# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Model-fuzzer test. """ import numpy as np import pytest from mindspore import context from mindspore import nn from mindspore.common.initializer import TruncatedNormal from mindspore.ops import operations as P from mindspore.train import Model from mindarmour.fuzzing.fuzzing import Fuzzer from mindarmour.fuzzing.model_coverage_metrics import ModelCoverageMetrics from mindarmour.utils.logger import LogUtil LOGGER = LogUtil.get_instance() TAG = 'Fuzzing test' LOGGER.set_level('INFO') def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): weight = weight_variable() return nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, weight_init=weight, has_bias=False, pad_mode="valid") def fc_with_initialize(input_channels, out_channels): weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) def weight_variable(): return TruncatedNormal(0.02) class Net(nn.Cell): """ Lenet network """ def __init__(self): super(Net, self).__init__() self.conv1 = conv(1, 6, 5) self.conv2 = conv(6, 16, 5) self.fc1 = fc_with_initialize(16*5*5, 120) self.fc2 = fc_with_initialize(120, 84) self.fc3 = fc_with_initialize(84, 10) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.reshape = P.Reshape() def construct(self, x): x = self.conv1(x) x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool2d(x) x = self.reshape(x, (-1, 16*5*5)) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) x = self.fc3(x) return x @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_fuzzing_ascend(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") # load network net = Net() model = Model(net) batch_size = 8 num_classe = 10 mutate_config = [{'method': 'Blur', 'params': {'auto_param': True}}, {'method': 'Contrast', 'params': {'factor': 2}}, {'method': 'Translate', 'params': {'x_bias': 0.1, 'y_bias': 0.2}}, {'method': 'FGSM', 'params': {'eps': 0.1, 'alpha': 0.1}} ] # initialize fuzz test with training dataset train_images = np.random.rand(32, 1, 32, 32).astype(np.float32) model_coverage_test = ModelCoverageMetrics(model, 1000, 10, train_images) # fuzz test with original test data # get test data test_images = np.random.rand(batch_size, 1, 32, 32).astype(np.float32) test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32) test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32) initial_seeds = [] # make initial seeds for img, label in zip(test_images, test_labels): initial_seeds.append([img, label, 0]) initial_seeds = initial_seeds[:100] model_coverage_test.calculate_coverage( np.array(test_images[:100]).astype(np.float32)) LOGGER.info(TAG, 'KMNC of this test is : %s', model_coverage_test.get_kmnc()) model_fuzz_test = Fuzzer(model, train_images, 10, 1000) _, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds) print(metrics) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard @pytest.mark.component_mindarmour def test_fuzzing_cpu(): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") # load network net = Net() model = Model(net) batch_size = 8 num_classe = 10 mutate_config = [{'method': 'Blur', 'params': {'auto_param': True}}, {'method': 'Contrast', 'params': {'factor': 2}}, {'method': 'Translate', 'params': {'x_bias': 0.1, 'y_bias': 0.2}}, {'method': 'FGSM', 'params': {'eps': 0.1, 'alpha': 0.1}} ] # initialize fuzz test with training dataset train_images = np.random.rand(32, 1, 32, 32).astype(np.float32) model_coverage_test = ModelCoverageMetrics(model, 1000, 10, train_images) # fuzz test with original test data # get test data test_images = np.random.rand(batch_size, 1, 32, 32).astype(np.float32) test_labels = np.random.randint(num_classe, size=batch_size).astype(np.int32) test_labels = (np.eye(num_classe)[test_labels]).astype(np.float32) initial_seeds = [] # make initial seeds for img, label in zip(test_images, test_labels): initial_seeds.append([img, label, 0]) initial_seeds = initial_seeds[:100] model_coverage_test.calculate_coverage( np.array(test_images[:100]).astype(np.float32)) LOGGER.info(TAG, 'KMNC of this test is : %s', model_coverage_test.get_kmnc()) model_fuzz_test = Fuzzer(model, train_images, 10, 1000) _, _, _, _, metrics = model_fuzz_test.fuzzing(mutate_config, initial_seeds) print(metrics)