# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import numpy as np import pytest from mindspore import Tensor from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindarmour.attacks.black.natural_evolutionary_strategy import NES from mindarmour.attacks.black.black_model import BlackModel from mindarmour.utils.logger import LogUtil from lenet5_net import LeNet5 sys.path.append("..") from data_processing import generate_mnist_dataset context.set_context(mode=context.GRAPH_MODE) context.set_context(device_target="Ascend") LOGGER = LogUtil.get_instance() TAG = 'HopSkipJumpAttack' class ModelToBeAttacked(BlackModel): """model to be attack""" def __init__(self, network): super(ModelToBeAttacked, self).__init__() self._network = network def predict(self, inputs): """predict""" if len(inputs.shape) == 3: inputs = inputs[np.newaxis, :] result = self._network(Tensor(inputs.astype(np.float32))) return result.asnumpy() def random_target_labels(true_labels, labels_list): target_labels = [] for label in true_labels: while True: target_label = np.random.choice(labels_list) if target_label != label: target_labels.append(target_label) break return target_labels def _pseudorandom_target(index, total_indices, true_class): """ pseudo random_target """ rng = np.random.RandomState(index) target = true_class while target == true_class: target = rng.randint(0, total_indices) return target def create_target_images(dataset, data_labels, target_labels): res = [] for label in target_labels: for i in range(len(data_labels)): if data_labels[i] == label: res.append(dataset[i]) break return np.array(res) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_card @pytest.mark.component_mindarmour def test_nes_mnist_attack(): """ hsja-Attack test """ # upload trained network ckpt_name = './trained_ckpt_file/checkpoint_lenet-10_1875.ckpt' net = LeNet5() load_dict = load_checkpoint(ckpt_name) load_param_into_net(net, load_dict) net.set_train(False) # get test data data_list = "./MNIST_unzip/test" batch_size = 32 ds = generate_mnist_dataset(data_list, batch_size=batch_size) # prediction accuracy before attack model = ModelToBeAttacked(net) # the number of batches of attacking samples batch_num = 5 test_images = [] test_labels = [] predict_labels = [] i = 0 for data in ds.create_tuple_iterator(): i += 1 images = data[0].astype(np.float32) labels = data[1] test_images.append(images) test_labels.append(labels) pred_labels = np.argmax(model.predict(images), axis=1) predict_labels.append(pred_labels) if i >= batch_num: break predict_labels = np.concatenate(predict_labels) true_labels = np.concatenate(test_labels) accuracy = np.mean(np.equal(predict_labels, true_labels)) LOGGER.info(TAG, "prediction accuracy before attacking is : %s", accuracy) test_images = np.concatenate(test_images) # attacking scene = 'Query_Limit' if scene == 'Query_Limit': top_k = -1 elif scene == 'Partial_Info': top_k = 5 elif scene == 'Label_Only': top_k = 5 success = 0 queries_num = 0 nes_instance = NES(model, scene, top_k=top_k) test_length = 32 advs = [] for img_index in range(test_length): # Initial image and class selection initial_img = test_images[img_index] orig_class = true_labels[img_index] initial_img = [initial_img] target_class = random_target_labels([orig_class], true_labels) target_image = create_target_images(test_images, true_labels, target_class) nes_instance.set_target_images(target_image) tag, adv, queries = nes_instance.generate(initial_img, target_class) if tag[0]: success += 1 queries_num += queries[0] advs.append(adv) advs = np.reshape(advs, (len(advs), 1, 32, 32)) adv_pred = np.argmax(model.predict(advs), axis=1) adv_accuracy = np.mean(np.equal(adv_pred, true_labels[:test_length])) LOGGER.info(TAG, "prediction accuracy after attacking is : %s", adv_accuracy) if __name__ == '__main__': test_nes_mnist_attack()