提交 bcc24203 编写于 作者: L lyvette

delete python dependency.

上级 dd1eddaf
......@@ -21,12 +21,11 @@ This document describes how to quickly install MindSpore Lite on the Ubuntu syst
- Compilation dependencies (basics):
- [CMake](https://cmake.org/download/) >= 3.14.1
- [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
- [Python](https://www.python.org/) >= 3.7
- [Android_NDK r20b](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip)
> - `Android_NDK` needs to be installed only when the Arm version is compiled. Skip this dependency when the x86_64 version is compiled.
> - To install and use `Android_NDK`, you need to configure environment variables. The command example is `export ANDROID_NDK={$NDK_PATH}/android-ndk-r20b`.
- Compilation dependencies (additional dependencies required by the MindSpore Lite model conversion tool, which is required only for compilation of the x86_64 version)
- [Autoconf](http://ftp.gnu.org/gnu/autoconf/) >= 2.69
- [Libtool](https://www.gnu.org/software/libtool/) >= 2.4.6
......@@ -34,9 +33,9 @@ This document describes how to quickly install MindSpore Lite on the Ubuntu syst
- [Automake](https://www.gnu.org/software/automake/) >= 1.11.6
- [Libevent](https://libevent.org) >= 2.0
- [M4](https://www.gnu.org/software/m4/m4.html) >= 1.4.18
- [OpenSSL](https://www.openssl.org/) >= 1.1.1
- [OpenSSL](https://www.openssl.org/) >= 1.1.1
## Compilation Options
MindSpore Lite provides multiple compilation options. You can select different compilation options as required.
......@@ -56,7 +55,7 @@ MindSpore Lite provides multiple compilation options. You can select different c
After the compilation is complete, go to the `mindspore/output` directory of the source code to view the file generated after compilation. The file is named `mindspore-lite-{version}-{function}-{OS}.tar.gz`. After decompression, the tool package named `mindspore-lite-{version}-{function}-{OS}` can be obtained.
> version: version of the output, consistent with that of the MindSpore.
> version: version of the output, consistent with that of the MindSpore.
>
> function: function of the output. `convert` indicates the output of the conversion tool and `runtime` indicates the output of the inference framework.
>
......@@ -73,7 +72,7 @@ Generally, the compiled output files include the following types. The architectu
> For the Arm 64-bit architecture, you can obtain the output of the `arm64-cpu` inference framework. If `-e gpu` is added, you can obtain the output of the `arm64-gpu` inference framework. The compilation for arm 64-bit is the same as that for arm 32-bit.
| Directory | Description | converter | runtime |
| --- | --- | --- | --- |
| --- | --- | --- | --- |
| include | Inference framework header file | No | Yes |
| lib | Inference framework dynamic library | No | Yes |
| benchmark | Benchmark test tool | No | Yes |
......@@ -102,22 +101,22 @@ Then, run the following commands in the root directory of the source code to com
```bash
bash build.sh -I x86_64 -d
```
- Release version of the x86_64 architecture, with the number of threads set:
```bash
bash build.sh -I x86_64 -j32
```
- Release version of the Arm 64-bit architecture in incremental compilation mode, with the number of threads set:
```bash
bash build.sh -I arm64 -i -j32
bash build.sh -I arm64 -i -j32
```
- Release version of the Arm 64-bit architecture in incremental compilation mode, with the built-in GPU operator compiled:
```bash
bash build.sh -I arm64 -e gpu
bash build.sh -I arm64 -e gpu
```
> - In the `build.sh` script, run the `git clone` command to obtain the code in the third-party dependency library. Ensure that the network settings of Git are correct.
Take the 0.7.0-beta version as an example. After the release version of the x86_64 architecture is compiled, go to the `mindspore/output` directory and run the following decompression command to obtain the output files `include`, `lib`, `benchmark`, `time_profiler`, `converter`, and `third_party`:
......@@ -125,4 +124,4 @@ Take the 0.7.0-beta version as an example. After the release version of the x86_
```bash
tar -xvf mindspore-lite-0.7.0-converter-ubuntu.tar.gz
tar -xvf mindspore-lite-0.7.0-runtime-x86-cpu.tar.gz
```
\ No newline at end of file
```
......@@ -29,12 +29,11 @@
- 编译依赖(基本项)
- [CMake](https://cmake.org/download/) >= 3.14.1
- [GCC](https://gcc.gnu.org/releases.html) >= 7.3.0
- [Python](https://www.python.org/) >= 3.7
- [Android_NDK r20b](https://dl.google.com/android/repository/android-ndk-r20b-linux-x86_64.zip)
> - 仅在编译ARM版本时需要安装`Android_NDK`,编译x86_64版本可跳过此项。
> - 如果安装并使用`Android_NDK`,需配置环境变量,命令参考:`export ANDROID_NDK={$NDK_PATH}/android-ndk-r20b`。
- 编译依赖(MindSpore Lite模型转换工具所需附加项,仅编译x86_64版本时需要)
- [Autoconf](http://ftp.gnu.org/gnu/autoconf/) >= 2.69
- [Libtool](https://www.gnu.org/software/libtool/) >= 2.4.6
......@@ -42,9 +41,9 @@
- [Automake](https://www.gnu.org/software/automake/) >= 1.11.6
- [Libevent](https://libevent.org) >= 2.0
- [M4](https://www.gnu.org/software/m4/m4.html) >= 1.4.18
- [OpenSSL](https://www.openssl.org/) >= 1.1.1
- [OpenSSL](https://www.openssl.org/) >= 1.1.1
### 编译选项
MindSpore Lite提供多种编译方式,用户可根据需要选择不同的编译选项。
......@@ -82,14 +81,14 @@ tar -xvf mindspore-lite-{version}-{function}-{OS}.tar.gz
| 目录 | 说明 | converter | runtime |
| --- | --- | --- | --- |
| include | 推理框架头文件 | 无 | 有 |
| lib | 推理框架动态库 | 无 | 有 |
| benchmark | 基准测试工具 | 无 | 有 |
| time_profiler | 模型网络层耗时分析工具 | 无 | 有 |
| converter | 模型转换工具 | 有 | 无 |
| third_party | 第三方库头文件和库 | 有 | 有 |
| lib | 推理框架动态库 | 无 | 有 |
| benchmark | 基准测试工具 | 无 | 有 |
| time_profiler | 模型网络层耗时分析工具 | 无 | 有 |
| converter | 模型转换工具 | 有 | 无 |
| third_party | 第三方库头文件和库 | 有 | 有 |
以0.7.0-beta版本,CPU编译为例,不同包名下,`third party``lib`的内容不同:
- `mindspore-lite-0.7.0-converter-ubuntu`:包含`protobuf`(Protobuf的动态库)。
- `mindspore-lite-0.7.0-runtime-x86-cpu``third party`包含`flatbuffers`(FlatBuffers头文件),`lib`包含`libmindspore-lite.so`(MindSpore Lite的动态库)。
- `mindspore-lite-0.7.0-runtime-arm64-cpu``third party`包含`flatbuffers`(FlatBuffers头文件),`lib`包含`libmindspore-lite.so`(MindSpore Lite的动态库)和`liboptimize.so`
......@@ -111,26 +110,26 @@ git clone https://gitee.com/mindspore/mindspore.git
```bash
bash build.sh -I x86_64 -d
```
- 编译x86_64架构Release版本,同时设定线程数。
```bash
bash build.sh -I x86_64 -j32
```
- 增量编译ARM64架构Release版本,同时设定线程数。
```bash
bash build.sh -I arm64 -i -j32
bash build.sh -I arm64 -i -j32
```
- 编译ARM64架构Release版本,同时编译内置的GPU算子。
```bash
bash build.sh -I arm64 -e gpu
bash build.sh -I arm64 -e gpu
```
> `build.sh`中会执行`git clone`获取第三方依赖库的代码,请提前确保git的网络设置正确可用。
以0.7.0-beta版本为例,x86_64架构Release版本编译完成之后,进入`mindspore/output`目录,执行如下解压缩命令,即可获取输出件`include``lib``benchmark``time_profiler``converter``third_party`
```bash
tar -xvf mindspore-lite-0.7.0-converter-ubuntu.tar.gz
tar -xvf mindspore-lite-0.7.0-runtime-x86-cpu.tar.gz
......@@ -180,7 +179,7 @@ git clone https://gitee.com/mindspore/mindspore.git
```bash
call build.bat lite 8
```
> `build.bat`中会执行`git clone`获取第三方依赖库的代码,请提前确保git的网络设置正确可用。
编译完成之后,进入`mindspore/output/`目录,解压后即可获取输出件`converter`
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册