test_membership_inference.py 4.1 KB
Newer Older
L
liuluobin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
membership inference test
"""
import os
import sys

import pytest

import numpy as np

import mindspore.dataset as ds
from mindspore import nn
from mindspore.train import Model
27
import mindspore.context as context
L
liuluobin 已提交
28 29 30 31 32 33 34

from mindarmour.diff_privacy.evaluation.membership_inference import MembershipInference

sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "../"))
from defenses.mock_net import Net


35 36
context.set_context(mode=context.GRAPH_MODE)

L
liuluobin 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
def dataset_generator(batch_size, batches):
    """mock training data."""
    data = np.random.randn(batches*batch_size, 1, 32, 32).astype(
        np.float32)
    label = np.random.randint(0, 10, batches*batch_size).astype(np.int32)
    for i in range(batches):
        yield data[i*batch_size:(i + 1)*batch_size],\
              label[i*batch_size:(i + 1)*batch_size]


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_get_membership_inference_object():
    net = Net()
    loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    opt = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
    model = Model(network=net, loss_fn=loss, optimizer=opt)
57
    inference_model = MembershipInference(model, -1)
L
liuluobin 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70
    assert isinstance(inference_model, MembershipInference)


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_membership_inference_object_train():
    net = Net()
    loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    opt = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
    model = Model(network=net, loss_fn=loss, optimizer=opt)
71
    inference_model = MembershipInference(model, -1)
L
liuluobin 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    assert isinstance(inference_model, MembershipInference)

    config = [{
        "method": "KNN",
        "params": {
            "n_neighbors": [3, 5, 7],
        }
    }]
    batch_size = 16
    batches = 1
    ds_train = ds.GeneratorDataset(dataset_generator(batch_size, batches),
                                   ["image", "label"])
    ds_test = ds.GeneratorDataset(dataset_generator(batch_size, batches),
                                  ["image", "label"])
    ds_train.set_dataset_size(batch_size*batches)
    ds_test.set_dataset_size((batch_size*batches))
    inference_model.train(ds_train, ds_test, config)


@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
@pytest.mark.component_mindarmour
def test_membership_inference_eval():
    net = Net()
    loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
    opt = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
    model = Model(network=net, loss_fn=loss, optimizer=opt)
101
    inference_model = MembershipInference(model, -1)
L
liuluobin 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    assert isinstance(inference_model, MembershipInference)

    batch_size = 16
    batches = 1
    eval_train = ds.GeneratorDataset(dataset_generator(batch_size, batches),
                                     ["image", "label"])
    eval_test = ds.GeneratorDataset(dataset_generator(batch_size, batches),
                                    ["image", "label"])
    eval_train.set_dataset_size(batch_size * batches)
    eval_test.set_dataset_size((batch_size * batches))

    metrics = ["precision", "accuracy", "recall"]
    inference_model.eval(eval_train, eval_test, metrics)