test_fuzzing.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Model-fuzz coverage test.
"""
import numpy as np
import pytest
from mindspore import context
Z
zheng-huanhuan 已提交
20
from mindspore import nn
21
from mindspore.common.initializer import TruncatedNormal
Z
zheng-huanhuan 已提交
22 23
from mindspore.ops import operations as P
from mindspore.train import Model
24 25

from mindarmour.fuzzing.fuzzing import Fuzzing
Z
zheng-huanhuan 已提交
26 27
from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics
from mindarmour.utils.logger import LogUtil
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

LOGGER = LogUtil.get_instance()
TAG = 'Fuzzing test'
LOGGER.set_level('INFO')


def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
    weight = weight_variable()
    return nn.Conv2d(in_channels, out_channels,
                     kernel_size=kernel_size, stride=stride, padding=padding,
                     weight_init=weight, has_bias=False, pad_mode="valid")


def fc_with_initialize(input_channels, out_channels):
    weight = weight_variable()
    bias = weight_variable()
    return nn.Dense(input_channels, out_channels, weight, bias)


def weight_variable():
    return TruncatedNormal(0.02)


class Net(nn.Cell):
    """
    Lenet network
    """
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = conv(1, 6, 5)
        self.conv2 = conv(6, 16, 5)
        self.fc1 = fc_with_initialize(16*5*5, 120)
        self.fc2 = fc_with_initialize(120, 84)
        self.fc3 = fc_with_initialize(84, 10)
        self.relu = nn.ReLU()
        self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
        self.reshape = P.Reshape()

    def construct(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.max_pool2d(x)
        x = self.conv2(x)
        x = self.relu(x)
        x = self.max_pool2d(x)
        x = self.reshape(x, (-1, 16*5*5))
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.relu(x)
        x = self.fc3(x)
        return x


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_fuzzing_ascend():
    context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
    # load network
    net = Net()
    model = Model(net)
    batch_size = 8
    num_classe = 10

    # initialize fuzz test with training dataset
    training_data = np.random.rand(32, 1, 32, 32).astype(np.float32)
    model_coverage_test = ModelCoverageMetrics(model, 1000, 10, training_data)

    # fuzz test with original test data
    # get test data
    test_data = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
    test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32)
    test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32)

    initial_seeds = []
    for img, label in zip(test_data, test_labels):
        initial_seeds.append([img, label, 0])
    model_coverage_test.test_adequacy_coverage_calculate(
        np.array(test_data).astype(np.float32))
    LOGGER.info(TAG, 'KMNC of this test is : %s',
                model_coverage_test.get_kmnc())

    model_fuzz_test = Fuzzing(initial_seeds, model, training_data, 5,
                              max_seed_num=10)
    failed_tests = model_fuzz_test.fuzzing()
Z
zheng-huanhuan 已提交
116 117 118 119 120
    if failed_tests:
        model_coverage_test.test_adequacy_coverage_calculate(np.array(failed_tests).astype(np.float32))
        LOGGER.info(TAG, 'KMNC of this test is : %s', model_coverage_test.get_kmnc())
    else:
        LOGGER.info(TAG, 'Fuzzing test identifies none failed test')
121 122 123 124 125 126


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
Z
zheng-huanhuan 已提交
127
def test_fuzzing_CPU():
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    # load network
    net = Net()
    model = Model(net)
    batch_size = 8
    num_classe = 10

    # initialize fuzz test with training dataset
    training_data = np.random.rand(32, 1, 32, 32).astype(np.float32)
    model_coverage_test = ModelCoverageMetrics(model, 1000, 10, training_data)

    # fuzz test with original test data
    # get test data
    test_data = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
    test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32)
    test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32)

    initial_seeds = []
    for img, label in zip(test_data, test_labels):
        initial_seeds.append([img, label, 0])
    model_coverage_test.test_adequacy_coverage_calculate(
        np.array(test_data).astype(np.float32))
    LOGGER.info(TAG, 'KMNC of this test is : %s',
                model_coverage_test.get_kmnc())

    model_fuzz_test = Fuzzing(initial_seeds, model, training_data, 5,
                              max_seed_num=10)
    failed_tests = model_fuzz_test.fuzzing()
Z
zheng-huanhuan 已提交
156 157 158 159 160
    if failed_tests:
        model_coverage_test.test_adequacy_coverage_calculate(np.array(failed_tests).astype(np.float32))
        LOGGER.info(TAG, 'KMNC of this test is : %s', model_coverage_test.get_kmnc())
    else:
        LOGGER.info(TAG, 'Fuzzing test identifies none failed test')