test_fuzzing.py 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Model-fuzz coverage test.
"""
import numpy as np
import pytest
import sys

from mindspore.train import Model
from mindspore import nn
from mindspore.ops import operations as P
from mindspore import context
from mindspore.common.initializer import TruncatedNormal

from mindarmour.utils.logger import LogUtil
from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics
from mindarmour.fuzzing.fuzzing import Fuzzing


LOGGER = LogUtil.get_instance()
TAG = 'Fuzzing test'
LOGGER.set_level('INFO')


def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
    weight = weight_variable()
    return nn.Conv2d(in_channels, out_channels,
                     kernel_size=kernel_size, stride=stride, padding=padding,
                     weight_init=weight, has_bias=False, pad_mode="valid")


def fc_with_initialize(input_channels, out_channels):
    weight = weight_variable()
    bias = weight_variable()
    return nn.Dense(input_channels, out_channels, weight, bias)


def weight_variable():
    return TruncatedNormal(0.02)


class Net(nn.Cell):
    """
    Lenet network
    """
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = conv(1, 6, 5)
        self.conv2 = conv(6, 16, 5)
        self.fc1 = fc_with_initialize(16*5*5, 120)
        self.fc2 = fc_with_initialize(120, 84)
        self.fc3 = fc_with_initialize(84, 10)
        self.relu = nn.ReLU()
        self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
        self.reshape = P.Reshape()

    def construct(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.max_pool2d(x)
        x = self.conv2(x)
        x = self.relu(x)
        x = self.max_pool2d(x)
        x = self.reshape(x, (-1, 16*5*5))
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.relu(x)
        x = self.fc3(x)
        return x


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_fuzzing_ascend():
    context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
    # load network
    net = Net()
    model = Model(net)
    batch_size = 8
    num_classe = 10

    # initialize fuzz test with training dataset
    training_data = np.random.rand(32, 1, 32, 32).astype(np.float32)
    model_coverage_test = ModelCoverageMetrics(model, 1000, 10, training_data)

    # fuzz test with original test data
    # get test data
    test_data = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
    test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32)
    test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32)

    initial_seeds = []
    for img, label in zip(test_data, test_labels):
        initial_seeds.append([img, label, 0])
    model_coverage_test.test_adequacy_coverage_calculate(
        np.array(test_data).astype(np.float32))
    LOGGER.info(TAG, 'KMNC of this test is : %s',
                model_coverage_test.get_kmnc())

    model_fuzz_test = Fuzzing(initial_seeds, model, training_data, 5,
                              max_seed_num=10)
    failed_tests = model_fuzz_test.fuzzing()
    model_coverage_test.test_adequacy_coverage_calculate(
        np.array(failed_tests).astype(np.float32))
    LOGGER.info(TAG, 'KMNC of this test is : %s',
                model_coverage_test.get_kmnc())


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_fuzzing_ascend():
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    # load network
    net = Net()
    model = Model(net)
    batch_size = 8
    num_classe = 10

    # initialize fuzz test with training dataset
    training_data = np.random.rand(32, 1, 32, 32).astype(np.float32)
    model_coverage_test = ModelCoverageMetrics(model, 1000, 10, training_data)

    # fuzz test with original test data
    # get test data
    test_data = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
    test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32)
    test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32)

    initial_seeds = []
    for img, label in zip(test_data, test_labels):
        initial_seeds.append([img, label, 0])
    model_coverage_test.test_adequacy_coverage_calculate(
        np.array(test_data).astype(np.float32))
    LOGGER.info(TAG, 'KMNC of this test is : %s',
                model_coverage_test.get_kmnc())

    model_fuzz_test = Fuzzing(initial_seeds, model, training_data, 5,
                              max_seed_num=10)
    failed_tests = model_fuzz_test.fuzzing()
    model_coverage_test.test_adequacy_coverage_calculate(
        np.array(failed_tests).astype(np.float32))
    LOGGER.info(TAG, 'KMNC of this test is : %s',
                model_coverage_test.get_kmnc())