Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindarmour
提交
95e30f35
M
mindarmour
项目概览
MindSpore
/
mindarmour
通知
4
Star
2
Fork
3
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindarmour
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
95e30f35
编写于
8月 29, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
8月 29, 2020
浏览文件
操作
浏览文件
下载
差异文件
!102 Avoid error of graph topological order
Merge pull request !102 from pkuliuliu/master
上级
12d48731
36c25d9f
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
33 addition
and
25 deletion
+33
-25
example/mnist_demo/mnist_defense_nad.py
example/mnist_demo/mnist_defense_nad.py
+29
-25
mindarmour/defenses/adversarial_defense.py
mindarmour/defenses/adversarial_defense.py
+4
-0
未找到文件。
example/mnist_demo/mnist_defense_nad.py
浏览文件 @
95e30f35
...
@@ -12,6 +12,7 @@
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
"""defense example using nad"""
"""defense example using nad"""
import
os
import
sys
import
sys
import
numpy
as
np
import
numpy
as
np
...
@@ -19,41 +20,43 @@ from mindspore import Tensor
...
@@ -19,41 +20,43 @@ from mindspore import Tensor
from
mindspore
import
context
from
mindspore
import
context
from
mindspore
import
nn
from
mindspore
import
nn
from
mindspore.nn
import
SoftmaxCrossEntropyWithLogits
from
mindspore.nn
import
SoftmaxCrossEntropyWithLogits
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.train
import
Model
from
mindspore.train.callback
import
LossMonitor
from
lenet5_net
import
LeNet5
from
mindarmour.attacks
import
FastGradientSignMethod
from
mindarmour.attacks
import
FastGradientSignMethod
from
mindarmour.defenses
import
NaturalAdversarialDefense
from
mindarmour.defenses
import
NaturalAdversarialDefense
from
mindarmour.utils.logger
import
LogUtil
from
mindarmour.utils.logger
import
LogUtil
from
lenet5_net
import
LeNet5
sys
.
path
.
append
(
".."
)
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
from
data_processing
import
generate_mnist_dataset
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
"INFO"
)
TAG
=
'Nad_Example'
TAG
=
'Nad_Example'
def
test_nad_method
():
def
test_nad_method
():
"""
"""
NAD-Defense test
for CPU device
.
NAD-Defense test.
"""
"""
# 1. load trained network
mnist_path
=
"./MNIST_unzip/"
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
batch_size
=
32
# 1. train original model
ds_train
=
generate_mnist_dataset
(
os
.
path
.
join
(
mnist_path
,
"train"
),
batch_size
=
batch_size
,
repeat_size
=
1
)
net
=
LeNet5
()
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
loss
=
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
loss
=
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
opt
=
nn
.
Momentum
(
net
.
trainable_params
(),
0.01
,
0.09
)
opt
=
nn
.
Momentum
(
net
.
trainable_params
(),
0.01
,
0.09
)
model
=
Model
(
net
,
loss
,
opt
,
metrics
=
None
)
nad
=
NaturalAdversarialDefense
(
net
,
loss_fn
=
loss
,
optimizer
=
opt
,
model
.
train
(
10
,
ds_train
,
callbacks
=
[
LossMonitor
()]
,
bounds
=
(
0.0
,
1.0
),
eps
=
0.3
)
dataset_sink_mode
=
False
)
# 2. get test data
# 2. get test data
data_list
=
"./MNIST_unzip/test"
ds_test
=
generate_mnist_dataset
(
os
.
path
.
join
(
mnist_path
,
"test"
),
batch_size
=
32
batch_size
=
batch_size
,
repeat_size
=
1
)
ds_test
=
generate_mnist_dataset
(
data_list
,
batch_size
=
batch_size
)
inputs
=
[]
inputs
=
[]
labels
=
[]
labels
=
[]
for
data
in
ds_test
.
create_tuple_iterator
():
for
data
in
ds_test
.
create_tuple_iterator
():
...
@@ -73,16 +76,15 @@ def test_nad_method():
...
@@ -73,16 +76,15 @@ def test_nad_method():
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
LOGGER
.
debug
(
TAG
,
'accuracy of TEST data on original model is : %s'
,
LOGGER
.
info
(
TAG
,
'accuracy of TEST data on original model is : %s'
,
np
.
mean
(
acc_list
))
np
.
mean
(
acc_list
))
# 4. get adv of test data
# 4. get adv of test data
attack
=
FastGradientSignMethod
(
net
,
eps
=
0.3
,
loss_fn
=
loss
)
attack
=
FastGradientSignMethod
(
net
,
eps
=
0.3
,
loss_fn
=
loss
)
adv_data
=
attack
.
batch_generate
(
inputs
,
labels
)
adv_data
=
attack
.
batch_generate
(
inputs
,
labels
)
LOGGER
.
debug
(
TAG
,
'adv_data.shape is : %s'
,
adv_data
.
shape
)
LOGGER
.
info
(
TAG
,
'adv_data.shape is : %s'
,
adv_data
.
shape
)
# 5. get accuracy of adv data on original model
# 5. get accuracy of adv data on original model
net
.
set_train
(
False
)
acc_list
=
[]
acc_list
=
[]
batchs
=
adv_data
.
shape
[
0
]
//
batch_size
batchs
=
adv_data
.
shape
[
0
]
//
batch_size
for
i
in
range
(
batchs
):
for
i
in
range
(
batchs
):
...
@@ -92,11 +94,13 @@ def test_nad_method():
...
@@ -92,11 +94,13 @@ def test_nad_method():
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
LOGGER
.
debug
(
TAG
,
'accuracy of adv data on original model is : %s'
,
LOGGER
.
info
(
TAG
,
'accuracy of adv data on original model is : %s'
,
np
.
mean
(
acc_list
))
np
.
mean
(
acc_list
))
# 6. defense
# 6. defense
net
.
set_train
()
net
.
set_train
()
nad
=
NaturalAdversarialDefense
(
net
,
loss_fn
=
loss
,
optimizer
=
opt
,
bounds
=
(
0.0
,
1.0
),
eps
=
0.3
)
nad
.
batch_defense
(
inputs
,
labels
,
batch_size
=
32
,
epochs
=
10
)
nad
.
batch_defense
(
inputs
,
labels
,
batch_size
=
32
,
epochs
=
10
)
# 7. get accuracy of test data on defensed model
# 7. get accuracy of test data on defensed model
...
@@ -110,8 +114,8 @@ def test_nad_method():
...
@@ -110,8 +114,8 @@ def test_nad_method():
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
LOGGER
.
debug
(
TAG
,
'accuracy of TEST data on defensed model is : %s'
,
LOGGER
.
info
(
TAG
,
'accuracy of TEST data on defensed model is : %s'
,
np
.
mean
(
acc_list
))
np
.
mean
(
acc_list
))
# 8. get accuracy of adv data on defensed model
# 8. get accuracy of adv data on defensed model
acc_list
=
[]
acc_list
=
[]
...
@@ -123,11 +127,11 @@ def test_nad_method():
...
@@ -123,11 +127,11 @@ def test_nad_method():
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
LOGGER
.
debug
(
TAG
,
'accuracy of adv data on defensed model is : %s'
,
LOGGER
.
info
(
TAG
,
'accuracy of adv data on defensed model is : %s'
,
np
.
mean
(
acc_list
))
np
.
mean
(
acc_list
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
# device_target can be "CPU", "GPU" or "Ascend"
# device_target can be "CPU", "GPU" or "Ascend"
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"
CPU
"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"
Ascend
"
)
test_nad_method
()
test_nad_method
()
mindarmour/defenses/adversarial_defense.py
浏览文件 @
95e30f35
...
@@ -136,6 +136,7 @@ class AdversarialDefenseWithAttacks(AdversarialDefense):
...
@@ -136,6 +136,7 @@ class AdversarialDefenseWithAttacks(AdversarialDefense):
self
.
_replace_ratio
=
check_param_in_range
(
'replace_ratio'
,
self
.
_replace_ratio
=
check_param_in_range
(
'replace_ratio'
,
replace_ratio
,
replace_ratio
,
0
,
1
)
0
,
1
)
self
.
_graph_initialized
=
False
def
defense
(
self
,
inputs
,
labels
):
def
defense
(
self
,
inputs
,
labels
):
"""
"""
...
@@ -150,6 +151,9 @@ class AdversarialDefenseWithAttacks(AdversarialDefense):
...
@@ -150,6 +151,9 @@ class AdversarialDefenseWithAttacks(AdversarialDefense):
"""
"""
inputs
,
labels
=
check_pair_numpy_param
(
'inputs'
,
inputs
,
'labels'
,
inputs
,
labels
=
check_pair_numpy_param
(
'inputs'
,
inputs
,
'labels'
,
labels
)
labels
)
if
not
self
.
_graph_initialized
:
self
.
_train_net
(
Tensor
(
inputs
),
Tensor
(
labels
))
self
.
_graph_initialized
=
True
x_len
=
inputs
.
shape
[
0
]
x_len
=
inputs
.
shape
[
0
]
n_adv
=
int
(
np
.
ceil
(
self
.
_replace_ratio
*
x_len
))
n_adv
=
int
(
np
.
ceil
(
self
.
_replace_ratio
*
x_len
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录