提交 f9795612 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!665 add gradient accumulation doc

Merge pull request !665 from jinyaohui/master
# 梯度累积
<!-- TOC -->
- [梯度累积](#梯度累积)
- [概述](#概述)
- [建立梯度累积模型](#建立梯度累积模型)
- [导入需要的库文件](#导入需要的库文件)
- [加载数据集](#加载数据集)
- [定义网络](#定义网络)
- [定义训练模型](#定义训练模型)
- [定义训练过程](#定义训练过程)
- [训练并保存模型](#训练并保存模型)
- [实验结果](#实验结果)
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/gradient_accumulation.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
本教程介绍梯度累积的训练方式,目的是为了解决由于内存不足导致某些大型网络无法训练大Batch_size的问题。
传统的训练方式是每次计算得到loss和梯度后,直接用所得梯度对参数进行更新。
与传统的训练方式不同,梯度累积引入Mini-batch的概念,首先对每个Mini-batch的数据计算loss和梯度,但不立即更新模型参数,而是先对所得梯度进行累加,然后在指定数量(N)个Mini-batch之后,用累积后的梯度更新网络参数。下次训练前清空过往累积梯度后重新累加,如此往复。
最终目的是为了达到跟直接用N*Mini-batch数据训练几乎同样的效果。
> 本教程用于GPU、Ascend 910 AI处理器。
## 创建梯度累积模型
以MNIST作为示范数据集,自定义简单模型实现梯度累积。
### 导入需要的库文件
下列是我们所需要的公共模块及MindSpore的模块及库文件。
```python
import argparse
import os
from collections.abc import Iterable
import mindspore.nn as nn
from mindspore import ParameterTuple
from mindspore import context
from mindspore.nn import Cell
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.train.dataset_helper import DatasetHelper
from mindspore.train.serialization import _exec_save_checkpoint
from model_zoo.official.cv.lenet.src.dataset import create_dataset
from model_zoo.official.cv.lenet.src.lenet import LeNet5
```
### 加载数据集
利用MindSpore的dataset提供的`MnistDataset`接口加载MNIST数据集。
```python
def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
"""
create dataset for train or test
"""
# define dataset
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081
# define map operations
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
# apply map operations on images
mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
# apply DatasetOps
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size)
return mnist_ds
```
### 定义网络
这里以LeNet网络为例进行介绍,当然也可以使用其它的网络,如ResNet-50、BERT等。
```python
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""weight initial for conv layer"""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""weight initial for fc layer"""
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
class LeNet5(nn.Cell):
"""
Lenet network
Args:
num_class (int): Number classes. Default: 10.
Returns:
Tensor, output tensor
Examples:
>>> LeNet(num_class=10)
"""
def __init__(self, num_class=10, channel=1):
super(LeNet5, self).__init__()
self.num_class = num_class
self.conv1 = conv(channel, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, self.num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
def construct(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x
```
### 定义训练模型
将训练流程拆分为正向反向训练、参数更新和累积梯度清理三个部分:
- `TrainForwardBackward`计算loss和梯度,利用grad_sum实现梯度累加。
- `TrainOptim`实现参数更新。
- `TrainClear`实现对梯度累加变量grad_sum清零。
```python
_sum_op = C.MultitypeFuncGraph("grad_sum_op")
_clear_op = C.MultitypeFuncGraph("clear_op")
@_sum_op.register("Tensor", "Tensor")
def _cumulative_gard(grad_sum, grad):
"""Apply gard sum to cumulative gradient."""
add = P.AssignAdd()
return add(grad_sum, grad)
@_clear_op.register("Tensor", "Tensor")
def _clear_grad_sum(grad_sum, zero):
"""Apply zero to clear grad_sum."""
success = True
success = F.depend(success, F.assign(grad_sum, zero))
return success
class TrainForwardBackward(Cell):
def __init__(self, network, optimizer, grad_sum, sens=1.0):
super(TrainForwardBackward, self).__init__(auto_prefix=False)
self.network = network
self.network.add_flags(defer_inline=True)
self.weights = ParameterTuple(network.trainable_params())
self.optimizer = optimizer
self.grad_sum = grad_sum
self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
self.sens = sens
self.hyper_map = C.HyperMap()
def construct(self, *inputs):
weights = self.weights
loss = self.network(*inputs)
sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
grads = self.grad(self.network, weights)(*inputs, sens)
return F.depend(loss, self.hyper_map(F.partial(_sum_op), self.grad_sum, grads))
class TrainOptim(Cell):
def __init__(self, optimizer, grad_sum):
super(TrainOptim, self).__init__(auto_prefix=False)
self.optimizer = optimizer
self.grad_sum = grad_sum
def construct(self):
return self.optimizer(self.grad_sum)
class TrainClear(Cell):
def __init__(self, grad_sum, zeros):
super(TrainClear, self).__init__(auto_prefix=False)
self.grad_sum = grad_sum
self.zeros = zeros
self.hyper_map = C.HyperMap()
def construct(self):
seccess = self.hyper_map(F.partial(_clear_op), self.grad_sum, self.zeros)
return seccess
```
### 定义训练过程
- 每个Mini-batch通过正反向训练计算loss和梯度,通过mini_steps控制每次更新参数前的累加次数。达到累加次数后进行参数更新和
累加梯度变量清零。
```python
class GradientAccumulation:
def __init__(self, network, loss_fn, optimizer):
self._network = network
self._loss_fn = loss_fn
self._optimizer = optimizer
params = self._optimizer.parameters
self._grad_sum = params.clone(prefix="grad_sum", init='zeros')
self._zeros = params.clone(prefix="zeros", init='zeros')
self._train_forward_backward = self._build_train_forward_backward_network()
self._train_optim = self._build_train_optim()
self._train_clear = self._build_train_clear()
@staticmethod
def _transform_callbacks(callbacks):
"""Transform callback to a list."""
if callbacks is None:
return []
if isinstance(callbacks, Iterable):
return list(callbacks)
return [callbacks]
def _build_train_forward_backward_network(self):
"""Build forward and backward network"""
network = self._network
network = nn.WithLossCell(network, self._loss_fn)
loss_scale = 1.0
network = TrainForwardBackward(network, self._optimizer, self._grad_sum, loss_scale).set_train()
return network
def _build_train_optim(self):
"""Build optimizer network"""
network = TrainOptim(self._optimizer, self._grad_sum).set_train()
return network
def _build_train_clear(self):
"""Build clear network"""
network = TrainClear(self._grad_sum, self._zeros).set_train()
return network
def train_process(self, epoch, train_dataset, mini_steps=None):
"""
Training process. The data would be passed to network directly.
"""
dataset_helper = DatasetHelper(train_dataset, dataset_sink_mode=False, epoch_num=epoch)
for i in range(epoch):
step = 0
for k, next_element in enumerate(dataset_helper):
loss = self._train_forward_backward(*next_element)
if (k + 1) % mini_steps == 0:
step += 1
print("epoch:", i + 1, "step:", step, "loss is ", loss)
self._train_optim()
self._train_clear()
train_dataset.reset()
_exec_save_checkpoint(self._train_forward_backward, "gradient_accumulation.ckpt", )
```
### 训练并保存模型
调用网络、优化器及损失函数,然后自定义`GradientAccumulation``train_process`接口,进行模型训练。
```python
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore Gard Cumulative Example')
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--data_path', type=str, default="./Data",
help='path where the dataset is saved')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
ds_train = create_dataset(os.path.join(args.data_path, "train"), 32)
network = LeNet5(10)
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
model = GradientAccumulation(network, net_loss, net_opt)
print("============== Starting Training ==============")
model.train_process(10, ds_train, mini_steps=4)
```
## 实验结果
在经历了10轮epoch之后,在测试集上的精度约为96.31%。
**执行训练**
1. 运行训练代码,查看运行结果。
```shell
$ python train.py --data_path=./MNIST_Data
```
输出如下,可以看到loss值随着训练逐步降低:
```shell
epoch: 1 step: 27 loss is 0.3660637
epoch: 1 step: 28 loss is 0.25238192
...
epoch: 3 step: 2 loss is 0.12296932
epoch: 3 step: 3 loss is 0.15799297
...
epoch: 10 step: 448 loss is 0.06443884
epoch: 10 step: 449 loss is 0.0067842817
```
2. 查看保存的CheckPoint文件。
训练过程中保存了CheckPoint文件gradient_accumulation.ckpt,即模型文件。
**验证模型**
通过model_zoo下lenet网络的[eval.py](<https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet/train.py>),使用保存的CheckPoint文件,加载验证数据集,进行验证。
```shell
$ python eval.py --data_path=./MNIST_Data --ckpt_path=./gradient_accumulation.ckpt
```
输出如下,可以看到使用验证的数据集,正确率在96.31%左右,与batch_size为32的验证结果一致。
```shell
============== Starting Testing ==============
============== {'Accuracy': 0.9631730769230769} ==============
```
......@@ -52,6 +52,7 @@ MindSpore教程
advanced_use/mixed_precision
advanced_use/graph_kernel_fusion
advanced_use/quantization_aware
advanced_use/gradient_accumulation
.. toctree::
:glob:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册