提交 df7a05f3 编写于 作者: J JunYuLiu

Update link for markdown

上级 5f903672
...@@ -10,7 +10,7 @@ ...@@ -10,7 +10,7 @@
<!-- /TOC --> <!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/tree/master/docs/source_en/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a> <a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
## Model Zoo ## Model Zoo
...@@ -53,7 +53,7 @@ Domain | Sub Domain| Network | Dataset | CPU | GPU | Ascend | 0.5.0-beta* ...@@ -53,7 +53,7 @@ Domain | Sub Domain| Network | Dataset | CPU | GPU | Ascend | 0.5.0-beta*
|Computer Vision (CV) | Image Classification| [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/lenet.py)| MNIST | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/lenet/lenet_ascend_0.5.0_mnist_official_classification_20200716.tar.gz) |Computer Vision (CV) | Image Classification| [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/lenet.py)| MNIST | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/lenet/lenet_ascend_0.5.0_mnist_official_classification_20200716.tar.gz)
|Computer Vision (CV) | Image Classification| [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/vgg16/src/vgg.py)| CIFAR-10 | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/vgg/vgg16_ascend_0.5.0_cifar10_official_classification_20200715.tar.gz) |Computer Vision (CV) | Image Classification| [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/vgg16/src/vgg.py)| CIFAR-10 | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/vgg/vgg16_ascend_0.5.0_cifar10_official_classification_20200715.tar.gz)
|Computer Vision (CV) | Image Classification| [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | CIFAR-10| | | ✓ |[Download](http://download.mindspore.cn/model_zoo/official/cv/resnet/resnet50_v1.5_ascend_0.3.0_cifar10_official_classification_20200718.tar.gz) |Computer Vision (CV) | Image Classification| [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | CIFAR-10| | | ✓ |[Download](http://download.mindspore.cn/model_zoo/official/cv/resnet/resnet50_v1.5_ascend_0.3.0_cifar10_official_classification_20200718.tar.gz)
|Computer Vision (CV) | Targets Detection| [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53/src/yolo.py) | COCO 2014| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/yolo/yolov3_darknet53_ascend_0.5.0_coco2014_official_object_detection_20200717.tar.gz) |Computer Vision (CV) | Targets Detection| [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/yolov3_darknet53/src/yolo.py) | COCO 2014| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/yolo/yolov3_darknet53_ascend_0.5.0_coco2014_official_object_detection_20200717.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [BERT_Base](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | zhwiki | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_base_ascend_0.5.0_cn-wiki_official_nlp_20200720.tar.gz) | Natural Language Processing (NLP) | Natural Language Understanding| [BERT_Base](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | zhwiki | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_base_ascend_0.5.0_cn-wiki_official_nlp_20200720.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [BERT_NEZHA](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py)| zhwiki| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_nezha_ascend_0.5.0_cn-wiki_official_nlp_20200720.tar.gz) | Natural Language Processing (NLP) | Natural Language Understanding| [BERT_NEZHA](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py)| zhwiki| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_nezha_ascend_0.5.0_cn-wiki_official_nlp_20200720.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py)| WMT English-German| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/transformer/transformer_ascend_0.5.0_wmtende_official_machine_translation_20200713.tar.gz) | Natural Language Processing (NLP) | Natural Language Understanding| [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py)| WMT English-German| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/transformer/transformer_ascend_0.5.0_wmtende_official_machine_translation_20200713.tar.gz)
...@@ -10,7 +10,7 @@ ...@@ -10,7 +10,7 @@
<!-- /TOC --> <!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/tree/master/docs/source_zh_cn/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a> <a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
## Model Zoo ## Model Zoo
......
...@@ -28,7 +28,7 @@ ...@@ -28,7 +28,7 @@
2. 将模型转换成MindSpore Lite模型格式。 2. 将模型转换成MindSpore Lite模型格式。
3. 在端侧使用MindSpore Lite推理模型。详细说明如何在端侧利用MindSpore Lite C++ API(Android JNI)和MindSpore Lite图像分类模型完成端侧推理,实现对设备摄像头捕获的内容进行分类,并在APP图像预览界面中,显示出最可能的分类结果。 3. 在端侧使用MindSpore Lite推理模型。详细说明如何在端侧利用MindSpore Lite C++ API(Android JNI)和MindSpore Lite图像分类模型完成端侧推理,实现对设备摄像头捕获的内容进行分类,并在APP图像预览界面中,显示出最可能的分类结果。
> 你可以在这里找到[Android图像分类模型](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite)和[示例代码](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/lite/image_classification)。 > 你可以在这里找到[Android图像分类模型](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite)和[示例代码](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/lite/image_classification)。
## 选择模型 ## 选择模型
......
...@@ -61,7 +61,7 @@ Next, let's use MindSpore to solve the image classification task. The overall pr ...@@ -61,7 +61,7 @@ Next, let's use MindSpore to solve the image classification task. The overall pr
5. Call the high-level `Model` API to train and save the model file. 5. Call the high-level `Model` API to train and save the model file.
6. Load the saved model for inference. 6. Load the saved model for inference.
> This example is for the hardware platform of the Ascend 910 AI processor. You can find the complete executable sample code at: <https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/resnet>. > This example is for the hardware platform of the Ascend 910 AI processor. You can find the complete executable sample code at: <https://gitee.com/mindspore/docs/tree/master/tutorials/tutorial_code/resnet>.
The key parts of the task process code are explained below. The key parts of the task process code are explained below.
......
...@@ -19,7 +19,7 @@ ...@@ -19,7 +19,7 @@
<!-- /TOC --> <!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/tree/master/tutorials/source_en/advanced_use/network_migration.md" target="_blank"><img src="../_static/logo_source.png"></a> <a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/network_migration.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview ## Overview
......
...@@ -88,7 +88,7 @@ Currently, MindSpore GPU and CPU supports SentimentNet network based on the long ...@@ -88,7 +88,7 @@ Currently, MindSpore GPU and CPU supports SentimentNet network based on the long
Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used for processing and predicting an important event with a long interval and delay in a time sequence. For details, refer to online documentation. Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used for processing and predicting an important event with a long interval and delay in a time sequence. For details, refer to online documentation.
3. After the model is obtained, use the validation dataset to check the accuracy of model. 3. After the model is obtained, use the validation dataset to check the accuracy of model.
> The current sample is for the Ascend 910 AI processor. You can find the complete executable sample code at:<https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm> > The current sample is for the Ascend 910 AI processor. You can find the complete executable sample code at:<https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/lstm>
> - `src/config.py`:some configurations on the network, including the batch size and number of training epochs. > - `src/config.py`:some configurations on the network, including the batch size and number of training epochs.
> - `src/dataset.py`:dataset related definition,include MindRecord file convert and data-preprocess, etc. > - `src/dataset.py`:dataset related definition,include MindRecord file convert and data-preprocess, etc.
> - `src/imdb.py`: the util class for parsing IMDB dataset. > - `src/imdb.py`: the util class for parsing IMDB dataset.
......
...@@ -38,7 +38,7 @@ This section takes a Square operator as an example to describe how to customize ...@@ -38,7 +38,7 @@ This section takes a Square operator as an example to describe how to customize
The primitive of an operator is a subclass inherited from `PrimitiveWithInfer`. The type name of the subclass is the operator name. The primitive of an operator is a subclass inherited from `PrimitiveWithInfer`. The type name of the subclass is the operator name.
The definition of the custom operator primitive is the same as that of the built-in operator primitive. The definition of the custom operator primitive is the same as that of the built-in operator primitive.
- The attribute is defined by the input parameter of the constructor function `__init__`. The operator in this test case has no attribute. Therefore, `__init__` has only one input parameter. For details about test cases in which operators have attributes, see [custom add3](https://gitee.com/mindspore/mindspore/tree/master/tests/st/ops/custom_ops_tbe/cus_add3.py) in the MindSpore source code. - The attribute is defined by the input parameter of the constructor function `__init__`. The operator in this test case has no attribute. Therefore, `__init__` has only one input parameter. For details about test cases in which operators have attributes, see [custom add3](https://gitee.com/mindspore/mindspore/blob/master/tests/st/ops/custom_ops_tbe/cus_add3.py) in the MindSpore source code.
- The input and output names are defined by the `init_prim_io_names` function. - The input and output names are defined by the `init_prim_io_names` function.
- The shape inference method of the output tensor is defined in the `infer_shape` function, and the dtype inference method of the output tensor is defined in the `infer_dtype` function. - The shape inference method of the output tensor is defined in the `infer_shape` function, and the dtype inference method of the output tensor is defined in the `infer_dtype` function.
......
...@@ -63,7 +63,7 @@ MindSpore当前支持的图像分类网络包括:典型网络LeNet、AlexNet ...@@ -63,7 +63,7 @@ MindSpore当前支持的图像分类网络包括:典型网络LeNet、AlexNet
6. 加载保存的模型进行推理 6. 加载保存的模型进行推理
> 本例面向Ascend 910 AI处理器硬件平台,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/resnet> > 本例面向Ascend 910 AI处理器硬件平台,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/tree/master/tutorials/tutorial_code/resnet>
下面对任务流程中各个环节及代码关键片段进行解释说明。 下面对任务流程中各个环节及代码关键片段进行解释说明。
......
...@@ -59,11 +59,11 @@ from model_zoo.official.cv.lenet.src.lenet import LeNet5 ...@@ -59,11 +59,11 @@ from model_zoo.official.cv.lenet.src.lenet import LeNet5
### 加载数据集 ### 加载数据集
利用MindSpore的dataset提供的`MnistDataset`接口加载MNIST数据集,此部分代码由model_zoo中lenet目录下的[dataset.py](<https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet/src/dataset.py>)导入。 利用MindSpore的dataset提供的`MnistDataset`接口加载MNIST数据集,此部分代码由model_zoo中lenet目录下的[dataset.py](<https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/dataset.py>)导入。
### 定义网络 ### 定义网络
这里以LeNet网络为例进行介绍,当然也可以使用其它的网络,如ResNet-50、BERT等, 此部分代码由model_zoo中lenet目录下的[lenet.py](<https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet/src/lenet.py>)导入。 这里以LeNet网络为例进行介绍,当然也可以使用其它的网络,如ResNet-50、BERT等, 此部分代码由model_zoo中lenet目录下的[lenet.py](<https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/lenet.py>)导入。
### 定义训练模型 ### 定义训练模型
将训练流程拆分为正向反向训练、参数更新和累积梯度清理三个部分: 将训练流程拆分为正向反向训练、参数更新和累积梯度清理三个部分:
...@@ -253,7 +253,7 @@ if __name__ == "__main__": ...@@ -253,7 +253,7 @@ if __name__ == "__main__":
**验证模型** **验证模型**
通过model_zoo中lenet目录下的[eval.py](<https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet/train.py>),使用保存的CheckPoint文件,加载验证数据集,进行验证。 通过model_zoo中lenet目录下的[eval.py](<https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/train.py>),使用保存的CheckPoint文件,加载验证数据集,进行验证。
```shell ```shell
$ python eval.py --data_path=./MNIST_Data --ckpt_path=./gradient_accumulation.ckpt $ python eval.py --data_path=./MNIST_Data --ckpt_path=./gradient_accumulation.ckpt
......
...@@ -89,7 +89,7 @@ $F1分数 = (2 * Precision * Recall) / (Precision + Recall)$ ...@@ -89,7 +89,7 @@ $F1分数 = (2 * Precision * Recall) / (Precision + Recall)$
> LSTM(Long short-term memory,长短期记忆)网络是一种时间循环神经网络,适合于处理和预测时间序列中间隔和延迟非常长的重要事件。具体介绍可参考网上资料,在此不再赘述。 > LSTM(Long short-term memory,长短期记忆)网络是一种时间循环神经网络,适合于处理和预测时间序列中间隔和延迟非常长的重要事件。具体介绍可参考网上资料,在此不再赘述。
3. 得到模型之后,使用验证数据集,查看模型精度情况。 3. 得到模型之后,使用验证数据集,查看模型精度情况。
> 本例面向GPU或CPU硬件平台,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm> > 本例面向GPU或CPU硬件平台,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/lstm>
> - `src/config.py`:网络中的一些配置,包括`batch size`、进行几次epoch训练等。 > - `src/config.py`:网络中的一些配置,包括`batch size`、进行几次epoch训练等。
> - `src/dataset.py`:数据集相关,包括转换成MindRecord文件,数据预处理等。 > - `src/dataset.py`:数据集相关,包括转换成MindRecord文件,数据预处理等。
> - `src/imdb.py`: 解析IMDB数据集的工具。 > - `src/imdb.py`: 解析IMDB数据集的工具。
......
...@@ -38,7 +38,7 @@ ...@@ -38,7 +38,7 @@
每个算子的原语是一个继承于`PrimitiveWithInfer`的子类,其类型名称即是算子名称。 每个算子的原语是一个继承于`PrimitiveWithInfer`的子类,其类型名称即是算子名称。
自定义算子原语与内置算子原语的接口定义完全一致: 自定义算子原语与内置算子原语的接口定义完全一致:
- 属性由构造函数`__init__`的入参定义。本用例的算子没有属性,因此`__init__`没有额外的入参。带属性的用例可参考MindSpore源码中的[custom add3](https://gitee.com/mindspore/mindspore/tree/master/tests/st/ops/custom_ops_tbe/cus_add3.py)用例。 - 属性由构造函数`__init__`的入参定义。本用例的算子没有属性,因此`__init__`没有额外的入参。带属性的用例可参考MindSpore源码中的[custom add3](https://gitee.com/mindspore/mindspore/blob/master/tests/st/ops/custom_ops_tbe/cus_add3.py)用例。
- 输入输出的名称通过`init_prim_io_names`函数定义。 - 输入输出的名称通过`init_prim_io_names`函数定义。
- 输出Tensor的shape推理方法在`infer_shape`函数中定义,输出Tensor的dtype推理方法在`infer_dtype`函数中定义。 - 输出Tensor的shape推理方法在`infer_shape`函数中定义,输出Tensor的dtype推理方法在`infer_dtype`函数中定义。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册