Vgg
(
cfg
[
'16'
],
num_classes
=
num_classes
,
args
=
args
,
batch_norm
=
args
.
batch_norm
,
phase
=
phase
)
return
net
example/membership_inference_demo/vgg/warmup_cosine_annealing_lr.py
0 → 100644
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
warm up cosine annealing learning rate.
"""
import
math
import
numpy
as
np
from
.linear_warmup
import
linear_warmup_lr
def
warmup_cosine_annealing_lr
(
lr
,
steps_per_epoch
,
warmup_epochs
,
max_epoch
,
t_max
,
eta_min
=
0
):
"""warm up cosine annealing learning rate."""
base_lr
=
lr
warmup_init_lr
=
0
total_steps
=
int
(
max_epoch
*
steps_per_epoch
)
warmup_steps
=
int
(
warmup_epochs
*
steps_per_epoch
)
lr_each_step
=
[]
for
i
in
range
(
total_steps
):
last_epoch
=
i
//
steps_per_epoch
if
i
<
warmup_steps
:
lr
=
linear_warmup_lr
(
i
+
1
,
warmup_steps
,
base_lr
,
warmup_init_lr
)
else
:
lr
=
eta_min
+
(
base_lr
-
eta_min
)
*
(
1.
+
math
.
cos
(
math
.
pi
*
last_epoch
/
t_max
))
/
2
lr_each_step
.
append
(
lr
)
return
np
.
array
(
lr_each_step
).
astype
(
np
.
float32
)
example/membership_inference_demo/vgg/warmup_step_lr.py
0 → 100644
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
warm up step learning rate.
"""
from
collections
import
Counter
import
numpy
as
np
from
.linear_warmup
import
linear_warmup_lr
def
lr_steps
(
global_step
,
lr_init
,
lr_max
,
warmup_epochs
,
total_epochs
,
steps_per_epoch
):
"""Set learning rate."""
lr_each_step
=
[]
total_steps
=
steps_per_epoch
*
total_epochs
warmup_steps
=
steps_per_epoch
*
warmup_epochs
if
warmup_steps
!=
0
:
inc_each_step
=
(
float
(
lr_max
)
-
float
(
lr_init
))
/
float
(
warmup_steps
)
else
:
inc_each_step
=
0
for
i
in
range
(
total_steps
):
if
i
<
warmup_steps
:
lr_value
=
float
(
lr_init
)
+
inc_each_step
*
float
(
i
)
else
:
base
=
(
1.0
-
(
float
(
i
)
-
float
(
warmup_steps
))
/
(
float
(
total_steps
)
-
float
(
warmup_steps
)))
lr_value
=
float
(
lr_max
)
*
base
*
base
if
lr_value
<
0.0
:
lr_value
=
0.0
lr_each_step
.
append
(
lr_value
)
current_step
=
global_step
lr_each_step
=
np
.
array
(
lr_each_step
).
astype
(
np
.
float32
)
learning_rate
=
lr_each_step
[
current_step
:]
return
learning_rate
def
warmup_step_lr
(
lr
,
lr_epochs
,
steps_per_epoch
,
warmup_epochs
,
max_epoch
,
gamma
=
0.1
):
"""warmup_step_lr"""
base_lr
=
lr
warmup_init_lr
=
0
total_steps
=
int
(
max_epoch
*
steps_per_epoch
)
warmup_steps
=
int
(
warmup_epochs
*
steps_per_epoch
)
milestones
=
lr_epochs
milestones_steps
=
[]
for
milestone
in
milestones
:
milestones_step
=
milestone
*
steps_per_epoch
milestones_steps
.
append
(
milestones_step
)
lr_each_step
=
[]
lr
=
base_lr
milestones_steps_counter
=
Counter
(
milestones_steps
)
for
i
in
range
(
total_steps
):
if
i
<
warmup_steps
:
lr
=
linear_warmup_lr
(
i
+
1
,
warmup_steps
,
base_lr
,
warmup_init_lr
)
else
:
lr
=
lr
*
gamma
**
milestones_steps_counter
[
i
]
lr_each_step
.
append
(
lr
)
return
np
.
array
(
lr_each_step
).
astype
(
np
.
float32
)
def
multi_step_lr
(
lr
,
milestones
,
steps_per_epoch
,
max_epoch
,
gamma
=
0.1
):
return
warmup_step_lr
(
lr
,
milestones
,
steps_per_epoch
,
0
,
max_epoch
,
gamma
=
gamma
)
def
step_lr
(
lr
,
epoch_size
,
steps_per_epoch
,
max_epoch
,
gamma
=
0.1
):
lr_epochs
=
[]
for
i
in
range
(
1
,
max_epoch
):
if
i
%
epoch_size
==
0
:
lr_epochs
.
append
(
i
)
return
multi_step_lr
(
lr
,
lr_epochs
,
steps_per_epoch
,
max_epoch
,
gamma
=
gamma
)
mindarmour/diff_privacy/evaluation/attacker.py
浏览文件 @
ae80c360
...
...
@@ -32,7 +32,7 @@ def _attack_knn(features, labels, param_grid):
param_grid (dict): Setting of GridSearchCV.
Returns:
sklearn.
neighbors.KNeighborsClassifier
, trained model.
sklearn.
model_selection.GridSearchCV
, trained model.
"""
knn_model
=
KNeighborsClassifier
()
knn_model
=
GridSearchCV
(
...
...
@@ -53,9 +53,9 @@ def _attack_lr(features, labels, param_grid):
param_grid (dict): Setting of GridSearchCV.
Returns:
sklearn.
linear_model.LogisticRegression
, trained model.
sklearn.
model_selection.GridSearchCV
, trained model.
"""
lr_model
=
LogisticRegression
(
C
=
1.0
,
penalty
=
"l2"
)
lr_model
=
LogisticRegression
(
C
=
1.0
,
penalty
=
"l2"
,
max_iter
=
1000
)
lr_model
=
GridSearchCV
(
lr_model
,
param_grid
=
param_grid
,
cv
=
3
,
n_jobs
=
1
,
iid
=
False
,
verbose
=
0
,
...
...
@@ -74,7 +74,7 @@ def _attack_mlpc(features, labels, param_grid):
param_grid (dict): Setting of GridSearchCV.
Returns:
sklearn.
neural_network.MLPClassifier
, trained model.
sklearn.
model_selection.GridSearchCV
, trained model.
"""
mlpc_model
=
MLPClassifier
(
random_state
=
1
,
max_iter
=
300
)
mlpc_model
=
GridSearchCV
(
...
...
@@ -95,7 +95,7 @@ def _attack_rf(features, labels, random_grid):
random_grid (dict): Setting of RandomizedSearchCV.
Returns:
sklearn.
ensemble.RandomForestClassifier
, trained model.
sklearn.
model_selection.RandomizedSearchCV
, trained model.
"""
rf_model
=
RandomForestClassifier
(
max_depth
=
2
,
random_state
=
0
)
rf_model
=
RandomizedSearchCV
(
...
...
mindarmour/diff_privacy/evaluation/membership_inference.py
0 → 100644
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Membership Inference
"""
import
numpy
as
np
import
mindspore
as
ms
from
mindspore.train
import
Model
import
mindspore.nn
as
nn
import
mindspore.context
as
context
from
mindspore
import
Tensor
from
mindarmour.diff_privacy.evaluation.attacker
import
get_attack_model
def
_eval_info
(
pred
,
truth
,
option
):
"""
Calculate the performance according to pred and truth.
Args:
pred (numpy.ndarray): Predictions for each sample.
truth (numpy.ndarray): Ground truth for each sample.
option(str): Type of evaluation indicators; Possible
values are 'precision', 'accuracy' and 'recall'.
Returns:
float32, Calculated evaluation results.
Raises:
ValueError, size of parameter pred or truth is 0.
ValueError, value of parameter option must be in ["precision", "accuracy", "recall"].
"""
if
pred
.
size
==
0
||
truth
.
size
==
0
:
raise
ValueError
(
"Size of pred or truth is 0."
)
if
option
==
"accuracy"
:
count
=
np
.
sum
(
pred
==
truth
)
return
count
/
len
(
pred
)
if
option
==
"precision"
:
count
=
np
.
sum
(
pred
&
truth
)
if
np
.
sum
(
pred
)
==
0
:
return
-
1
return
count
/
np
.
sum
(
pred
)
if
option
==
"recall"
:
count
=
np
.
sum
(
pred
&
truth
)
if
np
.
sum
(
truth
)
==
0
:
return
-
1
return
count
/
np
.
sum
(
truth
)
raise
ValueError
(
"The metric value {} is undefined."
.
format
(
option
))
class
MembershipInference
:
"""
Evaluation proposed by Shokri, Stronati, Song and Shmatikov is a grey-box attack.
The attack requires obtain loss or logits results of training samples.
References: Reza Shokri, Marco Stronati, Congzheng Song, Vitaly Shmatikov.
Membership Inference Attacks against Machine Learning Models. 2017.
arXiv:1610.05820v2 <https://arxiv.org/abs/1610.05820v2>`_
Args:
model (Model): Target model.
Examples:
>>> # ds_train, eval_train are non-overlapping datasets from training dataset.
>>> # eval_train, eval_test are non-overlapping datasets from test dataset.
>>> model = Model(network=net, loss_fn=loss, optimizer=opt, metrics={'acc', 'loss'})
>>> inference_model = MembershipInference(model)
>>> config = [{"method": "KNN", "params": {"n_neighbors": [3, 5, 7]}}]
>>> inference_model.train(ds_train, ds_test, config)
>>> metrics = ["precision", "recall", "accuracy"]
>>> result = inference_model.eval(eval_train, eval_test, metrics)
Raises:
TypeError: If type of model is not mindspore.train.Model.
"""
def
__init__
(
self
,
model
):
if
not
isinstance
(
model
,
Model
):
raise
TypeError
(
"Type of model must be {}, but got {}."
.
format
(
type
(
Model
),
type
(
model
)))
self
.
model
=
model
self
.
attack_list
=
[]
def
train
(
self
,
dataset_train
,
dataset_test
,
attack_config
):
"""
Depending on the configuration, use the incoming data set to train the attack model.
Save the attack model to self.attack_list.
Args:
dataset_train (mindspore.dataset): The training dataset for the target model.
dataset_test (mindspore.dataset): The test set for the target model.
attack_config (list): Parameter setting for the attack model.
Raises:
ValueError: If the method in attack_config is not in ["LR", "KNN", "RF", "MLPC"].
"""
features
,
labels
=
self
.
_transform
(
dataset_train
,
dataset_test
)
for
config
in
attack_config
:
self
.
attack_list
.
append
(
get_attack_model
(
features
,
labels
,
config
))
def
eval
(
self
,
dataset_train
,
dataset_test
,
metrics
):
"""
Evaluate the different privacy of the target model.
Evaluation indicators shall be specified by metrics.
Args:
dataset_train (mindspore.dataset): The training dataset for the target model.
dataset_test (mindspore.dataset): The test dataset for the target model.
metrics (Union[list, tuple]): Evaluation indicators. The value of metrics
must be in ["precision", "accuracy", "recall"]. Default: ["precision"].
Returns:
list, Each element contains an evaluation indicator for the attack model.
"""
result
=
[]
features
,
labels
=
self
.
_transform
(
dataset_train
,
dataset_test
)
for
attacker
in
self
.
attack_list
:
pred
=
attacker
.
predict
(
features
)
item
=
{}
for
option
in
metrics
:
item
[
option
]
=
_eval_info
(
pred
,
labels
,
option
)
result
.
append
(
item
)
return
result
def
_transform
(
self
,
dataset_train
,
dataset_test
):
"""
Generate corresponding loss_logits feature and new label, and return after shuffle.
Args:
dataset_train: The training set for the target model.
dataset_test: The test set for the target model.
Returns:
- numpy.ndarray, Loss_logits features for each sample. Shape is (N, C).
N is the number of sample. C = 1 + dim(logits).
- numpy.ndarray, Labels for each sample, Shape is (N,).
"""
features_train
,
labels_train
=
self
.
_generate
(
dataset_train
,
1
)
features_test
,
labels_test
=
self
.
_generate
(
dataset_test
,
0
)
features
=
np
.
vstack
((
features_train
,
features_test
))
labels
=
np
.
hstack
((
labels_train
,
labels_test
))
shuffle_index
=
np
.
array
(
range
(
len
(
labels
)))
np
.
random
.
shuffle
(
shuffle_index
)
features
=
features
[
shuffle_index
]
labels
=
labels
[
shuffle_index
]
return
features
,
labels
def
_generate
(
self
,
dataset_x
,
label
):
"""
Return a loss_logits features and labels for training attack model.
Args:
dataset_x (mindspore.dataset): The dataset to be generate.
label (int32): Whether dataset_x belongs to the target model.
Returns:
- numpy.ndarray, Loss_logits features for each sample. Shape is (N, C).
N is the number of sample. C = 1 + dim(logits).
- numpy.ndarray, Labels for each sample, Shape is (N,).
"""
if
context
.
get_context
(
"device_target"
)
!=
"Ascend"
:
raise
RuntimeError
(
"The target device must be Ascend, "
"but current is {}."
.
format
(
context
.
get_context
(
"device_target"
)))
loss_logits
=
np
.
array
([])
for
batch
in
dataset_x
.
create_dict_iterator
():
batch_data
=
Tensor
(
batch
[
'image'
],
ms
.
float32
)
batch_labels
=
Tensor
(
batch
[
'label'
],
ms
.
int32
)
batch_logits
=
self
.
model
.
predict
(
batch_data
)
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
sparse
=
True
,
is_grad
=
False
,
reduction
=
None
)
batch_loss
=
loss
(
batch_logits
,
batch_labels
).
asnumpy
()
batch_logits
=
batch_logits
.
asnumpy
()
batch_feature
=
np
.
hstack
((
batch_loss
.
reshape
(
-
1
,
1
),
batch_logits
))
if
loss_logits
.
size
==
0
:
loss_logits
=
batch_feature
else
:
loss_logits
=
np
.
vstack
((
loss_logits
,
batch_feature
))
if
label
==
1
:
labels
=
np
.
ones
(
len
(
loss_logits
),
np
.
int32
)
elif
label
==
0
:
labels
=
np
.
zeros
(
len
(
loss_logits
),
np
.
int32
)
else
:
raise
ValueError
(
"The value of label must be 0 or 1, but got {}."
.
format
(
label
))
return
loss_logits
,
labels
tests/ut/python/diff_privacy/test_membership_inference.py
0 → 100644
浏览文件 @
ae80c360
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
membership inference test
"""
import
os
import
sys
import
pytest
import
numpy
as
np
import
mindspore.dataset
as
ds
from
mindspore
import
nn
from
mindspore.train
import
Model
from
mindarmour.diff_privacy.evaluation.membership_inference
import
MembershipInference
sys
.
path
.
append
(
os
.
path
.
join
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)),
"../"
))
from
defenses.mock_net
import
Net
def
dataset_generator
(
batch_size
,
batches
):
"""mock training data."""
data
=
np
.
random
.
randn
(
batches
*
batch_size
,
1
,
32
,
32
).
astype
(
np
.
float32
)
label
=
np
.
random
.
randint
(
0
,
10
,
batches
*
batch_size
).
astype
(
np
.
int32
)
for
i
in
range
(
batches
):
yield
data
[
i
*
batch_size
:(
i
+
1
)
*
batch_size
],
\
label
[
i
*
batch_size
:(
i
+
1
)
*
batch_size
]
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
env_onecard
@
pytest
.
mark
.
component_mindarmour
def
test_get_membership_inference_object
():
net
=
Net
()
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
opt
=
nn
.
Momentum
(
params
=
net
.
trainable_params
(),
learning_rate
=
0.1
,
momentum
=
0.9
)
model
=
Model
(
network
=
net
,
loss_fn
=
loss
,
optimizer
=
opt
)
inference_model
=
MembershipInference
(
model
)
assert
isinstance
(
inference_model
,
MembershipInference
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
env_onecard
@
pytest
.
mark
.
component_mindarmour
def
test_membership_inference_object_train
():
net
=
Net
()
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
opt
=
nn
.
Momentum
(
params
=
net
.
trainable_params
(),
learning_rate
=
0.1
,
momentum
=
0.9
)
model
=
Model
(
network
=
net
,
loss_fn
=
loss
,
optimizer
=
opt
)
inference_model
=
MembershipInference
(
model
)
assert
isinstance
(
inference_model
,
MembershipInference
)
config
=
[{
"method"
:
"KNN"
,
"params"
:
{
"n_neighbors"
:
[
3
,
5
,
7
],
}
}]
batch_size
=
16
batches
=
1
ds_train
=
ds
.
GeneratorDataset
(
dataset_generator
(
batch_size
,
batches
),
[
"image"
,
"label"
])
ds_test
=
ds
.
GeneratorDataset
(
dataset_generator
(
batch_size
,
batches
),
[
"image"
,
"label"
])
ds_train
.
set_dataset_size
(
batch_size
*
batches
)
ds_test
.
set_dataset_size
((
batch_size
*
batches
))
inference_model
.
train
(
ds_train
,
ds_test
,
config
)
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_ascend_training
@
pytest
.
mark
.
platform_arm_ascend_training
@
pytest
.
mark
.
env_onecard
@
pytest
.
mark
.
component_mindarmour
def
test_membership_inference_eval
():
net
=
Net
()
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
opt
=
nn
.
Momentum
(
params
=
net
.
trainable_params
(),
learning_rate
=
0.1
,
momentum
=
0.9
)
model
=
Model
(
network
=
net
,
loss_fn
=
loss
,
optimizer
=
opt
)
inference_model
=
MembershipInference
(
model
)
assert
isinstance
(
inference_model
,
MembershipInference
)
batch_size
=
16
batches
=
1
eval_train
=
ds
.
GeneratorDataset
(
dataset_generator
(
batch_size
,
batches
),
[
"image"
,
"label"
])
eval_test
=
ds
.
GeneratorDataset
(
dataset_generator
(
batch_size
,
batches
),
[
"image"
,
"label"
])
eval_train
.
set_dataset_size
(
batch_size
*
batches
)
eval_test
.
set_dataset_size
((
batch_size
*
batches
))
metrics
=
[
"precision"
,
"accuracy"
,
"recall"
]
inference_model
.
eval
(
eval_train
,
eval_test
,
metrics
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录