main.py 4.4 KB
Newer Older
L
liuluobin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Examples of membership inference
"""
import argparse
import sys

from vgg.vgg import vgg16
from vgg.config import cifar_cfg as cfg
from vgg.utils.util import get_param_groups
from vgg.dataset import vgg_create_dataset100

import numpy as np

from mindspore.train import Model
from mindspore.train.serialization import load_param_into_net, load_checkpoint
import mindspore.nn as nn
from mindarmour.diff_privacy.evaluation.membership_inference import MembershipInference
from mindarmour.utils import LogUtil
logging = LogUtil.get_instance()
logging.set_level(20)

sys.path.append("../../")

TAG = "membership inference example"


if __name__ == "__main__":
    parser = argparse.ArgumentParser("main case arg parser.")
    parser.add_argument("--device_target", type=str, default="Ascend",
                        choices=["Ascend"])
    parser.add_argument("--data_path", type=str, required=True,
                        help="Data home path for Cifar100.")
    parser.add_argument("--pre_trained", type=str, required=True,
                        help="Checkpoint path.")
    args = parser.parse_args()
    args.num_classes = cfg.num_classes
    args.batch_norm = cfg.batch_norm
    args.has_dropout = cfg.has_dropout
    args.has_bias = cfg.has_bias
    args.initialize_mode = cfg.initialize_mode
    args.padding = cfg.padding
    args.pad_mode = cfg.pad_mode
    args.weight_decay = cfg.weight_decay
    args.loss_scale = cfg.loss_scale

    # load the pretrained model
    net = vgg16(args.num_classes, args)
62
    loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
L
liuluobin 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    opt = nn.Momentum(params=get_param_groups(net), learning_rate=0.1, momentum=0.9,
                      weight_decay=args.weight_decay, loss_scale=args.loss_scale)
    load_param_into_net(net, load_checkpoint(args.pre_trained))
    model = Model(network=net, loss_fn=loss, optimizer=opt)
    logging.info(TAG, "The model is loaded.")
    attacker = MembershipInference(model)
    config = [
        {
            "method": "knn",
            "params": {
                "n_neighbors": [3, 5, 7]
            }
        },
        {
            "method": "lr",
            "params": {
                "C": np.logspace(-4, 2, 10)
            }
        },
        {
            "method": "mlp",
            "params": {
                "hidden_layer_sizes": [(64,), (32, 32)],
                "solver": ["adam"],
                "alpha": [0.0001, 0.001, 0.01]
            }
        },
        {
            "method": "rf",
            "params": {
                "n_estimators": [100],
                "max_features": ["auto", "sqrt"],
                "max_depth": [5, 10, 20, None],
                "min_samples_split": [2, 5, 10],
                "min_samples_leaf": [1, 2, 4]
            }
        }
    ]

    # load and split dataset
    train_dataset = vgg_create_dataset100(data_home=args.data_path, image_size=(224, 224),
                                          batch_size=64, num_samples=10000, shuffle=False)
    test_dataset = vgg_create_dataset100(data_home=args.data_path, image_size=(224, 224),
                                         batch_size=64, num_samples=10000, shuffle=False, training=False)
    train_train, eval_train = train_dataset.split([0.8, 0.2])
    train_test, eval_test = test_dataset.split([0.8, 0.2])
    logging.info(TAG, "Data loading is complete.")

    logging.info(TAG, "Start training the inference model.")
    attacker.train(train_train, train_test, config)
    logging.info(TAG, "The inference model is training complete.")

    logging.info(TAG, "Start the evaluation phase")
    metrics = ["precision", "accuracy", "recall"]
    result = attacker.eval(eval_train, eval_test, metrics)

    # Show the metrics for each attack method.
    count = len(config)
    for i in range(count):
        print("Method: {}, {}".format(config[i]["method"], result[i]))