Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
mindarmour
提交
95e30f35
M
mindarmour
项目概览
MindSpore
/
mindarmour
通知
4
Star
2
Fork
3
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindarmour
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
95e30f35
编写于
8月 29, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
8月 29, 2020
浏览文件
操作
浏览文件
下载
差异文件
!102 Avoid error of graph topological order
Merge pull request !102 from pkuliuliu/master
上级
12d48731
36c25d9f
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
33 addition
and
25 deletion
+33
-25
example/mnist_demo/mnist_defense_nad.py
example/mnist_demo/mnist_defense_nad.py
+29
-25
mindarmour/defenses/adversarial_defense.py
mindarmour/defenses/adversarial_defense.py
+4
-0
未找到文件。
example/mnist_demo/mnist_defense_nad.py
浏览文件 @
95e30f35
...
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""defense example using nad"""
import
os
import
sys
import
numpy
as
np
...
...
@@ -19,41 +20,43 @@ from mindspore import Tensor
from
mindspore
import
context
from
mindspore
import
nn
from
mindspore.nn
import
SoftmaxCrossEntropyWithLogits
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.train
import
Model
from
mindspore.train.callback
import
LossMonitor
from
lenet5_net
import
LeNet5
from
mindarmour.attacks
import
FastGradientSignMethod
from
mindarmour.defenses
import
NaturalAdversarialDefense
from
mindarmour.utils.logger
import
LogUtil
from
lenet5_net
import
LeNet5
sys
.
path
.
append
(
".."
)
from
data_processing
import
generate_mnist_dataset
LOGGER
=
LogUtil
.
get_instance
()
LOGGER
.
set_level
(
"INFO"
)
TAG
=
'Nad_Example'
def
test_nad_method
():
"""
NAD-Defense test
for CPU device
.
NAD-Defense test.
"""
# 1. load trained network
ckpt_name
=
'./trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
mnist_path
=
"./MNIST_unzip/"
batch_size
=
32
# 1. train original model
ds_train
=
generate_mnist_dataset
(
os
.
path
.
join
(
mnist_path
,
"train"
),
batch_size
=
batch_size
,
repeat_size
=
1
)
net
=
LeNet5
()
load_dict
=
load_checkpoint
(
ckpt_name
)
load_param_into_net
(
net
,
load_dict
)
loss
=
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
opt
=
nn
.
Momentum
(
net
.
trainable_params
(),
0.01
,
0.09
)
nad
=
NaturalAdversarialDefense
(
net
,
loss_fn
=
loss
,
optimizer
=
opt
,
bounds
=
(
0.0
,
1.0
),
eps
=
0.3
)
model
=
Model
(
net
,
loss
,
opt
,
metrics
=
None
)
model
.
train
(
10
,
ds_train
,
callbacks
=
[
LossMonitor
()]
,
dataset_sink_mode
=
False
)
# 2. get test data
data_list
=
"./MNIST_unzip/test"
batch_size
=
32
ds_test
=
generate_mnist_dataset
(
data_list
,
batch_size
=
batch_size
)
ds_test
=
generate_mnist_dataset
(
os
.
path
.
join
(
mnist_path
,
"test"
),
batch_size
=
batch_size
,
repeat_size
=
1
)
inputs
=
[]
labels
=
[]
for
data
in
ds_test
.
create_tuple_iterator
():
...
...
@@ -73,16 +76,15 @@ def test_nad_method():
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
LOGGER
.
debug
(
TAG
,
'accuracy of TEST data on original model is : %s'
,
np
.
mean
(
acc_list
))
LOGGER
.
info
(
TAG
,
'accuracy of TEST data on original model is : %s'
,
np
.
mean
(
acc_list
))
# 4. get adv of test data
attack
=
FastGradientSignMethod
(
net
,
eps
=
0.3
,
loss_fn
=
loss
)
adv_data
=
attack
.
batch_generate
(
inputs
,
labels
)
LOGGER
.
debug
(
TAG
,
'adv_data.shape is : %s'
,
adv_data
.
shape
)
LOGGER
.
info
(
TAG
,
'adv_data.shape is : %s'
,
adv_data
.
shape
)
# 5. get accuracy of adv data on original model
net
.
set_train
(
False
)
acc_list
=
[]
batchs
=
adv_data
.
shape
[
0
]
//
batch_size
for
i
in
range
(
batchs
):
...
...
@@ -92,11 +94,13 @@ def test_nad_method():
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
LOGGER
.
debug
(
TAG
,
'accuracy of adv data on original model is : %s'
,
np
.
mean
(
acc_list
))
LOGGER
.
info
(
TAG
,
'accuracy of adv data on original model is : %s'
,
np
.
mean
(
acc_list
))
# 6. defense
net
.
set_train
()
nad
=
NaturalAdversarialDefense
(
net
,
loss_fn
=
loss
,
optimizer
=
opt
,
bounds
=
(
0.0
,
1.0
),
eps
=
0.3
)
nad
.
batch_defense
(
inputs
,
labels
,
batch_size
=
32
,
epochs
=
10
)
# 7. get accuracy of test data on defensed model
...
...
@@ -110,8 +114,8 @@ def test_nad_method():
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
LOGGER
.
debug
(
TAG
,
'accuracy of TEST data on defensed model is : %s'
,
np
.
mean
(
acc_list
))
LOGGER
.
info
(
TAG
,
'accuracy of TEST data on defensed model is : %s'
,
np
.
mean
(
acc_list
))
# 8. get accuracy of adv data on defensed model
acc_list
=
[]
...
...
@@ -123,11 +127,11 @@ def test_nad_method():
label_pred
=
np
.
argmax
(
logits
,
axis
=
1
)
acc_list
.
append
(
np
.
mean
(
batch_labels
==
label_pred
))
LOGGER
.
debug
(
TAG
,
'accuracy of adv data on defensed model is : %s'
,
np
.
mean
(
acc_list
))
LOGGER
.
info
(
TAG
,
'accuracy of adv data on defensed model is : %s'
,
np
.
mean
(
acc_list
))
if
__name__
==
'__main__'
:
# device_target can be "CPU", "GPU" or "Ascend"
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"
CPU
"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"
Ascend
"
)
test_nad_method
()
mindarmour/defenses/adversarial_defense.py
浏览文件 @
95e30f35
...
...
@@ -136,6 +136,7 @@ class AdversarialDefenseWithAttacks(AdversarialDefense):
self
.
_replace_ratio
=
check_param_in_range
(
'replace_ratio'
,
replace_ratio
,
0
,
1
)
self
.
_graph_initialized
=
False
def
defense
(
self
,
inputs
,
labels
):
"""
...
...
@@ -150,6 +151,9 @@ class AdversarialDefenseWithAttacks(AdversarialDefense):
"""
inputs
,
labels
=
check_pair_numpy_param
(
'inputs'
,
inputs
,
'labels'
,
labels
)
if
not
self
.
_graph_initialized
:
self
.
_train_net
(
Tensor
(
inputs
),
Tensor
(
labels
))
self
.
_graph_initialized
=
True
x_len
=
inputs
.
shape
[
0
]
n_adv
=
int
(
np
.
ceil
(
self
.
_replace_ratio
*
x_len
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录