# Implementing an Image Classification Application
<!-- TOC -->
-[Quick Start ](#quick-start)
-[Implementing an Image Classification Application](#implementing-an-image-classification-application)
-[Overview](#overview)
-[Selecting a Model](#selecting-a-model)
-[Converting a Model](#converting-a-model)
...
...
@@ -133,7 +133,7 @@ app
### Configuring MindSpore Lite Dependencies
When MindSpore C++ APIs are called at the Android JNI layer, related library files are required. You can use MindSpore Lite [source code compilation](https://www.mindspore.cn/lite/tutorial/en/master/compile.html) to generate the `libmindspore-lite.so` library file.
When MindSpore C++ APIs are called at the Android JNI layer, related library files are required. You can use MindSpore Lite [source code compilation](https://www.mindspore.cn/lite/tutorial/en/master/build.html) to generate the `libmindspore-lite.so` library file.
In Android Studio, place the compiled `libmindspore-lite.so` library file (which can contain multiple compatible architectures) in the `app/libs/ARM64-V8a` (Arm64) or `app/libs/armeabi-v7a` (Arm32) directory of the application project. In the `build.gradle` file of the application, configure the compilation support of CMake, `arm64-v8a`, and `armeabi-v7a`.
MindSpore Model Zoo中图像分类模型可[在此下载]((https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms))。
MindSpore Model Zoo中图像分类模型可[在此下载](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite/mobilenetv2.ms)。
同时,你也可以使用预置模型做迁移学习,以实现自己的图像分类任务。
## 转换模型
...
...
@@ -134,7 +134,7 @@ app
### 配置MindSpore Lite依赖项
Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/lite/tutorial/zh-CN/master/compile.html)生成`libmindspore-lite.so`库文件。
Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/lite/tutorial/zh-CN/master/build.html)生成`libmindspore-lite.so`库文件。