mnist_attack_nes.py 5.1 KB
Newer Older
Z
zheng-huanhuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import numpy as np
import pytest

from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net

from mindarmour.attacks.black.natural_evolutionary_strategy import NES
from mindarmour.attacks.black.black_model import BlackModel

from mindarmour.utils.logger import LogUtil
from lenet5_net import LeNet5

sys.path.append("..")
from data_processing import generate_mnist_dataset

context.set_context(mode=context.GRAPH_MODE)
context.set_context(device_target="Ascend")

LOGGER = LogUtil.get_instance()
TAG = 'HopSkipJumpAttack'


class ModelToBeAttacked(BlackModel):
    """model to be attack"""

    def __init__(self, network):
        super(ModelToBeAttacked, self).__init__()
        self._network = network

    def predict(self, inputs):
        """predict"""
        if len(inputs.shape) == 3:
            inputs = inputs[np.newaxis, :]
        result = self._network(Tensor(inputs.astype(np.float32)))
        return result.asnumpy()


def random_target_labels(true_labels, labels_list):
    target_labels = []
    for label in true_labels:
        while True:
            target_label = np.random.choice(labels_list)
            if target_label != label:
                target_labels.append(target_label)
                break
    return target_labels


def _pseudorandom_target(index, total_indices, true_class):
    """ pseudo random_target """
    rng = np.random.RandomState(index)
    target = true_class
    while target == true_class:
        target = rng.randint(0, total_indices)
    return target


def create_target_images(dataset, data_labels, target_labels):
    res = []
    for label in target_labels:
        for i in range(len(data_labels)):
            if data_labels[i] == label:
                res.append(dataset[i])
                break
    return np.array(res)


@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_card
@pytest.mark.component_mindarmour
def test_nes_mnist_attack():
    """
    hsja-Attack test
    """
    # upload trained network
    ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
    net = LeNet5()
    load_dict = load_checkpoint(ckpt_name)
    load_param_into_net(net, load_dict)
    net.set_train(False)

    # get test data
    data_list = "./MNIST_unzip/test"
    batch_size = 32
    ds = generate_mnist_dataset(data_list, batch_size=batch_size)

    # prediction accuracy before attack
    model = ModelToBeAttacked(net)
    # the number of batches of attacking samples
    batch_num = 5
    test_images = []
    test_labels = []
    predict_labels = []
    i = 0
    for data in ds.create_tuple_iterator():
        i += 1
        images = data[0].astype(np.float32)
        labels = data[1]
        test_images.append(images)
        test_labels.append(labels)
        pred_labels = np.argmax(model.predict(images), axis=1)
        predict_labels.append(pred_labels)
        if i >= batch_num:
            break
    predict_labels = np.concatenate(predict_labels)
    true_labels = np.concatenate(test_labels)

    accuracy = np.mean(np.equal(predict_labels, true_labels))
    LOGGER.info(TAG, "prediction accuracy before attacking is : %s",
                accuracy)
    test_images = np.concatenate(test_images)

    # attacking
    scene = 'Query_Limit'
    if scene == 'Query_Limit':
        top_k = -1
    elif scene == 'Partial_Info':
        top_k = 5
    elif scene == 'Label_Only':
        top_k = 5

    success = 0
    queries_num = 0

    nes_instance = NES(model, scene, top_k=top_k)
    test_length = 32
    advs = []
    for img_index in range(test_length):
        # Initial image and class selection
        initial_img = test_images[img_index]
        orig_class = true_labels[img_index]
        initial_img = [initial_img]
        target_class = random_target_labels([orig_class], true_labels)
        target_image = create_target_images(test_images, true_labels,
                                            target_class)
        nes_instance.set_target_images(target_image)
        tag, adv, queries = nes_instance.generate(initial_img, target_class)
        if tag[0]:
            success += 1
        queries_num += queries[0]
        advs.append(adv)

    advs = np.reshape(advs, (len(advs), 1, 32, 32))
    adv_pred = np.argmax(model.predict(advs), axis=1)
    adv_accuracy = np.mean(np.equal(adv_pred, true_labels[:test_length]))
    LOGGER.info(TAG, "prediction accuracy after attacking is : %s",
                adv_accuracy)


if __name__ == '__main__':
    test_nes_mnist_attack()