test_fuzzer.py 5.9 KB
Newer Older
Z
ZhidanLiu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
P
pkuliuliu 已提交
15
Model-fuzzer test.
Z
ZhidanLiu 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
"""
import numpy as np
import pytest
from mindspore import context
from mindspore import nn
from mindspore.common.initializer import TruncatedNormal
from mindspore.ops import operations as P
from mindspore.train import Model

from mindarmour.fuzzing.fuzzing import Fuzzer
from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics
from mindarmour.utils.logger import LogUtil

LOGGER = LogUtil.get_instance()
TAG = 'Fuzzing test'
LOGGER.set_level('INFO')


def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
    weight = weight_variable()
    return nn.Conv2d(in_channels, out_channels,
                     kernel_size=kernel_size, stride=stride, padding=padding,
                     weight_init=weight, has_bias=False, pad_mode="valid")


def fc_with_initialize(input_channels, out_channels):
    weight = weight_variable()
    bias = weight_variable()
    return nn.Dense(input_channels, out_channels, weight, bias)


def weight_variable():
    return TruncatedNormal(0.02)


class Net(nn.Cell):
    """
    Lenet network
    """
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = conv(1, 6, 5)
        self.conv2 = conv(6, 16, 5)
        self.fc1 = fc_with_initialize(16*5*5, 120)
        self.fc2 = fc_with_initialize(120, 84)
        self.fc3 = fc_with_initialize(84, 10)
        self.relu = nn.ReLU()
        self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
        self.reshape = P.Reshape()

    def construct(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.max_pool2d(x)
        x = self.conv2(x)
        x = self.relu(x)
        x = self.max_pool2d(x)
        x = self.reshape(x, (-1, 16*5*5))
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.relu(x)
        x = self.fc3(x)
        return x


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_fuzzing_ascend():
    context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
    # load network
    net = Net()
    model = Model(net)
    batch_size = 8
    num_classe = 10
    mutate_config = [{'method': 'Blur',
                      'params': {'auto_param': True}},
                     {'method': 'Contrast',
                      'params': {'factor': 2}},
                     {'method': 'Translate',
                      'params': {'x_bias': 0.1, 'y_bias': 0.2}},
                     {'method': 'FGSM',
                      'params': {'eps': 0.1, 'alpha': 0.1}}
                     ]
    # initialize fuzz test with training dataset
    train_images = np.random.rand(32, 1, 32, 32).astype(np.float32)
    model_coverage_test = ModelCoverageMetrics(model, 1000, 10, train_images)

    # fuzz test with original test data
    # get test data
    test_images = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
    test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32)
    test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32)

    initial_seeds = []
    # make initial seeds
    for img, label in zip(test_images, test_labels):
        initial_seeds.append([img, label, 0])

    initial_seeds = initial_seeds[:100]
    model_coverage_test.calculate_coverage(
        np.array(test_images[:100]).astype(np.float32))
    LOGGER.info(TAG, 'KMNC of this test is : %s',
                model_coverage_test.get_kmnc())

P
pkuliuliu 已提交
124
    model_fuzz_test = Fuzzer(model, train_images, 10, 1000)
Z
ZhidanLiu 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    _, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds)
    print(metrics)


@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_fuzzing_cpu():
    context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
    # load network
    net = Net()
    model = Model(net)
    batch_size = 8
    num_classe = 10
    mutate_config = [{'method': 'Blur',
                      'params': {'auto_param': True}},
                     {'method': 'Contrast',
                      'params': {'factor': 2}},
                     {'method': 'Translate',
                      'params': {'x_bias': 0.1, 'y_bias': 0.2}},
                     {'method': 'FGSM',
                      'params': {'eps': 0.1, 'alpha': 0.1}}
                     ]
    # initialize fuzz test with training dataset
    train_images = np.random.rand(32, 1, 32, 32).astype(np.float32)
    model_coverage_test = ModelCoverageMetrics(model, 1000, 10, train_images)

    # fuzz test with original test data
    # get test data
    test_images = np.random.rand(batch_size, 1, 32, 32).astype(np.float32)
    test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32)
    test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32)

    initial_seeds = []
    # make initial seeds
    for img, label in zip(test_images, test_labels):
        initial_seeds.append([img, label, 0])

    initial_seeds = initial_seeds[:100]
    model_coverage_test.calculate_coverage(
        np.array(test_images[:100]).astype(np.float32))
    LOGGER.info(TAG, 'KMNC of this test is : %s',
                model_coverage_test.get_kmnc())

P
pkuliuliu 已提交
170
    model_fuzz_test = Fuzzer(model, train_images, 10, 1000)
Z
ZhidanLiu 已提交
171 172
    _, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds)
    print(metrics)