提交 f36906c8 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!591 modify the name of notebook.

Merge pull request !591 from zhangchengmin/cv_app_2
# MindSpore的教程体验
# MindSpore的教程体验
## 环境配置
### Windows和Linux系统配置方法
......@@ -55,7 +55,7 @@
| 将数据集转换为MindSpore数据格式 | [convert_dataset_to_mindspore_data_format.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/convert_dataset_to_mindspore_data_format/convert_dataset_to_mindspore_data_format.ipynb) | 使用指南 | - 展示将MNIST数据集转换为MindSpore数据格式 <br/> - 展示将CSV数据集转换为MindSpore数据格式 <br/> - 展示将CIFAR-10数据集转换为MindSpore数据格式 <br/> - 展示将CIFAR-100数据集转换为MindSpore数据格式 <br/> - 展示将ImageNet数据集转换为MindSpore数据格式 <br/> - 展示用户自定义生成MindSpore数据格式
| 数据处理与数据增强 | [data_loading_enhancement.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/data_loading_enhance/data_loading_enhancement.ipynb) | 使用指南 | - 学习MindSpore中数据处理和增强的方法 <br/> - 展示数据处理、增强方法的实际操作 <br/> - 对比展示数据处理前和处理后的效果<br/> - 表述在数据处理、增强后的意义
| 自然语言处理应用 | [nlp_application.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/nlp_application.ipynb) | 应用实践 | - 展示MindSpore在自然语言处理的应用<br/> - 展示自然语言处理中数据集特定的预处理方法<br/> - 展示如何定义基于LSTM的SentimentNet网络
| 计算机视觉应用 | [mindspore_computer_vision_application.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/mindspore_computer_vision_application.ipynb) | 应用实践 | - 学习MindSpore卷积神经网络在计算机视觉应用的过程 <br/> - 学习下载CIFAR-10数据集,搭建运行环境<br/>- 学习使用ResNet-50构建卷积神经网络<br/> - 学习使用Momentum和SoftmaxCrossEntropyWithLogits构建优化器和损失函数<br/> - 学习调试参数训练模型,判断模型精度
| 计算机视觉应用 | [computer_vision_application.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/computer_vision_application.ipynb) | 应用实践 | - 学习MindSpore卷积神经网络在计算机视觉应用的过程 <br/> - 学习下载CIFAR-10数据集,搭建运行环境<br/>- 学习使用ResNet-50构建卷积神经网络<br/> - 学习使用Momentum和SoftmaxCrossEntropyWithLogits构建优化器和损失函数<br/> - 学习调试参数训练模型,判断模型精度
| 使用PyNative进行神经网络的训练调试体验 | [debugging_in_pynative_mode.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/debugging_in_pynative_mode.ipynb) | 模型调优 | - GPU平台下从数据集获取单个数据进行单个step训练的数据变化全过程解读 <br/> - 了解PyNative模式下的调试方法 <br/> - 图片数据在训练过程中的变化情况的图形展示 <br/> - 了解构建权重梯度计算函数的方法 <br/> - 展示1个step过程中权重的变化及数据展示
| 自定义调试信息体验文档 | [customized_debugging_information.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/customized_debugging_information.ipynb) | 模型调优 | - 了解MindSpore的自定义调试算子 <br/> - 学习使用自定义调试算子Callback设置定时训练<br/>- 学习设置metrics算子输出相对应的模型精度信息<br/> - 学习设置日志环境变量来控制glog输出日志
| MindInsight的模型溯源和数据溯源体验 | [mindinsight_model_lineage_and_data_lineage.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/mindinsight/mindinsight_model_lineage_and_data_lineage.ipynb) | 模型调优 | - 了解MindSpore中训练数据的采集及展示 <br/> - 学习使用SummaryRecord记录数据 <br/> - 学习使用回调函数SummaryCollector进行数据采集 <br/> - 使用MindInsight进行数据可视化 <br/> - 了解数据溯源和模型溯源的使用方法
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册