提交 bb62da06 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!548 fix master to 0.6

Merge pull request !548 from Hanshize/r0.6
......@@ -8,7 +8,7 @@ This document describes the overall architecture of MindSpore.
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/architecture.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_en/architecture.md" target="_blank"><img src="./_static/logo_source.png"></a>
The MindSpore framework consists of the Frontend Expression layer, Graph Engine layer, and Backend Runtime layer.
......
# Benchmarks
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/benchmark.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_en/benchmark.md" target="_blank"><img src="./_static/logo_source.png"></a>
This document describes the MindSpore benchmarks.
For details about the MindSpore networks, see [Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
For details about the MindSpore networks, see [Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo).
## Training Performance
......
......@@ -23,7 +23,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/constraints_on_network_construction.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_en/constraints_on_network_construction.md" target="_blank"><img src="./_static/logo_source.png"></a>
## Overview
MindSpore can compile user source code based on the Python syntax into computational graphs, and can convert common functions or instances inherited from nn.Cell into computational graphs. Currently, MindSpore does not support conversion of any Python source code into computational graphs. Therefore, there are constraints on source code compilation, including syntax constraints and network definition constraints. As MindSpore evolves, the constraints may change.
......@@ -155,8 +155,8 @@ Currently, the following syntax is not supported in network constructors:
## Network Definition Constraints
### Instance Types on the Entire Network
* Common Python function with the [@ms_function](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.html#mindspore.ms_function) decorator.
* Cell subclass inherited from [nn.Cell](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell).
* Common Python function with the [@ms_function](https://www.mindspore.cn/api/en/r0.6/api/python/mindspore/mindspore.html#mindspore.ms_function) decorator.
* Cell subclass inherited from [nn.Cell](https://www.mindspore.cn/api/en/r0.6/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell).
### Network Input Type
* The training data input parameters of the entire network must be of the Tensor type.
......@@ -169,13 +169,13 @@ Currently, the following syntax is not supported in network constructors:
| Category | Content
| :----------- |:--------
| `Cell` instance |[mindspore/nn/*](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.nn.html), and custom [Cell](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell).
| `Cell` instance |[mindspore/nn/*](https://www.mindspore.cn/api/en/r0.6/api/python/mindspore/mindspore.nn.html), and custom [Cell](https://www.mindspore.cn/api/en/r0.6/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell).
| Member function of a `Cell` instance | Member functions of other classes in the construct function of Cell can be called.
| Function | Custom Python functions and system functions listed in the preceding content.
| Dataclass instance | Class decorated with @dataclass.
| Primitive operator |[mindspore/ops/operations/*](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html).
| Composite operator |[mindspore/ops/composite/*](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.composite.html).
| Operator generated by constexpr |Uses the value generated by [@constexpr](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.html#mindspore.ops.constexpr) to calculate operators.
| Primitive operator |[mindspore/ops/operations/*](https://www.mindspore.cn/api/en/r0.6/api/python/mindspore/mindspore.ops.operations.html).
| Composite operator |[mindspore/ops/composite/*](https://www.mindspore.cn/api/en/r0.6/api/python/mindspore/mindspore.ops.composite.html).
| Operator generated by constexpr |Uses the value generated by [@constexpr](https://www.mindspore.cn/api/en/r0.6/api/python/mindspore/mindspore.ops.html#mindspore.ops.constexpr) to calculate operators.
### Other Constraints
......
......@@ -6,7 +6,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/glossary.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_en/glossary.md" target="_blank"><img src="./_static/logo_source.png"></a>
| Acronym and Abbreviation | Description |
| ----- | ----- |
......
# Network List
<a href="https://gitee.com/mindspore/docs/tree/master/docs/source_en/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/tree/r0.6/docs/source_en/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
## Model Zoo
| Domain | Sub Domain | Network | Ascend | GPU | CPU
|:------ |:------| :----------- |:------ |:------ |:-----
|Computer Vision (CV) | Image Classification | [AlexNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/alexnet/src/alexnet.py) | Supported | Supported | Doing
| Computer Vision (CV) | Image Classification | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/googlenet/src/googlenet.py) | Supported | Doing | Doing
| Computer Vision (CV) | Image Classification | [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/lenet.py) | Supported | Supported | Supported
| Computer Vision (CV) | Image Classification | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
|Computer Vision (CV) | Image Classification | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
|Computer Vision (CV) | Image Classification | [ResNext50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnext50/src/image_classification.py) | Supported |Doing | Doing
| Computer Vision (CV) | Image Classification | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/vgg16/src/vgg.py) | Supported | Doing | Doing
| Computer Vision (CV) | Mobile Image Classification<br>Image Classification<br>Semantic Tegmentation | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| Computer Vision (CV) | Mobile Image Classification<br>Image Classification<br>Semantic Tegmentation | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|Computer Vision (CV) | Targets Detection | [SSD](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/ssd/src/ssd.py) | Supported |Doing | Doing
| Computer Vision (CV) | Targets Detection | [YoloV3-ResNet18](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/yolov3_resnet18/src/yolov3.py) | Supported | Doing | Doing
| Computer Vision (CV) | Targets Detection | [FasterRCNN](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/faster_rcnn/src/FasterRcnn) | Supported | Doing | Doing
| Computer Vision (CV) | Semantic Segmentation | [DeeplabV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [BERT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/lstm.py) | Doing | Supported | Supported
| Natural Language Processing (NLP) | Natural Language Understanding | [MASS](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/mass/src/transformer) | Supported | Doing | Doing
| Recommender | Recommender System, CTR prediction | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Doing | Doing
| Recommender | Recommender System, Search ranking | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py) | Supported | Doing | Doing
| Graph Neural Networks(GNN)| Text Classification | [GCN](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/gnn/gcn/src/gcn.py) | Supported | Doing | Doing
| Graph Neural Networks(GNN)| Text Classification | [GAT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/gnn/gat/src/gat.py) | Supported | Doing | Doing
|Computer Vision (CV) | Image Classification | [AlexNet](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/alexnet/src/alexnet.py) | Supported | Supported | Doing
| Computer Vision (CV) | Image Classification | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/googlenet/src/googlenet.py) | Supported | Doing | Doing
| Computer Vision (CV) | Image Classification | [LeNet](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/lenet/src/lenet.py) | Supported | Supported | Supported
| Computer Vision (CV) | Image Classification | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
|Computer Vision (CV) | Image Classification | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
|Computer Vision (CV) | Image Classification | [ResNext50](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnext50/src/image_classification.py) | Supported |Doing | Doing
| Computer Vision (CV) | Image Classification | [VGG16](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/vgg16/src/vgg.py) | Supported | Doing | Doing
| Computer Vision (CV) | Mobile Image Classification<br>Image Classification<br>Semantic Tegmentation | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| Computer Vision (CV) | Mobile Image Classification<br>Image Classification<br>Semantic Tegmentation | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|Computer Vision (CV) | Targets Detection | [SSD](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/ssd/src/ssd.py) | Supported |Doing | Doing
| Computer Vision (CV) | Targets Detection | [YoloV3-ResNet18](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/yolov3_resnet18/src/yolov3.py) | Supported | Doing | Doing
| Computer Vision (CV) | Targets Detection | [FasterRCNN](https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official/cv/faster_rcnn/src/FasterRcnn) | Supported | Doing | Doing
| Computer Vision (CV) | Semantic Segmentation | [DeeplabV3](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [BERT](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/bert/src/bert_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [Transformer](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/lstm/src/lstm.py) | Doing | Supported | Supported
| Natural Language Processing (NLP) | Natural Language Understanding | [MASS](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/mass/src/transformer) | Supported | Doing | Doing
| Recommender | Recommender System, CTR prediction | [DeepFM](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Doing | Doing
| Recommender | Recommender System, Search ranking | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py) | Supported | Doing | Doing
| Graph Neural Networks(GNN)| Text Classification | [GCN](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/gnn/gcn/src/gcn.py) | Supported | Doing | Doing
| Graph Neural Networks(GNN)| Text Classification | [GAT](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/gnn/gat/src/gat.py) | Supported | Doing | Doing
## Pre-trained Models
*It refers to the released MindSpore version. The hardware platforms that support model training are CPU, GPU and Ascend. As shown in the table below, ✓ indicates that the pre-trained model run on the selected platform.
Domain | Sub Domain| Network | CPU | GPU | Ascend | 0.5.0-beta*
|:------ |:------ | :------- |:------ |:------ |:----- |:-----
|Computer Vision (CV) | Image Classification| [AlexNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/alexnet/src/alexnet.py) | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/alexnet/alexnet_ascend_beta0.5_cifar10_official_classification_20200716.tar.gz)
|Computer Vision (CV) | Image Classification| [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/lenet.py)| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/lenet/lenet_ascend_beta0.5_cifar10_official_classification_20200716.tar.gz)
|Computer Vision (CV) | Image Classification| [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/vgg16/src/vgg.py)| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/vgg/vgg16_ascend_beta0.5_cifar10_official_classification_20200715.tar.gz)
|Computer Vision (CV) | Image Classification| [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | | | ✓ |[Download](http://download.mindspore.cn/model_zoo/official/cv/resnet/resnet50_v1.5_ascend_alpha0.3_cifar10_official_classification_20200718.tar.gz)
|Computer Vision (CV) | Targets Detection| [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53/src/yolo.py) | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/yolo/yolov3_darknet53_ascend_beta0.5_coco2014_official_object_detection_20200717.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [BERT_Base](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_base_ascend_beta0.5_cn-wiki_official_nlp_20200720.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [BERT_NEZHA](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py)| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_nezha_ascend_beta0.5_cn-wiki_official_nlp_20200720.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py)| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/transformer/transformer_ascend_beta0.5_wmtende_official_machine_translation_20200713.tar.gz)
|Computer Vision (CV) | Image Classification| [AlexNet](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/alexnet/src/alexnet.py) | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/alexnet/alexnet_ascend_beta0.5_cifar10_official_classification_20200716.tar.gz)
|Computer Vision (CV) | Image Classification| [LeNet](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/lenet/src/lenet.py)| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/lenet/lenet_ascend_beta0.5_cifar10_official_classification_20200716.tar.gz)
|Computer Vision (CV) | Image Classification| [VGG16](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/vgg16/src/vgg.py)| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/vgg/vgg16_ascend_beta0.5_cifar10_official_classification_20200715.tar.gz)
|Computer Vision (CV) | Image Classification| [ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnet/src/resnet.py) | | | ✓ |[Download](http://download.mindspore.cn/model_zoo/official/cv/resnet/resnet50_v1.5_ascend_alpha0.3_cifar10_official_classification_20200718.tar.gz)
|Computer Vision (CV) | Targets Detection| [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official/cv/yolov3_darknet53/src/yolo.py) | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/yolo/yolov3_darknet53_ascend_beta0.5_coco2014_official_object_detection_20200717.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [BERT_Base](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/bert/src/bert_model.py) | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_base_ascend_beta0.5_cn-wiki_official_nlp_20200720.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [BERT_NEZHA](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/bert/src/bert_model.py)| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_nezha_ascend_beta0.5_cn-wiki_official_nlp_20200720.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [Transformer](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/transformer/src/transformer_model.py)| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/transformer/transformer_ascend_beta0.5_wmtende_official_machine_translation_20200713.tar.gz)
此差异已折叠。
......@@ -14,7 +14,7 @@ MindSpore's top priority plans in the year are displayed as follows. We will con
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/roadmap.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_en/roadmap.md" target="_blank"><img src="./_static/logo_source.png"></a>
In general, we will make continuous improvements in the following aspects:
1. Support more preset models.
......
......@@ -8,7 +8,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/architecture.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_zh_cn/architecture.md" target="_blank"><img src="./_static/logo_source.png"></a>
MindSpore框架架构总体分为MindSpore前端表示层、MindSpore计算图引擎和MindSpore后端运行时三层。
......
# 基准性能
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/benchmark.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_zh_cn/benchmark.md" target="_blank"><img src="./_static/logo_source.png"></a>
本文介绍MindSpore的基准性能。MindSpore网络定义可参考[Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)
本文介绍MindSpore的基准性能。MindSpore网络定义可参考[Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo)
## 训练性能
......
......@@ -9,7 +9,7 @@
- [MindSpore扩展数据类型](#mindspore扩展数据类型)
- [表达式类型](#表达式类型)
- [语句类型](#语句类型)
- [系统函数](#系统函数)
- [系统函数/系统类](#系统函数系统类)
- [函数参数](#函数参数)
- [操作符](#操作符)
- [索引操作](#索引操作)
......@@ -23,7 +23,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/constraints_on_network_construction.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_zh_cn/constraints_on_network_construction.md" target="_blank"><img src="./_static/logo_source.png"></a>
## 概述
MindSpore完成从用户源码到计算图的编译,用户源码基于Python语法编写,当前MindSpore支持将普通函数或者继承自nn.Cell的实例转换生成计算图,暂不支持将任意Python源码转换成计算图,所以对于用户源码支持的写法有所限制,主要包括语法约束和网络定义约束两方面。随着MindSpore的演进,这些约束可能会发生变化。
......@@ -150,8 +150,8 @@
## 网络定义约束
### 整网实例类型
*[@ms_function](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.html#mindspore.ms_function)装饰器的普通Python函数。
* 继承自[nn.Cell](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell)的Cell子类。
*[@ms_function](https://www.mindspore.cn/api/zh-CN/r0.6/api/python/mindspore/mindspore.html#mindspore.ms_function)装饰器的普通Python函数。
* 继承自[nn.Cell](https://www.mindspore.cn/api/zh-CN/r0.6/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell)的Cell子类。
### 网络输入类型
* 整网的训练数据输入参数只能是Tensor类型。
......@@ -164,13 +164,13 @@
| 类别 | 内容
| :----------- |:--------
| `Cell`实例 |[mindspore/nn/*](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.nn.html)、自定义[Cell](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell)
| `Cell`实例 |[mindspore/nn/*](https://www.mindspore.cn/api/zh-CN/r0.6/api/python/mindspore/mindspore.nn.html)、自定义[Cell](https://www.mindspore.cn/api/zh-CN/r0.6/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell)
| `Cell`实例的成员函数 | Cell的construct中可以调用其他类成员函数。
| 函数 | 自定义Python函数、前文中列举的系统函数。
| dataclass实例 | 使用@dataclass装饰的类。
| Primitive算子 |[mindspore/ops/operations/*](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html)
| Composite算子 |[mindspore/ops/composite/*](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.composite.html)
| constexpr生成算子 |使用[@constexpr](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.html#mindspore.ops.constexpr)生成的值计算算子。
| Primitive算子 |[mindspore/ops/operations/*](https://www.mindspore.cn/api/zh-CN/r0.6/api/python/mindspore/mindspore.ops.operations.html)
| Composite算子 |[mindspore/ops/composite/*](https://www.mindspore.cn/api/zh-CN/r0.6/api/python/mindspore/mindspore.ops.composite.html)
| constexpr生成算子 |使用[@constexpr](https://www.mindspore.cn/api/zh-CN/r0.6/api/python/mindspore/mindspore.ops.html#mindspore.ops.constexpr)生成的值计算算子。
### 其他约束
......
......@@ -13,7 +13,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/design/mindinsight/graph_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_zh_cn/design/mindinsight/graph_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## 特性背景
......@@ -69,4 +69,4 @@ RESTful API接口是MindInsight前后端进行数据交互的接口。
#### 文件接口设计
MindSpore与MindInsight之间的数据交互,采用[protobuf](https://developers.google.cn/protocol-buffers/docs/pythontutorial?hl=zh-cn)定义数据格式。
[summary.proto文件](https://gitee.com/mindspore/mindinsight/blob/master/mindinsight/datavisual/proto_files/mindinsight_summary.proto)为总入口,计算图的消息对象定义为 `GraphProto``GraphProto`的详细定义可以参考[anf_ir.proto文件](https://gitee.com/mindspore/mindinsight/blob/master/mindinsight/datavisual/proto_files/mindinsight_anf_ir.proto)
[summary.proto文件](https://gitee.com/mindspore/mindinsight/blob/r0.6/mindinsight/datavisual/proto_files/mindinsight_summary.proto)为总入口,计算图的消息对象定义为 `GraphProto``GraphProto`的详细定义可以参考[anf_ir.proto文件](https://gitee.com/mindspore/mindinsight/blob/r0.6/mindinsight/datavisual/proto_files/mindinsight_anf_ir.proto)
......@@ -12,7 +12,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/design/mindinsight/tensor_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_zh_cn/design/mindinsight/tensor_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## 特性背景
......@@ -53,7 +53,7 @@ Tensor可视支持1-N维的Tensor以表格或直方图的形式展示,对于0
### 接口设计
在张量可视中,主要有文件接口和RESTful API接口,其中文件接口为[summary.proto](https://gitee.com/mindspore/mindspore/blob/master/mindspore/ccsrc/utils/summary.proto)文件,是MindInsight和MindSpore进行数据对接的接口。 RESTful API接口是MindInsight前后端进行数据交互的接口,是内部接口。
在张量可视中,主要有文件接口和RESTful API接口,其中文件接口为[summary.proto](https://gitee.com/mindspore/mindspore/blob/r0.6/mindspore/ccsrc/utils/summary.proto)文件,是MindInsight和MindSpore进行数据对接的接口。 RESTful API接口是MindInsight前后端进行数据交互的接口,是内部接口。
#### 文件接口设计
......@@ -98,4 +98,4 @@ Tensor可视支持1-N维的Tensor以表格或直方图的形式展示,对于0
repeated Value value = 1;
}
```
而TensorProto的定义在[anf_ir.proto](https://gitee.com/mindspore/mindspore/blob/master/mindspore/ccsrc/utils/anf_ir.proto)文件中。
\ No newline at end of file
而TensorProto的定义在[anf_ir.proto](https://gitee.com/mindspore/mindspore/blob/r0.6/mindspore/ccsrc/utils/anf_ir.proto)文件中。
\ No newline at end of file
......@@ -20,7 +20,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/design/mindinsight/training_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_zh_cn/design/mindinsight/training_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
[MindInsight](https://gitee.com/mindspore/mindinsight)是MindSpore的可视化调试调优组件。通过MindInsight可以完成训练可视、性能调优、精度调优等任务。
......@@ -42,11 +42,11 @@
训练信息收集API包括:
- 基于summary算子的训练信息收集API。这部分API主要包括4个summary算子,即用于记录标量数据的ScalarSummary算子,用于记录图片数据的ImageSummary算子,用于记录参数分布图(直方图)数据的HistogramSummary算子和用于记录张量数据的TensorSummary算子。请访问[算子支持列表](https://www.mindspore.cn/docs/zh-CN/master/operator_list.html)以获取关于这些算子的信息。
- 基于summary算子的训练信息收集API。这部分API主要包括4个summary算子,即用于记录标量数据的ScalarSummary算子,用于记录图片数据的ImageSummary算子,用于记录参数分布图(直方图)数据的HistogramSummary算子和用于记录张量数据的TensorSummary算子。请访问[算子支持列表](https://www.mindspore.cn/docs/zh-CN/r0.6/operator_list.html)以获取关于这些算子的信息。
- 基于Python API的训练信息收集API。通过[SummaryRecord.add_value](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.train.html#mindspore.train.summary.SummaryRecord.add_value)方法,可以在Python代码中完成训练信息的收集。
- 基于Python API的训练信息收集API。通过[SummaryRecord.add_value](https://www.mindspore.cn/api/zh-CN/r0.6/api/python/mindspore/mindspore.train.html#mindspore.train.summary.SummaryRecord.add_value)方法,可以在Python代码中完成训练信息的收集。
- 易用的训练信息收集callback。通过[SummaryCollector](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.train.html#mindspore.train.callback.SummaryCollector)这一callback可以方便地收集常用训练信息到训练日志中。
- 易用的训练信息收集callback。通过[SummaryCollector](https://www.mindspore.cn/api/zh-CN/r0.6/api/python/mindspore/mindspore.train.html#mindspore.train.callback.SummaryCollector)这一callback可以方便地收集常用训练信息到训练日志中。
训练信息持久化模块主要包括用于管理缓存的summary_record模块和用于并行处理数据、写入文件的write_pool模块。训练信息持久化后,存储在训练日志文件(summary文件中)。
......
......@@ -14,7 +14,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/design/mindspore/distributed_training_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_zh_cn/design/mindspore/distributed_training_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## 背景
......@@ -63,12 +63,12 @@
1. 集合通信
- [management.py](https://gitee.com/mindspore/mindspore/blob/master/mindspore/communication/management.py): 这个文件中涵盖了集合通信过程中常用的`helper`函数接口,例如获取集群数量和卡的序号等。当在Ascend芯片上执行时,框架会加载环境上的`libhccl.so`库文件,通过它来完成从Python层到底层的通信接口调用。
- [comm_ops.py](https://gitee.com/mindspore/mindspore/blob/master/mindspore/ops/operations/comm_ops.py): MindSpore将支持的集合通信操作都包装为算子的形式放在这个文件下,包括`AllReduce`、`AllGather`、`ReduceScatter`和`Broadcast`等。`PrimitiveWithInfer`中除了定义算子所需属性外,还包括构图过程中输入到输出的`shape`和`dtype`推导。
- [management.py](https://gitee.com/mindspore/mindspore/blob/r0.6/mindspore/communication/management.py): 这个文件中涵盖了集合通信过程中常用的`helper`函数接口,例如获取集群数量和卡的序号等。当在Ascend芯片上执行时,框架会加载环境上的`libhccl.so`库文件,通过它来完成从Python层到底层的通信接口调用。
- [comm_ops.py](https://gitee.com/mindspore/mindspore/blob/r0.6/mindspore/ops/operations/comm_ops.py): MindSpore将支持的集合通信操作都包装为算子的形式放在这个文件下,包括`AllReduce`、`AllGather`、`ReduceScatter`和`Broadcast`等。`PrimitiveWithInfer`中除了定义算子所需属性外,还包括构图过程中输入到输出的`shape`和`dtype`推导。
2. 梯度聚合
- [grad_reducer.py](https://gitee.com/mindspore/mindspore/blob/master/mindspore/nn/wrap/grad_reducer.py): 这个文件实现了梯度聚合的过程。对入参`grads`用`HyperMap`展开后插入`AllReduce`算子,这里采用的是全局通信组,用户也可以根据自己网络的需求仿照这个模块进行自定义开发。MindSpore中单机和分布式执行共用一套网络封装接口,在`Cell`内部通过`ParallelMode`来区分是否要对梯度做聚合操作,网络封装接口建议参考`TrainOneStepCell`代码实现。
- [grad_reducer.py](https://gitee.com/mindspore/mindspore/blob/r0.6/mindspore/nn/wrap/grad_reducer.py): 这个文件实现了梯度聚合的过程。对入参`grads`用`HyperMap`展开后插入`AllReduce`算子,这里采用的是全局通信组,用户也可以根据自己网络的需求仿照这个模块进行自定义开发。MindSpore中单机和分布式执行共用一套网络封装接口,在`Cell`内部通过`ParallelMode`来区分是否要对梯度做聚合操作,网络封装接口建议参考`TrainOneStepCell`代码实现。
## 其他并行
......
......@@ -6,7 +6,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/glossary.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_zh_cn/glossary.md" target="_blank"><img src="./_static/logo_source.png"></a>
| 术语/缩略语 | 说明 |
| ----- | ----- |
......
# 网络支持
<a href="https://gitee.com/mindspore/docs/tree/master/docs/source_zh_cn/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/tree/r0.6/docs/source_zh_cn/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
## Model Zoo
| 领域 | 子领域 | 网络 | Ascend | GPU | CPU
|:---- |:------- |:---- |:---- |:---- |:----
|计算机视觉(CV) | 图像分类(Image Classification) | [AlexNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/alexnet/src/alexnet.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/googlenet/src/googlenet.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/lenet.py) | Supported | Supported | Supported
| 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNext50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnext50/src/image_classification.py) | Supported |Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/vgg16/src/vgg.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)<br>目标检测(Image Classification)<br>语义分割(Semantic Tegmentation) | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)<br>目标检测(Image Classification)<br>语义分割(Semantic Tegmentation) | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
|计算机视觉(CV) | 目标检测(Targets Detection) | [SSD](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/ssd/src/ssd.py) | Supported |Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [YoloV3-ResNet18](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/yolov3_resnet18/src/yolov3.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [FasterRCNN](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/faster_rcnn/src/FasterRcnn) | Supported | Doing | Doing
| 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [DeeplabV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [BERT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/lstm/src/lstm.py) | Doing | Supported | Supported
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [MASS](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/mass/src/transformer) | Supported | Doing | Doing
| 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Doing | Doing
| 推荐(Recommender) | 推荐系统、搜索、排序(Recommender System, Search ranking) | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py) | Supported | Doing | Doing
| 图神经网络(GNN) | 文本分类(Text Classification) | [GCN](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/gnn/gcn/src/gcn.py) | Supported | Doing | Doing
| 图神经网络(GNN) | 文本分类(Text Classification) | [GAT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/gnn/gat/src/gat.py) | Supported | Doing | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [AlexNet](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/alexnet/src/alexnet.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/googlenet/src/googlenet.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [LeNet](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/lenet/src/lenet.py) | Supported | Supported | Supported
| 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNext50](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnext50/src/image_classification.py) | Supported |Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [VGG16](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/vgg16/src/vgg.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)<br>目标检测(Image Classification)<br>语义分割(Semantic Tegmentation) | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)<br>目标检测(Image Classification)<br>语义分割(Semantic Tegmentation) | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
|计算机视觉(CV) | 目标检测(Targets Detection) | [SSD](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/ssd/src/ssd.py) | Supported |Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [YoloV3-ResNet18](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/yolov3_resnet18/src/yolov3.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [FasterRCNN](https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official/cv/faster_rcnn/src/FasterRcnn) | Supported | Doing | Doing
| 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [DeeplabV3](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [BERT](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/bert/src/bert_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [Transformer](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/lstm/src/lstm.py) | Doing | Supported | Supported
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [MASS](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/mass/src/transformer) | Supported | Doing | Doing
| 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DeepFM](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Doing | Doing
| 推荐(Recommender) | 推荐系统、搜索、排序(Recommender System, Search ranking) | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py) | Supported | Doing | Doing
| 图神经网络(GNN) | 文本分类(Text Classification) | [GCN](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/gnn/gcn/src/gcn.py) | Supported | Doing | Doing
| 图神经网络(GNN) | 文本分类(Text Classification) | [GAT](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/gnn/gat/src/gat.py) | Supported | Doing | Doing
## 预训练模型
*代表MindSpore已发布的版本号,支持网络训练的硬件平台有CPU、GPU和Ascend,以下表格中 ✓ 代表模型是基于选中的硬件平台训练而来。
| 领域 | 子领域 | 网络 | CPU | GPU | Ascend | 0.5.0-beta*
|:---- |:----- |:---- |:---- |:---- |:---- |:------
|计算机视觉(CV) | 图像分类(Image Classification) | [AlexNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/alexnet/src/alexnet.py) | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/alexnet/alexnet_ascend_beta0.5_cifar10_official_classification_20200716.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification)| [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/lenet.py)| | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/lenet/lenet_ascend_beta0.5_cifar10_official_classification_20200716.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification)| [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/vgg16/src/vgg.py)| | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/vgg/vgg16_ascend_beta0.5_cifar10_official_classification_20200715.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification)| [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | | | ✓ |[下载](http://download.mindspore.cn/model_zoo/official/cv/resnet/resnet50_v1.5_ascend_alpha0.3_cifar10_official_classification_20200718.tar.gz)
|计算机视觉(CV) | 目标检测(Targets Detection)| [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53) | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/yolo/yolov3_darknet53_ascend_beta0.5_coco2014_official_object_detection_20200717.tar.gz)
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding)| [BERT_Base](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_base_ascend_beta0.5_cn-wiki_official_nlp_20200720.tar.gz)
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding)| [BERT_NEZHA](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py)| | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_nezha_ascend_beta0.5_cn-wiki_official_nlp_20200720.tar.gz)
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding)| [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py)| | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/nlp/transformer/transformer_ascend_beta0.5_wmtende_official_machine_translation_20200713.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification) | [AlexNet](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/alexnet/src/alexnet.py) | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/alexnet/alexnet_ascend_beta0.5_cifar10_official_classification_20200716.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification)| [LeNet](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/lenet/src/lenet.py)| | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/lenet/lenet_ascend_beta0.5_cifar10_official_classification_20200716.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification)| [VGG16](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/vgg16/src/vgg.py)| | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/vgg/vgg16_ascend_beta0.5_cifar10_official_classification_20200715.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification)| [ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnet/src/resnet.py) | | | ✓ |[下载](http://download.mindspore.cn/model_zoo/official/cv/resnet/resnet50_v1.5_ascend_alpha0.3_cifar10_official_classification_20200718.tar.gz)
|计算机视觉(CV) | 目标检测(Targets Detection)| [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official/cv/yolov3_darknet53) | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/yolo/yolov3_darknet53_ascend_beta0.5_coco2014_official_object_detection_20200717.tar.gz)
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding)| [BERT_Base](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/bert/src/bert_model.py) | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_base_ascend_beta0.5_cn-wiki_official_nlp_20200720.tar.gz)
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding)| [BERT_NEZHA](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/bert/src/bert_model.py)| | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_nezha_ascend_beta0.5_cn-wiki_official_nlp_20200720.tar.gz)
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding)| [Transformer](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/transformer/src/transformer_model.py)| | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/nlp/transformer/transformer_ascend_beta0.5_wmtende_official_machine_translation_20200713.tar.gz)
此差异已折叠。
......@@ -23,7 +23,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/roadmap.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/docs/source_zh_cn/roadmap.md" target="_blank"><img src="./_static/logo_source.png"></a>
## 预置模型
* CV:目标检测、GAN、图像分割、姿态识别等场景经典模型。
......
......@@ -21,7 +21,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindSpore master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindSpore 0.6.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.6/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- GCC 7.3.0可以直接通过apt命令安装。
- 在联网状态下,安装whl包时会自动下载`requirements.txt`中的依赖项,其余情况需自行安装。
......@@ -62,7 +62,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.6
```
2. 在源码根目录下执行如下命令编译MindSpore。
......@@ -97,7 +97,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---------------------- | :------------------ | :----------------------------------------------------------- | :----------------------- |
| MindArmour master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master<br> - 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/master/setup.py) | 与可执行文件安装依赖相同 |
| MindArmour 0.6.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.6.0-beta<br> - 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.6/setup.py) | 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`setup.py`中的依赖项,其余情况需自行安装。
......@@ -122,7 +122,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindarmour.git
git clone https://gitee.com/mindspore/mindarmour.git -b r0.6
```
2. 在源码根目录下,执行如下命令编译并安装MindArmour。
......
......@@ -21,7 +21,7 @@ This document describes how to quickly install MindSpore in a Ubuntu system with
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindSpore master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> same as the executable file installation dependencies. |
| MindSpore 0.6.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.6/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> same as the executable file installation dependencies. |
- GCC 7.3.0 can be installed by using apt command.
- When the network is connected, dependency items in the `requirements.txt` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......@@ -62,7 +62,7 @@ This document describes how to quickly install MindSpore in a Ubuntu system with
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.6
```
2. Run the following command in the root directory of the source code to compile MindSpore:
......@@ -97,7 +97,7 @@ If you need to conduct AI model security research or enhance the security of the
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindArmour master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/master/setup.py). | Same as the executable file installation dependencies. |
| MindArmour 0.6.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.6.0-beta <br> - For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.6/setup.py). | Same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `setup.py` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......@@ -122,7 +122,7 @@ If you need to conduct AI model security research or enhance the security of the
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindarmour.git
git clone https://gitee.com/mindspore/mindarmour.git -b r0.6
```
2. Run the following command in the root directory of the source code to compile and install MindArmour:
......
......@@ -20,7 +20,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindSpore master | Windows 10 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [MinGW-W64 GCC-7.3.0](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z) x86_64-posix-seh <br> - [ActivePerl](http://downloads.activestate.com/ActivePerl/releases/5.24.3.2404/ActivePerl-5.24.3.2404-MSWin32-x64-404865.exe) 5.24.3.2404 <br> - [CMake](https://cmake.org/download/) 3.14.1 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindSpore 0.6.0-beta | Windows 10 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.6/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [MinGW-W64 GCC-7.3.0](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z) x86_64-posix-seh <br> - [ActivePerl](http://downloads.activestate.com/ActivePerl/releases/5.24.3.2404/ActivePerl-5.24.3.2404-MSWin32-x64-404865.exe) 5.24.3.2404 <br> - [CMake](https://cmake.org/download/) 3.14.1 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`requirements.txt`中的依赖项,其余情况需自行安装。
......@@ -62,7 +62,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.6
```
2. 在源码根目录下执行如下命令编译MindSpore。
......
......@@ -20,7 +20,7 @@ This document describes how to quickly install MindSpore in a Windows system wit
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindSpore master | Windows 10 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [MinGW-W64 GCC-7.3.0](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z) x86_64-posix-seh <br> - [ActivePerl](http://downloads.activestate.com/ActivePerl/releases/5.24.3.2404/ActivePerl-5.24.3.2404-MSWin32-x64-404865.exe) 5.24.3.2404 <br> - [CMake](https://cmake.org/download/) 3.14.1 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
| MindSpore 0.6.0-beta | Windows 10 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.6/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [MinGW-W64 GCC-7.3.0](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z) x86_64-posix-seh <br> - [ActivePerl](http://downloads.activestate.com/ActivePerl/releases/5.24.3.2404/ActivePerl-5.24.3.2404-MSWin32-x64-404865.exe) 5.24.3.2404 <br> - [CMake](https://cmake.org/download/) 3.14.1 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `requirements.txt` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......@@ -62,7 +62,7 @@ This document describes how to quickly install MindSpore in a Windows system wit
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.6
```
2. Run the following command in the root directory of the source code to compile MindSpore:
......
......@@ -32,7 +32,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindSpore master | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI处理器配套软件包(对应版本[Atlas Data Center Solution V100R020C00RC1](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251638361)<br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI处理器配套软件包(对应版本[Atlas Data Center Solution V100R020C00RC1](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251638361)<br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindSpore 0.6.0-beta | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI处理器配套软件包(对应版本[Atlas Data Center Solution V100R020C00RC1](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251638361)<br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.6/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI处理器配套软件包(对应版本[Atlas Data Center Solution V100R020C00RC1](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251638361)<br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- 确认当前用户有权限访问Ascend 910 AI处理器配套软件包(对应版本[Atlas Data Center Solution V100R020C00RC1](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251638361))的安装路径`/usr/local/Ascend`,若无权限,需要root用户将当前用户添加到`/usr/local/Ascend`所在的用户组,具体配置请详见配套软件包的说明文档。
- GCC 7.3.0可以直接通过apt命令安装。
......@@ -81,7 +81,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.6
```
2. 在源码根目录下,执行如下命令编译MindSpore。
......@@ -180,7 +180,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindInsight master | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindinsight/blob/master/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindInsight 0.6.0-beta | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.6.0-beta <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindinsight/blob/r0.6/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`requirements.txt`中的依赖项,其余情况需自行安装。
......@@ -205,7 +205,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindinsight.git
git clone https://gitee.com/mindspore/mindinsight.git -b r0.6
```
> **不能**直接在仓库主页下载zip包获取源码。
......@@ -245,7 +245,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindArmour master | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/master/setup.py) | 与可执行文件安装依赖相同 |
| MindArmour 0.6.0-beta | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.6.0-beta <br> - 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.6/setup.py) | 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`setup.py`中的依赖项,其余情况需自行安装。
......@@ -270,7 +270,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindarmour.git
git clone https://gitee.com/mindspore/mindarmour.git -b r0.6
```
2. 在源码根目录下,执行如下命令编译并安装MindArmour。
......
......@@ -32,7 +32,7 @@ This document describes how to quickly install MindSpore in an Ascend AI process
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindSpore master | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI processor software package(Version:[Atlas Data Center Solution V100R020C00RC1](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251638361)) <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI processor software package(Version:[Atlas Data Center Solution V100R020C00RC1](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251638361)) <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
| MindSpore 0.6.0-beta | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI processor software package(Version:[Atlas Data Center Solution V100R020C00RC1](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251638361)) <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.6/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI processor software package(Version:[Atlas Data Center Solution V100R020C00RC1](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251638361)) <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
- Confirm that the current user has the right to access the installation path `/usr/local/Ascend `of Ascend 910 AI processor software package(Version:[Atlas Data Center Solution V100R020C00RC1](https://support.huawei.com/enterprise/zh/ascend-computing/atlas-data-center-solution-pid-251167910/software/251638361)). If not, the root user needs to add the current user to the user group where `/usr/local/Ascend` is located. For the specific configuration, please refer to the software package instruction document.
- GCC 7.3.0 can be installed by using apt command.
......@@ -81,7 +81,7 @@ The compilation and installation must be performed on the Ascend 910 AI processo
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.6
```
2. Run the following command in the root directory of the source code to compile MindSpore:
......@@ -180,7 +180,7 @@ If you need to analyze information such as model scalars, graphs, and model trac
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindInsight master | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindinsight/blob/master/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
| MindInsight 0.6.0-beta | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.6.0-beta <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindinsight/blob/r0.6/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `requirements.txt` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......@@ -205,7 +205,7 @@ If you need to analyze information such as model scalars, graphs, and model trac
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindinsight.git
git clone https://gitee.com/mindspore/mindinsight.git -b r0.6
```
> You are **not** supposed to obtain the source code from the zip package downloaded from the repository homepage.
......@@ -247,7 +247,7 @@ If you need to conduct AI model security research or enhance the security of the
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindArmour master | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/master/setup.py). | Same as the executable file installation dependencies. |
| MindArmour 0.6.0-beta | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.6.0-beta <br> - For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.6/setup.py). | Same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `setup.py` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......@@ -272,7 +272,7 @@ If you need to conduct AI model security research or enhance the security of the
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindarmour.git
git clone https://gitee.com/mindspore/mindarmour.git -b r0.6
```
2. Run the following command in the root directory of the source code to compile and install MindArmour:
......
......@@ -28,7 +28,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindSpore master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> - [OpenMPI](https://www.open-mpi.org/faq/?category=building#easy-build) 3.1.5 (可选,单机多卡/多机多卡训练需要) <br> - [NCCL](https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#debian) 2.4.8-1 (可选,单机多卡/多机多卡训练需要) <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [Autoconf](https://www.gnu.org/software/autoconf) >= 2.69 <br> - [Libtool](https://www.gnu.org/software/libtool) >= 2.4.6-29.fc30 <br> - [Automake](https://www.gnu.org/software/automake) >= 1.15.1 <br> - [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindSpore 0.6.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> - [OpenMPI](https://www.open-mpi.org/faq/?category=building#easy-build) 3.1.5 (可选,单机多卡/多机多卡训练需要) <br> - [NCCL](https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#debian) 2.4.8-1 (可选,单机多卡/多机多卡训练需要) <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.6/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [Autoconf](https://www.gnu.org/software/autoconf) >= 2.69 <br> - [Libtool](https://www.gnu.org/software/libtool) >= 2.4.6-29.fc30 <br> - [Automake](https://www.gnu.org/software/automake) >= 1.15.1 <br> - [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`requirements.txt`中的依赖项,其余情况需自行安装。
- 为了方便用户使用,MindSpore降低了对Autoconf、Libtool、Automake版本的依赖,可以使用系统自带版本。
......@@ -63,7 +63,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.6
```
2. 在源码根目录下执行如下命令编译MindSpore。
......@@ -123,7 +123,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindInsight master | - Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindinsight/blob/master/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindInsight 0.6.0-beta | - Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.6.0-beta <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindinsight/blob/r0.6/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`requirements.txt`中的依赖项,其余情况需自行安装。
......@@ -148,7 +148,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindinsight.git
git clone https://gitee.com/mindspore/mindinsight.git -b r0.6
```
> **不能**直接在仓库主页下载zip包获取源码。
......@@ -188,7 +188,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---------------------- | :------------------ | :----------------------------------------------------------- | :----------------------- |
| MindArmour master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/master/setup.py) | 与可执行文件安装依赖相同 |
| MindArmour master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.6.0-beta <br> - 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.6/setup.py) | 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`setup.py`中的依赖项,其余情况需自行安装。
......@@ -213,7 +213,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindarmour.git
git clone https://gitee.com/mindspore/mindarmour.git -b r0.6
```
2. 在源码根目录下,执行如下命令编译并安装MindArmour。
......
......@@ -28,7 +28,7 @@ This document describes how to quickly install MindSpore in a NVIDIA GPU environ
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindSpore master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> - [OpenMPI](https://www.open-mpi.org/faq/?category=building#easy-build) 3.1.5 (optional, required for single-node/multi-GPU and multi-node/multi-GPU training) <br> - [NCCL](https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#debian) 2.4.8-1 (optional, required for single-node/multi-GPU and multi-node/multi-GPU training) <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [Autoconf](https://www.gnu.org/software/autoconf) >= 2.69 <br> - [Libtool](https://www.gnu.org/software/libtool) >= 2.4.6-29.fc30 <br> - [Automake](https://www.gnu.org/software/automake) >= 1.15.1 <br> - [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
| MindSpore 0.6.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> - [OpenMPI](https://www.open-mpi.org/faq/?category=building#easy-build) 3.1.5 (optional, required for single-node/multi-GPU and multi-node/multi-GPU training) <br> - [NCCL](https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#debian) 2.4.8-1 (optional, required for single-node/multi-GPU and multi-node/multi-GPU training) <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.6/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [Autoconf](https://www.gnu.org/software/autoconf) >= 2.69 <br> - [Libtool](https://www.gnu.org/software/libtool) >= 2.4.6-29.fc30 <br> - [Automake](https://www.gnu.org/software/automake) >= 1.15.1 <br> - [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `requirements.txt` file are automatically downloaded during `.whl` package installation. In other cases, you need to manually install dependency items.
- MindSpore reduces dependency on Autoconf, Libtool, Automake versions for the convenience of users, default versions of these tools built in their systems are now supported.
......@@ -63,7 +63,7 @@ This document describes how to quickly install MindSpore in a NVIDIA GPU environ
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.6
```
2. Run the following command in the root directory of the source code to compile MindSpore:
......@@ -123,7 +123,7 @@ If you need to analyze information such as model scalars, graphs, and model trac
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindInsight master | - Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindinsight/blob/master/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
| MindInsight 0.6.0-beta | - Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.6.0-beta <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindinsight/blob/r0.6/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `requirements.txt` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......@@ -148,7 +148,7 @@ If you need to analyze information such as model scalars, graphs, and model trac
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindinsight.git
git clone https://gitee.com/mindspore/mindinsight.git -b r0.6
```
> You are **not** supposed to obtain the source code from the zip package downloaded from the repository homepage.
......@@ -190,7 +190,7 @@ If you need to conduct AI model security research or enhance the security of the
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindArmour master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/master/setup.py). | Same as the executable file installation dependencies. |
| MindArmour 0.6.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.6.0-beta <br> - For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.6/setup.py). | Same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `setup.py` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......@@ -215,7 +215,7 @@ If you need to conduct AI model security research or enhance the security of the
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindarmour.git
git clone https://gitee.com/mindspore/mindarmour.git -b r0.6
```
2. Run the following command in the root directory of the source code to compile and install MindArmour:
......
......@@ -53,7 +53,7 @@
| [quick_start.ipynb](./quick_start.ipynb) | - CPU平台下从数据集到模型验证的全过程解读 <br/> - 体验教程中各功能模块的使用说明 <br/> - 数据集图形化展示 <br/> - 了解LeNet5具体结构和参数作用 <br/> - 学习使用自定义回调函数 <br/> - loss值与训练步数的变化图 <br/> - 模型精度与训练步数的变化图 <br/> - 使用模型应用到手写图片的预测与分类上
| [debugging_in_pynative_mode.ipynb](./debugging_in_pynative_mode.ipynb) | - GPU平台下从数据集获取单个数据进行单个step训练的数据变化全过程解读 <br/> - 了解PyNative模式下的调试方法 <br/> - 图片数据在训练过程中的变化情况的图形展示 <br/> - 了解构建权重梯度计算函数的方法 <br/> - 展示1个step过程中权重的变化及数据展示
| [mindinsight_model_lineage_and_data_lineage.ipynb](./mindinsight/debugging_in_pynative_mode.ipynb) | - 了解MindSpore中训练数据的采集及展示 <br/> - 学习使用SummaryRecord记录数据 <br/> - 学习使用回调函数SummaryCollector进行数据采集 <br/> - 使用MindInsight进行数据可视化 <br/> - 了解数据溯源和模型溯源的使用方法
| [calculate_and_datagraphic.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/mindinsight/calculate_and_datagraphic.ipynb) | - 了解MindSpore中新增可视化功能 <br/> - 学习使用MindInsight可视化看板<br/> - 学习使用查看计算图可视化图的信息的方法<br/> - 学习使用查看数据图中展示的信息的方法
| [data_loading_enhancement.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/data_loading_enhance/data_loading_enhancement.ipynb) | - 学习MindSpore中数据处理和增强的方法 <br/> - 展示数据处理、增强方法的实际操作 <br/> - 对比展示数据处理前和处理后的效果<br/> - 表述在数据处理、增强后的意义
| [loading_dataset.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/loading_dataset.ipynb) | - 学习MindSpore中加载数据集的方法 <br/> - 展示加载常用数据集的方法<br/> - 展示加载MindRecord格式数据集的方法<br/> - 展示加载自定义格式数据集的方法
| [nlp_application.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/nlp_application.ipynb) | - 展示MindSpore在自然语言处理的应用<br/> - 展示自然语言处理中数据集特定的预处理方法<br/> - 展示如何定义基于LSTM的SentimentNet网络
| [calculate_and_datagraphic.ipynb](https://gitee.com/mindspore/docs/blob/r0.6/tutorials/notebook/mindinsight/calculate_and_datagraphic.ipynb) | - 了解MindSpore中新增可视化功能 <br/> - 学习使用MindInsight可视化看板<br/> - 学习使用查看计算图可视化图的信息的方法<br/> - 学习使用查看数据图中展示的信息的方法
| [data_loading_enhancement.ipynb](https://gitee.com/mindspore/docs/blob/r0.6/tutorials/notebook/data_loading_enhance/data_loading_enhancement.ipynb) | - 学习MindSpore中数据处理和增强的方法 <br/> - 展示数据处理、增强方法的实际操作 <br/> - 对比展示数据处理前和处理后的效果<br/> - 表述在数据处理、增强后的意义
| [loading_dataset.ipynb](https://gitee.com/mindspore/docs/blob/r0.6/tutorials/notebook/loading_dataset.ipynb) | - 学习MindSpore中加载数据集的方法 <br/> - 展示加载常用数据集的方法<br/> - 展示加载MindRecord格式数据集的方法<br/> - 展示加载自定义格式数据集的方法
| [nlp_application.ipynb](https://gitee.com/mindspore/docs/blob/r0.6/tutorials/notebook/nlp_application.ipynb) | - 展示MindSpore在自然语言处理的应用<br/> - 展示自然语言处理中数据集特定的预处理方法<br/> - 展示如何定义基于LSTM的SentimentNet网络
......@@ -281,7 +281,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"- 本例中需要的数据位置在https://gitee.com/mindspore/docs/tree/master/tutorials/notebook/convert_dataset_to_mindspore_data_format/csv_data/data.csv\n",
"- 本例中需要的数据位置在https://gitee.com/mindspore/docs/tree/r0.6/tutorials/notebook/convert_dataset_to_mindspore_data_format/csv_data/data.csv\n",
"中,使用过程中可以在此路径下找到文件并下载,并且保存在`jupyter工作目录/dataset/`下,如图所示:"
]
},
......@@ -838,7 +838,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"3. 准备需要写入的数据,按照用户定义的Schema形式,准备需要写入的样本列表,本例中需要的数据位置在https://gitee.com/mindspore/docs/tree/master/tutorials/notebook/convert_dataset_to_mindspore_data_format/images/transform.jpg\n",
"3. 准备需要写入的数据,按照用户定义的Schema形式,准备需要写入的样本列表,本例中需要的数据位置在https://gitee.com/mindspore/docs/tree/r0.6/tutorials/notebook/convert_dataset_to_mindspore_data_format/images/transform.jpg\n",
"中,使用过程中可以在此路径下找到图片并下载,并且保存在`jupyter工作目录/dataset/`下。"
]
},
......
......@@ -18,7 +18,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"本文将使用[快速入门](https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/lenet.py)作为样例,并通过构建自定义调试函数:`Callback`、`metrics`、`Print算子`、日志打印等,同时将构建的自定义调试函数添加进代码中,通过运行效果来展示具体如何使用MindSpore提供给我们的自定义调试能力,帮助快速调试训练网络。\n",
"本文将使用[快速入门](https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/lenet.py)作为样例,并通过构建自定义调试函数:`Callback`、`metrics`、`Print算子`、日志打印等,同时将构建的自定义调试函数添加进代码中,通过运行效果来展示具体如何使用MindSpore提供给我们的自定义调试能力,帮助快速调试训练网络。\n",
"体验过程如下:\n",
"1. 数据集准备。\n",
"2. 定义深度学习网络LeNet5。\n",
......@@ -46,7 +46,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"这里我们需要将MNIST数据集中随机取出一张图片,并增强成适合LeNet网络的数据格式(如何处理请参考[quick_start.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/quick_start.ipynb)),训练数据集下载地址:{\"<http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz>\", \"<http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz>\"}。\n",
"这里我们需要将MNIST数据集中随机取出一张图片,并增强成适合LeNet网络的数据格式(如何处理请参考[quick_start.ipynb](https://gitee.com/mindspore/docs/blob/r0.6/tutorials/notebook/quick_start.ipynb)),训练数据集下载地址:{\"<http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz>\", \"<http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz>\"}。\n",
"<br/>数据集放在----`Jupyter工作目录+\\MNIST_Data\\train\\`,如下图结构:"
]
},
......@@ -303,7 +303,7 @@
"\n",
"`GLOG_logtostderr`:控制日志输出方式,设置为`1`时,日志输出到屏幕;值设置为`0`时,日志输出到文件。设置输出屏幕时,日志部分的信息会显示成红色,设置成输出到文件时,会在`GLOG_log_dir`路径下生成`mindspore.log`文件。\n",
"\n",
"> 更多设置请参考官网:<https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/customized_debugging_information.html>"
"> 更多设置请参考官网:<https://www.mindspore.cn/tutorial/zh-CN/r0.6/advanced_use/customized_debugging_information.html>"
]
},
{
......
......@@ -439,7 +439,7 @@
"source": [
"2. 使用一类图片当作数据,体验操作。在一个数据量比较大的图片数据集中,例如数据集名称叫`images`,它的存储方式是在`images`文件夹下,有不同子类别的文件夹,一个子类别文件夹中的图片属于同一类。所以我们本次体验所使用的图片放置方法,就需要创建`enhance_images`文件夹,接着在`enhance_images`下建一个名为`sample`的子类别文件夹,将图片放在`sample`文件夹中即可。如果有更多类别图片,可以在`enhance_images`下创建对应的子类别文件夹,将图片放入即可。\n",
"\n",
" 增强体验使用的数据位置在<https://gitee.com/mindspore/docs/tree/master/tutorials/notebook/data_loading_enhance/enhance_images/sample>中,使用过程中可以在此路径下找到图片数据,并参照本次体验中图片放置的位置来新建文件夹。"
" 增强体验使用的数据位置在<https://gitee.com/mindspore/docs/tree/r0.6/tutorials/notebook/data_loading_enhance/enhance_images/sample>中,使用过程中可以在此路径下找到图片数据,并参照本次体验中图片放置的位置来新建文件夹。"
]
},
{
......
......@@ -34,7 +34,7 @@
"\n",
"4. 执行神经网络训练,查看网络各参数梯度。\n",
"\n",
"> 你可以在这里找到完整可运行的样例代码:<https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/lenet.py>。"
"> 你可以在这里找到完整可运行的样例代码:<https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/lenet.py>。"
]
},
{
......@@ -55,7 +55,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"这里我们需要将MNIST数据集中随机取出一张图片,并增强成适合LeNet网络的数据格式(如何处理请参考[quick_start.ipynb](https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/quick_start.ipynb)),训练数据集下载地址:{\"<http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz>\", \"<http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz>\"} 。\n",
"这里我们需要将MNIST数据集中随机取出一张图片,并增强成适合LeNet网络的数据格式(如何处理请参考[quick_start.ipynb](https://gitee.com/mindspore/docs/blob/r0.6/tutorials/notebook/quick_start.ipynb)),训练数据集下载地址:{\"<http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz>\", \"<http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz>\"} 。\n",
"<br/>数据集放在----Jupyter工作目录+\\MNIST_Data\\train\\,如下图结构:"
]
},
......
......@@ -308,7 +308,7 @@
"\n",
"MindSpore天然支持读取MindSpore数据格式——`MindRecord`存储的数据集,在性能和特性上有更好的支持。 \n",
"\n",
"> 阅读[将数据集转换为MindSpore数据格式](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/converting_datasets.html),了解如何将数据集转换为MindSpore数据格式。\n",
"> 阅读[将数据集转换为MindSpore数据格式](https://www.mindspore.cn/tutorial/zh-CN/r0.6/use/data_preparation/converting_datasets.html),了解如何将数据集转换为MindSpore数据格式。\n",
"\n",
"可以通过`MindDataset`对象对数据集进行读取。详细方法如下所示:"
]
......@@ -407,7 +407,7 @@
"## 加载自定义数据集\n",
"\n",
"现实场景中,数据集的种类多种多样,对于自定义数据集或者目前不支持直接加载的数据集,有两种方法可以处理。\n",
"一种方法是将数据集转成MindRecord格式(请参考[将数据集转换为MindSpore数据格式](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/converting_datasets.html)章节),另一种方法是通过`GeneratorDataset`对象加载,以下将展示如何使用`GeneratorDataset`。\n",
"一种方法是将数据集转成MindRecord格式(请参考[将数据集转换为MindSpore数据格式](https://www.mindspore.cn/tutorial/zh-CN/r0.6/use/data_preparation/converting_datasets.html)章节),另一种方法是通过`GeneratorDataset`对象加载,以下将展示如何使用`GeneratorDataset`。\n",
"\n",
"1. 定义一个可迭代的对象,用于生成数据集。以下展示了两种示例,一种是含有`yield`返回值的自定义函数,另一种是含有`__getitem__`的自定义类。两种示例都将产生一个含有从0到9数字的数据集。\n",
" \n",
......
......@@ -332,7 +332,7 @@
"- 启动MindInsigh服务命令:`mindinsigh start --summary-base-dir=/path/ --port=8080`;\n",
"- 执行完服务命令后,访问给出的地址,查看MindInsigh可视化结果。\n",
"\n",
"![title](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/mindinsight_map.png)"
"![title](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/mindinsight_map.png)"
]
},
{
......@@ -346,7 +346,7 @@
"- 节点信息:显示当前所查看节点的信息,包括名称、类型、属性、输入和输出。便于在训练结束后,核对计算正确性时查看。\n",
"- 图例:图例中包括命名空间、聚合节点、虚拟节点、算子节点、常量节点,通过不同图形来区分。\n",
"\n",
"![title](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/cast_map.png)"
"![title](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/cast_map.png)"
]
},
{
......@@ -398,7 +398,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"![title](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/data_map.png)"
"![title](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/data_map.png)"
]
},
{
......
......@@ -583,17 +583,17 @@
"\n",
"在本地浏览器中打开地址:`127.0.0.1:8080`,进入到可视化面板。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/mindinsight_panel.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/mindinsight_panel.png)\n",
"\n",
"在上图所示面板中可以看到`summary_01`日志文件目录,点击**训练看板**进入到下图所示的训练数据展示面板,该面板展示了标量数据、直方图、图像和张量信息,并随着训练、测试的进行实时刷新数据,实时显示训练过程参数的变化情况。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/mindinsight_panel2.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/mindinsight_panel2.png)\n",
"\n",
"### 标量可视化\n",
"\n",
"标量可视化用于展示训练过程中标量的变化趋势情况,点击打开标量信息展示面板,该面板记录了迭代计算过程中的损失值标量信息,如下图展示了loss值标量趋势图。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/scalar_panel.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/scalar_panel.png)\n",
"\n",
"上图展示了神经网络在训练过程中loss值的变化过程。横坐标是训练步骤,纵坐标是loss值。\n",
"\n",
......@@ -605,7 +605,7 @@
"- 分步回退是指对同一个区域连续框选并放大查看时,可以逐步撤销操作。\n",
"- 还原图形是指进行了多次框选后,点击此按钮可以将图还原回原始状态。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/scalar_select.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/scalar_select.png)\n",
"\n",
"上图展示的标量可视化的功能区,提供了根据选择不同标签,水平轴的不同维度和平滑度来查看标量信息的功能。\n",
"\n",
......@@ -620,15 +620,15 @@
"\n",
"直方图用于将用户所指定的张量以直方图的形式展示。点击打开直方图展示面板,以直方图的形式记录了在迭代过程中所有层参数分布信息。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/histogram_panel.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/histogram_panel.png)\n",
"\n",
"如下图为`conv1`层参数分布信息,点击图中右上角,可以将图放大。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/histogram.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/histogram.png)\n",
"\n",
"下图为直方图功能区。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/imagesimages/histogram_func.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/imagesimages/histogram_func.png)\n",
"\n",
"上图展示直方图的功能区,包含以下内容:\n",
"\n",
......@@ -642,11 +642,11 @@
"\n",
"下图为展示`summary_01`记录的图像信息。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/image_panel.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/image_panel.png)\n",
"\n",
"通过滑动上图中的\"步骤\"滑条,查看不同步骤的图片。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/image_function.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/image_function.png)\n",
"\n",
"上图展示图像可视化的功能区,提供了选择查看不同标签,不同亮度和不同对比度来查看图片信息。\n",
"\n",
......@@ -658,7 +658,7 @@
"\n",
"张量可视化用于将张量以表格以及直方图的形式进行展示。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/tensor_func.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/tensor_func.png)\n",
"\n",
"上图展示了张量可视化的功能区,包含以下内容:\n",
"\n",
......@@ -667,7 +667,7 @@
"- 纵轴:可以选择步骤、相对时间、绝对时间中的任意一项,来作为直方图纵轴显示的数据。\n",
"- 视角:可以选择正视和俯视中的一种。正视是指从正面的角度查看直方图,此时不同步骤之间的数据会覆盖在一起。俯视是指 偏移以45度角俯视直方图区域,这时可以呈现不同步骤之间数据的差异。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/tensor.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/tensor.png)\n",
"\n",
"上图中将用户所记录的张量以表格的形式展示,包含以下功能:\n",
"\n",
......@@ -807,7 +807,7 @@
"source": [
"此时点击打开MindInsight**训练列表**看板中的`./summary_loss_only`目录,如下图所示,可以看到只记录有损失值标量信息。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/loss_scalar_only.png)"
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/loss_scalar_only.png)"
]
},
{
......@@ -900,11 +900,11 @@
"source": [
"此时点击打开MindInsight**训练列表**看板中的`./summary_histogram_only`目录。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/histogram_only.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/histogram_only.png)\n",
"\n",
"在MindInsight面板中,如上图所示,只展示了直方图信息。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/histogram_only_all.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/histogram_only_all.png)\n",
"\n",
"点击进入直方图面板,如上图所示,只展示了`conv1`层的直方图信息。"
]
......@@ -1040,7 +1040,7 @@
"source": [
"此时点击打开MindInsight**训练列表**看板中的`./summary_tensor_only`目录,如下图所示,可以看到只记录有张量信息。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/tensor_only.png)"
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/tensor_only.png)"
]
},
{
......@@ -1171,7 +1171,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/image_only.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/image_only.png)\n",
"\n",
"在MindInsight面板中,如上图所示,只展示了输入图像信息。"
]
......@@ -1186,11 +1186,11 @@
"\n",
"点击MindInsight看板中的**对比看板**,打开对比看板,可以得到多次(不同)训练搜集到的标量数据对比信息。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/multi_scalars.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/multi_scalars.png)\n",
"\n",
"上图展示了`summary_01`(上图中红色曲线)和`summary_loss_only`(上图中蓝色曲线)的标量曲线对比效果,横坐标是训练步骤,纵坐标是标量值。\n",
"\n",
"![](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/multi_scalars_select.png)\n",
"![](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/multi_scalars_select.png)\n",
"\n",
"上图展示的对比看板可视的功能区,提供了根据选择不同训练或标签,水平轴的不同维度和平滑度来进行标量对比的功能。\n",
"\n",
......
......@@ -43,7 +43,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"本次体验将使用快速入门案例作为基础用例,将MindInsight的模型溯源和数据溯源的数据记录功能加入到案例中,快速入门案例的源码请参考:<https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/lenet.py>。"
"本次体验将使用快速入门案例作为基础用例,将MindInsight的模型溯源和数据溯源的数据记录功能加入到案例中,快速入门案例的源码请参考:<https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/lenet.py>。"
]
},
{
......@@ -402,7 +402,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"初始化`SummaryCollector`,使用`collect_specified_data`控制需要记录的数据,我们这里只需要记录模型溯源和数据溯源,所以将`collect_train_lineage`和`collect_eval_lineage`参数设置成`True`,其他的参数使用`keep_default_action`设置成`False`,SummaryCollector能够记录哪些数据,请参考官网:<https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.train.html?highlight=collector#mindspore.train.callback.SummaryCollector>。"
"初始化`SummaryCollector`,使用`collect_specified_data`控制需要记录的数据,我们这里只需要记录模型溯源和数据溯源,所以将`collect_train_lineage`和`collect_eval_lineage`参数设置成`True`,其他的参数使用`keep_default_action`设置成`False`,SummaryCollector能够记录哪些数据,请参考官网:<https://www.mindspore.cn/api/zh-CN/r0.6/api/python/mindspore/mindspore.train.html?highlight=collector#mindspore.train.callback.SummaryCollector>。"
]
},
{
......@@ -452,7 +452,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"这里主要展示如何启用及关闭MindInsight,更多的命令集信息,请参考MindSpore官方网站:<https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/visualization_tutorials.html>。"
"这里主要展示如何启用及关闭MindInsight,更多的命令集信息,请参考MindSpore官方网站:<https://www.mindspore.cn/tutorial/zh-CN/r0.6/advanced_use/visualization_tutorials.html>。"
]
},
{
......@@ -488,7 +488,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"![image](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/summary_list.png)"
"![image](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/summary_list.png)"
]
},
{
......@@ -527,7 +527,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"![image](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/model_lineage_all.png)"
"![image](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/model_lineage_all.png)"
]
},
{
......@@ -581,7 +581,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"![image](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/model_lineage_cp.png)"
"![image](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/model_lineage_cp.png)"
]
},
{
......@@ -617,7 +617,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"![image](https://gitee.com/mindspore/docs/raw/master/tutorials/notebook/mindinsight/images/data_lineage.png)"
"![image](https://gitee.com/mindspore/docs/raw/r0.6/tutorials/notebook/mindinsight/images/data_lineage.png)"
]
},
{
......
......@@ -71,7 +71,7 @@
"metadata": {},
"source": [
"本次面向Ascend 910 AI处理器硬件平台,将卷积神经网络ResNet加入到案例中,你可以在这里下载完整的样例代码案例作为基础用例:\n",
"https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/resnet"
"https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/resnet"
]
},
{
......
......@@ -34,7 +34,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"说明:<br/>你可以在这里找到完整可运行的样例代码:<https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/lenet.py>。"
"说明:<br/>你可以在这里找到完整可运行的样例代码:<https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/lenet.py>。"
]
},
{
......@@ -470,7 +470,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"https://www.mindspore.cn/tutorial/zh-CN/master/_images/LeNet_5.jpg\" alt=\"LeNet5\">"
"<img src=\"https://www.mindspore.cn/tutorial/zh-CN/r0.6/_images/LeNet_5.jpg\" alt=\"LeNet5\">"
]
},
{
......
......@@ -313,7 +313,7 @@ User process:
3. Execute stage 2 training: There are two devices in stage 2 training environment. The weight shape of the MatMul operator on each device is \[4, 8]. Load the initialized model parameter data from the integrated checkpoint file and then perform training.
> For details about the distributed environment configuration and training code, see [Distributed Training](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
> For details about the distributed environment configuration and training code, see [Distributed Training](https://www.mindspore.cn/tutorial/en/r0.6/advanced_use/distributed_training.html).
>
> This document provides the example code for integrating checkpoint files and loading checkpoint files before distributed training. The code is for reference only.
......
......@@ -16,7 +16,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/computer_vision_application.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/computer_vision_application.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -36,7 +36,7 @@ def classify(image):
The key point is to select a proper model. The model generally refers to a deep convolutional neural network (CNN), such as AlexNet, VGG, GoogleNet, and ResNet.
MindSpore presets a typical CNN, developer can visit [model_zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official) to get more details.
MindSpore presets a typical CNN, developer can visit [model_zoo](https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official) to get more details.
MindSpore supports the following image classification networks: LeNet, AlexNet, and ResNet.
......@@ -59,7 +59,7 @@ Next, let's use MindSpore to solve the image classification task. The overall pr
5. Call the high-level `Model` API to train and save the model file.
6. Load the saved model for inference.
> This example is for the hardware platform of the Ascend 910 AI processor. You can find the complete executable sample code at: <https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/resnet>.
> This example is for the hardware platform of the Ascend 910 AI processor. You can find the complete executable sample code at: <https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/resnet>.
The key parts of the task process code are explained below.
......@@ -143,7 +143,7 @@ CNN is a standard algorithm for image classification tasks. CNN uses a layered s
ResNet is recommended. First, it is deep enough with 34 layers, 50 layers, or 101 layers. The deeper the hierarchy, the stronger the representation capability, and the higher the classification accuracy. Second, it is learnable. The residual structure is used. The lower layer is directly connected to the upper layer through the shortcut connection, which solves the problem of gradient disappearance caused by the network depth during the reverse propagation. In addition, the ResNet network has good performance, including the recognition accuracy, model size, and parameter quantity.
MindSpore Model Zoo has a ResNet [model](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py). The calling method is as follows:
MindSpore Model Zoo has a ResNet [model](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnet/src/resnet.py). The calling method is as follows:
```python
network = resnet50(class_num=10)
......
......@@ -15,7 +15,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/customized_debugging_information.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/customized_debugging_information.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -225,7 +225,7 @@ val:[[1 1]
When the training result deviates from the expectation on Ascend, the input and output of the operator can be dumped for debugging through Asynchronous Data Dump.
> `comm_ops` operators are not supported by Asynchronous Data Dump. `comm_ops` can be found in [Operator List](https://www.mindspore.cn/docs/en/master/operator_list.html).
> `comm_ops` operators are not supported by Asynchronous Data Dump. `comm_ops` can be found in [Operator List](https://www.mindspore.cn/docs/en/r0.6/operator_list.html).
1. Turn on the switch to save graph IR: `context.set_context(save_graphs=True)`.
2. Execute training script.
......
......@@ -14,7 +14,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/dashboard.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/dashboard.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......
......@@ -11,7 +11,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/debugging_in_pynative_mode.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/debugging_in_pynative_mode.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......
......@@ -14,7 +14,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/differential_privacy.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/differential_privacy.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -43,7 +43,7 @@ MindArmour differential privacy module Differential-Privacy implements the diffe
The LeNet model and MNIST dataset are used as an example to describe how to use the differential privacy optimizer to train a neural network model on MindSpore.
> This example is for the Ascend 910 AI processor. You can download the complete sample code from <https://gitee.com/mindspore/mindarmour/blob/master/example/mnist_demo/lenet5_dp.py>.
> This example is for the Ascend 910 AI processor. You can download the complete sample code from <https://gitee.com/mindspore/mindarmour/blob/r0.6/example/mnist_demo/lenet5_dp.py>.
## Implementation
......
......@@ -18,12 +18,12 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/distributed_training_ascend.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/distributed_training_ascend.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
This tutorial describes how to train the ResNet-50 network in data parallel and automatic parallel modes on MindSpore based on the Ascend 910 AI processor.
> Download address of the complete sample code: <https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/distributed_training/resnet50_distributed_training.py>
> Download address of the complete sample code: <https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/distributed_training/resnet50_distributed_training.py>
## Preparations
......@@ -154,7 +154,7 @@ Different from the single-node system, the multi-node system needs to transfer t
## Defining the Network
In data parallel and automatic parallel modes, the network definition method is the same as that in a single-node system. The reference code is as follows: <https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/resnet/resnet.py>
In data parallel and automatic parallel modes, the network definition method is the same as that in a single-node system. The reference code is as follows: <https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/resnet/resnet.py>
## Defining the Loss Function and Optimizer
......
......@@ -12,7 +12,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/graph_kernel_fusion.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/graph_kernel_fusion.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -98,7 +98,7 @@ context.set_context(enable_graph_kernel=True)
2. `BERT-large` training network
Take the training model of the `BERT-large` network as an example. For details about the dataset and training script, see <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/bert>. You only need to modify the `context` parameter.
Take the training model of the `BERT-large` network as an example. For details about the dataset and training script, see <https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official/nlp/bert>. You only need to modify the `context` parameter.
## Effect Evaluation
......
......@@ -10,19 +10,19 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/host_device_training.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/host_device_training.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
In deep learning, one usually has to deal with the huge model problem, in which the total size of parameters in the model is beyond the device memory capacity. To efficiently train a huge model, one solution is to employ homogenous accelerators (*e.g.*, Ascend 910 AI Accelerator and GPU) for [distributed training](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html). When the size of a model is hundreds of GBs or several TBs,
In deep learning, one usually has to deal with the huge model problem, in which the total size of parameters in the model is beyond the device memory capacity. To efficiently train a huge model, one solution is to employ homogenous accelerators (*e.g.*, Ascend 910 AI Accelerator and GPU) for [distributed training](https://www.mindspore.cn/tutorial/en/r0.6/advanced_use/distributed_training.html). When the size of a model is hundreds of GBs or several TBs,
the number of required accelerators is too overwhelming for people to access, resulting in this solution inapplicable. One alternative is Host+Device hybrid training. This solution simultaneously leveraging the huge memory in hosts and fast computation in accelerators, is a promisingly
efficient method for addressing huge model problem.
In MindSpore, users can easily implement hybrid training by configuring trainable parameters and necessary operators to run on hosts, and other operators to run on accelerators.
This tutorial introduces how to train [Wide&Deep](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/recommend/wide_and_deep) in the Host+Ascend 910 AI Accelerator mode.
This tutorial introduces how to train [Wide&Deep](https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official/recommend/wide_and_deep) in the Host+Ascend 910 AI Accelerator mode.
## Preliminaries
1. Prepare the model. The Wide&Deep code can be found at: <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/recommend/wide_and_deep>, in which `train_and_eval_auto_parallel.py` is the main function for training,
1. Prepare the model. The Wide&Deep code can be found at: <https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official/recommend/wide_and_deep>, in which `train_and_eval_auto_parallel.py` is the main function for training,
`src/` directory contains the model definition, data processing and configuration files, `script/` directory contains the launch scripts in different modes.
2. Prepare the dataset. The dataset can be found at: <https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz>. Use the script `src/preprocess_data.py` to transform dataset into MindRecord format.
......
......@@ -11,7 +11,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/lineage_and_scalars_comparision.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/lineage_and_scalars_comparision.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......
# MindInsight Commands
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/mindinsight_commands.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/mindinsight_commands.md" target="_blank"><img src="../_static/logo_source.png"></a>
<!-- TOC -->
......
......@@ -10,7 +10,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/mixed_precision.m" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/mixed_precision.m" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......
......@@ -15,7 +15,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/model_security.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/model_security.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -29,7 +29,7 @@ At the beginning of AI algorithm design, related security threats are sometimes
This section describes how to use MindArmour in adversarial attack and defense by taking the Fast Gradient Sign Method (FGSM) attack algorithm and Natural Adversarial Defense (NAD) algorithm as examples.
> The current sample is for CPU, GPU and Ascend 910 AI processor. You can find the complete executable sample code at:<https://gitee.com/mindspore/docs/tree/master/tutorials/tutorial_code/model_safety>
> The current sample is for CPU, GPU and Ascend 910 AI processor. You can find the complete executable sample code at:<https://gitee.com/mindspore/docs/tree/r0.6/tutorials/tutorial_code/model_safety>
> - `mnist_attack_fgsm.py`: contains attack code.
> - `mnist_defense_nad.py`: contains defense code.
......
......@@ -17,7 +17,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/tree/master/tutorials/source_en/advanced_use/network_migration.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/tree/r0.6/tutorials/source_en/advanced_use/network_migration.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -29,9 +29,9 @@ Before you start working on your scripts, prepare your operator assessment and h
### Operator Assessment
Analyze the operators contained in the network to be migrated and figure out how does MindSpore support these operators based on the [Operator List](https://www.mindspore.cn/docs/en/master/operator_list.html).
Analyze the operators contained in the network to be migrated and figure out how does MindSpore support these operators based on the [Operator List](https://www.mindspore.cn/docs/en/r0.6/operator_list.html).
Take ResNet-50 as an example. The two major operators [Conv](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Conv2d) and [BatchNorm](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.BatchNorm2d) exist in the MindSpore Operator List.
Take ResNet-50 as an example. The two major operators [Conv](https://www.mindspore.cn/api/en/r0.6/api/python/mindspore/mindspore.nn.html#mindspore.nn.Conv2d) and [BatchNorm](https://www.mindspore.cn/api/en/r0.6/api/python/mindspore/mindspore.nn.html#mindspore.nn.BatchNorm2d) exist in the MindSpore Operator List.
If any operator does not exist, you are advised to perform the following operations:
......@@ -57,17 +57,17 @@ Prepare the hardware environment, find a platform corresponding to your environm
MindSpore differs from TensorFlow and PyTorch in the network structure. Before migration, you need to clearly understand the original script and information of each layer, such as shape.
> You can also use [MindConverter Tool](https://gitee.com/mindspore/mindinsight/tree/master/mindinsight/mindconverter) to automatically convert the PyTorch network definition script to MindSpore network definition script.
> You can also use [MindConverter Tool](https://gitee.com/mindspore/mindinsight/tree/r0.6/mindinsight/mindconverter) to automatically convert the PyTorch network definition script to MindSpore network definition script.
The ResNet-50 network migration and training on the Ascend 910 is used as an example.
1. Import MindSpore modules.
Import the corresponding MindSpore modules based on the required APIs. For details about the module list, see <https://www.mindspore.cn/api/en/master/index.html>.
Import the corresponding MindSpore modules based on the required APIs. For details about the module list, see <https://www.mindspore.cn/api/en/r0.6/index.html>.
2. Load and preprocess a dataset.
Use MindSpore to build the required dataset. Currently, MindSpore supports common datasets. You can call APIs in the original format, `MindRecord`, and `TFRecord`. In addition, MindSpore supports data processing and data augmentation. For details, see the [Data Preparation](https://www.mindspore.cn/tutorial/en/master/use/data_preparation/data_preparation.html).
Use MindSpore to build the required dataset. Currently, MindSpore supports common datasets. You can call APIs in the original format, `MindRecord`, and `TFRecord`. In addition, MindSpore supports data processing and data augmentation. For details, see the [Data Preparation](https://www.mindspore.cn/tutorial/en/r0.6/use/data_preparation/data_preparation.html).
In this example, the CIFAR-10 dataset is loaded, which supports both single-GPU and multi-GPU scenarios.
......@@ -79,7 +79,7 @@ The ResNet-50 network migration and training on the Ascend 910 is used as an exa
num_shards=device_num, shard_id=rank_id)
```
Then, perform data augmentation, data cleaning, and batch processing. For details about the code, see <https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/dataset.py>.
Then, perform data augmentation, data cleaning, and batch processing. For details about the code, see <https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnet/src/dataset.py>.
3. Build a network.
......@@ -214,7 +214,7 @@ The ResNet-50 network migration and training on the Ascend 910 is used as an exa
6. Build the entire network.
The [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) network structure is formed by connecting multiple defined subnets. Follow the rule of defining subnets before using them and define all the subnets used in the `__init__` and connect subnets in the `construct`.
The [ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnet/src/resnet.py) network structure is formed by connecting multiple defined subnets. Follow the rule of defining subnets before using them and define all the subnets used in the `__init__` and connect subnets in the `construct`.
7. Define a loss function and an optimizer.
......@@ -235,7 +235,7 @@ The ResNet-50 network migration and training on the Ascend 910 is used as an exa
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
```
You can use a built-in assessment method of `Model` by setting the [metrics](https://www.mindspore.cn/tutorial/en/master/advanced_use/customized_debugging_information.html#mindspore-metrics) attribute.
You can use a built-in assessment method of `Model` by setting the [metrics](https://www.mindspore.cn/tutorial/en/r0.6/advanced_use/customized_debugging_information.html#mindspore-metrics) attribute.
```python
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
......@@ -264,15 +264,15 @@ The accuracy optimization process is as follows:
#### On-Cloud Integration
Run your scripts on ModelArts. For details, see [Using MindSpore on Cloud](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/use_on_the_cloud.html).
Run your scripts on ModelArts. For details, see [Using MindSpore on Cloud](https://www.mindspore.cn/tutorial/zh-CN/r0.6/advanced_use/use_on_the_cloud.html).
### Inference Phase
Models trained on the Ascend 910 AI processor can be used for inference on different hardware platforms. Refer to the [Multi-platform Inference Tutorial](https://www.mindspore.cn/tutorial/en/master/use/multi_platform_inference.html) for detailed steps.
Models trained on the Ascend 910 AI processor can be used for inference on different hardware platforms. Refer to the [Multi-platform Inference Tutorial](https://www.mindspore.cn/tutorial/en/r0.6/use/multi_platform_inference.html) for detailed steps.
## Examples
1. [Common dataset examples](https://www.mindspore.cn/tutorial/en/master/use/data_preparation/loading_the_datasets.html)
1. [Common dataset examples](https://www.mindspore.cn/tutorial/en/r0.6/use/data_preparation/loading_the_datasets.html)
2. [Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)
2. [Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo)
......@@ -13,7 +13,7 @@
- [Configuring Environment Information](#configuring-environment-information)
- [Preprocessing the Dataset](#preprocessing-the-dataset)
- [Defining the Network](#defining-the-network)
- [Pre-Traning](#pre-training)
- [Pre-Training](#pre-training)
- [Defining the Optimizer and Loss Function](#defining-the-optimizer-and-loss-function)
- [Training and Saving the Model](#training-and-saving-the-model)
- [Validating the Model](#validating-the-model)
......@@ -21,7 +21,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/nlp_application.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/nlp_application.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -86,7 +86,7 @@ Currently, MindSpore GPU and CPU supports SentimentNet network based on the long
Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used for processing and predicting an important event with a long interval and delay in a time sequence. For details, refer to online documentation.
3. After the model is obtained, use the validation dataset to check the accuracy of model.
> The current sample is for the Ascend 910 AI processor. You can find the complete executable sample code at:<https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm>
> The current sample is for the Ascend 910 AI processor. You can find the complete executable sample code at:<https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/lstm>
> - `src/config.py`:some configurations on the network, including the batch size and number of training epochs.
> - `src/dataset.py`:dataset related definition,include MindRecord file convert and data-preprocess, etc.
> - `src/imdb.py`: the util class for parsing IMDB dataset.
......@@ -156,7 +156,7 @@ if args.preprocess == "true":
```
> After convert success, we can file `mindrecord` files under the directory `preprocess_path`. Usually, this operation does not need to be performed every time while the data set is unchanged.
> `convert_to_mindrecord` You can find the complete definition at: <https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/dataset.py>
> `convert_to_mindrecord` You can find the complete definition at: <https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/lstm/src/dataset.py>
> It consists of two steps:
>1. Process the text dataset, including encoding, word segmentation, alignment, and processing the original GloVe data to adapt to the network structure.
......@@ -176,7 +176,7 @@ network = SentimentNet(vocab_size=embedding_table.shape[0],
weight=Tensor(embedding_table),
batch_size=cfg.batch_size)
```
> `SentimentNet` You can find the complete definition at: <https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/lstm.py>
> `SentimentNet` You can find the complete definition at: <https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/lstm/src/lstm.py>
### Pre-Training
......@@ -215,7 +215,7 @@ else:
model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb])
print("============== Training Success ==============")
```
> `lstm_create_dataset` You can find the complete definition at: <https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/dataset.py>
> `lstm_create_dataset` You can find the complete definition at: <https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/lstm/src/dataset.py>
### Validating the Model
......
......@@ -11,7 +11,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/on_device_inference.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/on_device_inference.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -69,7 +69,7 @@ The compilation procedure is as follows:
2. Download source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.6
```
3. Run the following command in the root directory of the source code to compile MindSpore Lite.
......
......@@ -16,7 +16,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/performance_profiling.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/performance_profiling.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
Performance data like operators' execution time is recorded in files and can be viewed on the web page, this can help the user optimize the performance of neural networks. MindInsight Profiler can only support the Ascend chip now.
......@@ -64,7 +64,7 @@ def test_profiler():
## Launch MindInsight
The MindInsight launch command can refer to [MindInsight Commands](https://www.mindspore.cn/tutorial/en/master/advanced_use/mindinsight_commands.html).
The MindInsight launch command can refer to [MindInsight Commands](https://www.mindspore.cn/tutorial/en/r0.6/advanced_use/mindinsight_commands.html).
### Performance Analysis
......
......@@ -18,7 +18,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/quantization_aware.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/quantization_aware.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Background
......@@ -49,7 +49,7 @@ Aware quantization training specifications
| Specification | Description |
| ------------- | ---------------------------------------- |
| Hardware | Supports hardware platforms based on the GPU or Ascend AI 910 processor. |
| Network | Supports networks such as LeNet and ResNet50. For details, see <https://gitee.com/mindspore/mindspore/tree/master/model_zoo>. |
| Network | Supports networks such as LeNet and ResNet50. For details, see <https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo>. |
| Algorithm | Supports symmetric and asymmetric quantization algorithms in MindSpore fake quantization training. |
| Solution | Supports 4-, 7-, and 8-bit quantization solutions. |
......@@ -74,7 +74,7 @@ Compared with common training, the quantization aware training requires addition
Next, the LeNet network is used as an example to describe steps 3 and 6.
> You can obtain the complete executable sample code at <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/lenet_quant>.
> You can obtain the complete executable sample code at <https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/lenet_quant>.
### Defining a Fusion Network
......@@ -173,7 +173,7 @@ The preceding describes the quantization aware training from scratch. A more com
2. Define a network.
3. Define a fusion network.
4. Define an optimizer and loss function.
5. Load a model file and retrain the model. Load an existing model file and retrain the model based on the fusion network to generate a fusion model. For details, see <https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html#id6>.
5. Load a model file and retrain the model. Load an existing model file and retrain the model based on the fusion network to generate a fusion model. For details, see <https://www.mindspore.cn/tutorial/en/r0.6/use/saving_and_loading_model_parameters.html#id6>.
6. Generate a quantization network.
7. Perform quantization training.
......@@ -181,7 +181,7 @@ The preceding describes the quantization aware training from scratch. A more com
The inference using a quantization model is the same as common model inference. The inference can be performed by directly using the checkpoint file or converting the checkpoint file into a common model format (such as ONNX or GEIR).
For details, see <https://www.mindspore.cn/tutorial/en/master/use/multi_platform_inference.html>.
For details, see <https://www.mindspore.cn/tutorial/en/r0.6/use/multi_platform_inference.html>.
- To use a checkpoint file obtained after quantization aware training for inference, perform the following steps:
......
......@@ -13,7 +13,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/summary_record.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/summary_record.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......
......@@ -9,12 +9,12 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/system_metrics.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/advanced_use/system_metrics.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
Users can view system metrics such as Ascend AI processor, CPU, memory, etc., so as to allocate appropriate resources for training.
Just [Start MindInsight](https://www.mindspore.cn/tutorial/en/master/advanced_use/mindinsight_commands.html#start-the-service), and click "System Metrics" in the navigation bar to view it.
Just [Start MindInsight](https://www.mindspore.cn/tutorial/en/r0.6/advanced_use/mindinsight_commands.html#start-the-service), and click "System Metrics" in the navigation bar to view it.
## Ascend AI Processor Board
......
......@@ -24,7 +24,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/quick_start/quick_start.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/quick_start/quick_start.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -38,7 +38,7 @@ During the practice, a simple image classification function is implemented. The
5. Load the saved model for inference.
6. Validate the model, load the test dataset and trained model, and validate the result accuracy.
> You can find the complete executable sample code at <https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/lenet.py>.
> You can find the complete executable sample code at <https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/lenet.py>.
This is a simple and basic application process. For other advanced and complex applications, extend this basic process as needed.
......@@ -83,7 +83,7 @@ Currently, the `os` libraries are required. For ease of understanding, other req
import os
```
For details about MindSpore modules, search on the [MindSpore API Page](https://www.mindspore.cn/api/en/master/index.html).
For details about MindSpore modules, search on the [MindSpore API Page](https://www.mindspore.cn/api/en/r0.6/index.html).
### Configuring the Running Information
......@@ -179,7 +179,7 @@ In the preceding information:
Perform the shuffle and batch operations, and then perform the repeat operation to ensure that data during an epoch is unique.
> MindSpore supports multiple data processing and augmentation operations, which are usually combined. For details, see section "Data Processing and Augmentation" in the MindSpore Tutorials (https://www.mindspore.cn/tutorial/en/master/use/data_preparation/data_processing_and_augmentation.html).
> MindSpore supports multiple data processing and augmentation operations, which are usually combined. For details, see section "Data Processing and Augmentation" in the MindSpore Tutorials (https://www.mindspore.cn/tutorial/en/r0.6/use/data_preparation/data_processing_and_augmentation.html).
## Defining the Network
......
......@@ -10,7 +10,7 @@ Provides video tutorials from installation to try-on, helping you quickly use Mi
<div style="display: flex;flex-wrap: wrap;flex-direction: row;justify-content: flex-start;">
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/en/master/quick_start/quick_video/cpu_ubuntu.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/en/r0.6/quick_start/quick_video/cpu_ubuntu.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/en-Ubuntu.png"
style="max-width: 100%;width: 400px;">
......@@ -34,7 +34,7 @@ Provides video tutorials from installation to try-on, helping you quickly use Mi
</div>
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/en/master/quick_start/quick_video/cpu_windows.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/en/r0.6/quick_start/quick_video/cpu_windows.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/en_windows%E7%AF%87.png"
style="max-width: 100%;width: 400px;">
......@@ -58,7 +58,7 @@ Provides video tutorials from installation to try-on, helping you quickly use Mi
</div>
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/en/master/quick_start/quick_video/gpu.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/en/r0.6/quick_start/quick_video/gpu.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/en_GPU.png"
style="max-width: 100%;width: 400px;">
......@@ -82,7 +82,7 @@ Provides video tutorials from installation to try-on, helping you quickly use Mi
</div>
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/en/master/quick_start/quick_video/ascend910.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/en/r0.6/quick_start/quick_video/ascend910.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/en_Ascend.png"
style="max-width: 100%;width: 400px;">
......@@ -115,7 +115,7 @@ Provides video tutorials from installation to try-on, helping you quickly use Mi
<div style="display: flex;flex-wrap: wrap;flex-direction: row;justify-content: flex-start;">
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/en/master/quick_start/quick_video/quick_start_video.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/en/r0.6/quick_start/quick_video/quick_start_video.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/en_%E5%BF%AB%E9%80%9F%E5%85%A5%E9%97%A8.png"
style="max-width: 100%;width: 400px;">
......@@ -139,7 +139,7 @@ Provides video tutorials from installation to try-on, helping you quickly use Mi
</div>
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/en/master/quick_start/quick_video/saving_and_loading_model_parameters.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/en/r0.6/quick_start/quick_video/saving_and_loading_model_parameters.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/en_%E6%A8%A1%E5%9E%8B%E5%8F%82%E6%95%B0%E7%9A%84%E4%BF%9D%E5%AD%98%E5%92%8C%E5%8A%A0%E8%BD%BD%20.png"
style="max-width: 100%;width: 400px;">
......@@ -163,7 +163,7 @@ Provides video tutorials from installation to try-on, helping you quickly use Mi
</div>
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/en/master/quick_start/quick_video/customized_debugging.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/en/r0.6/quick_start/quick_video/customized_debugging.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/en_%E8%87%AA%E5%AE%9A%E4%B9%89%E8%B0%83%E8%AF%95%20.png"
style="max-width: 100%;width: 400px;">
......@@ -187,7 +187,7 @@ Provides video tutorials from installation to try-on, helping you quickly use Mi
</div>
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/en/master/quick_start/quick_video/mindInsight_installation_and_common_commands.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/en/r0.6/quick_start/quick_video/mindInsight_installation_and_common_commands.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/en_%E5%AE%89%E8%A3%85%E4%B8%8E%E5%B8%B8%E7%94%A8%E5%91%BD%E4%BB%A4.png"
style="max-width: 100%;width: 400px;">
......
......@@ -6,4 +6,4 @@
<source id="mp46" src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/video/Customized%20Debugging.mp4" type="video/mp4">
</video>
**View the full tutorial**<https://www.mindspore.cn/tutorial/en/master/advanced_use/customized_debugging_information.html>
\ No newline at end of file
**View the full tutorial**<https://www.mindspore.cn/tutorial/en/r0.6/advanced_use/customized_debugging_information.html>
\ No newline at end of file
......@@ -8,4 +8,4 @@
**Install now**: <https://www.mindspore.cn/install/en>
**More commands**: <https://www.mindspore.cn/tutorial/en/master/advanced_use/mindinsight_commands.html>
\ No newline at end of file
**More commands**: <https://www.mindspore.cn/tutorial/en/r0.6/advanced_use/mindinsight_commands.html>
\ No newline at end of file
......@@ -6,6 +6,6 @@
<source id="mp44" src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/video/Quick%20Start.mp4" type="video/mp4">
</video>
**View code**: <https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/lenet.py>
**View code**: <https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/lenet.py>
**View the full tutorial**<https://www.mindspore.cn/tutorial/en/master/quick_start/quick_start.html>
\ No newline at end of file
**View the full tutorial**<https://www.mindspore.cn/tutorial/en/r0.6/quick_start/quick_start.html>
\ No newline at end of file
......@@ -6,4 +6,4 @@
<source id="mp45" src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/video/Saving%20and%20Loading%20Model%20Parameters.mp4" type="video/mp4">
</video>
**View the full tutorial**<https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html>
\ No newline at end of file
**View the full tutorial**<https://www.mindspore.cn/tutorial/en/r0.6/use/saving_and_loading_model_parameters.html>
\ No newline at end of file
......@@ -14,7 +14,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/use/custom_operator.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/use/custom_operator.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -27,14 +27,14 @@ The related concepts are as follows:
- Operator implementation: describes the implementation of the internal computation logic for an operator through the DSL API provided by the Tensor Boost Engine (TBE). The TBE supports the development of custom operators based on the Ascend AI chip. You can apply for Open Beta Tests (OBTs) by visiting <https://www.huaweicloud.com/ascend/tbe>.
- Operator information: describes basic information about a TBE operator, such as the operator name and supported input and output types. It is the basis for the backend to select and map operators.
This section takes a Square operator as an example to describe how to customize an operator. For details, see cases in [tests/st/ops/custom_ops_tbe](https://gitee.com/mindspore/mindspore/tree/master/tests/st/ops/custom_ops_tbe) in the MindSpore source code.
This section takes a Square operator as an example to describe how to customize an operator. For details, see cases in [tests/st/ops/custom_ops_tbe](https://gitee.com/mindspore/mindspore/tree/r0.6/tests/st/ops/custom_ops_tbe) in the MindSpore source code.
## Registering the Operator Primitive
The primitive of an operator is a subclass inherited from `PrimitiveWithInfer`. The type name of the subclass is the operator name.
The definition of the custom operator primitive is the same as that of the built-in operator primitive.
- The attribute is defined by the input parameter of the constructor function `__init__`. The operator in this test case has no attribute. Therefore, `__init__` has only one input parameter. For details about test cases in which operators have attributes, see [custom add3](https://gitee.com/mindspore/mindspore/tree/master/tests/st/ops/custom_ops_tbe/cus_add3.py) in the MindSpore source code.
- The attribute is defined by the input parameter of the constructor function `__init__`. The operator in this test case has no attribute. Therefore, `__init__` has only one input parameter. For details about test cases in which operators have attributes, see [custom add3](https://gitee.com/mindspore/mindspore/tree/r0.6/tests/st/ops/custom_ops_tbe/cus_add3.py) in the MindSpore source code.
- The input and output names are defined by the `init_prim_io_names` function.
- The shape inference method of the output tensor is defined in the `infer_shape` function, and the dtype inference method of the output tensor is defined in the `infer_dtype` function.
......
......@@ -14,7 +14,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/use/data_preparation/converting_datasets.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/use/data_preparation/converting_datasets.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## Overview
......
......@@ -16,7 +16,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/use/data_preparation/data_processing_and_augmentation.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/use/data_preparation/data_processing_and_augmentation.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## Overview
......
......@@ -13,7 +13,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/use/data_preparation/loading_the_datasets.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/use/data_preparation/loading_the_datasets.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## Overview
......@@ -150,7 +150,7 @@ MindSpore can also read datasets in the `TFRecord` data format through the `TFRe
## Loading a Custom Dataset
In real scenarios, there are virous datasets. For a custom dataset or a dataset that can't be loaded by APIs directly, there are tow ways.
One is converting the dataset to MindSpore data format (for details, see [Converting Datasets to the Mindspore Data Format](https://www.mindspore.cn/tutorial/en/master/use/data_preparation/converting_datasets.html)). The other one is using the `GeneratorDataset` object.
One is converting the dataset to MindSpore data format (for details, see [Converting Datasets to the Mindspore Data Format](https://www.mindspore.cn/tutorial/en/r0.6/use/data_preparation/converting_datasets.html)). The other one is using the `GeneratorDataset` object.
The following shows how to use `GeneratorDataset`.
1. Define an iterable object to generate a dataset. There are two examples following. One is a customized function which contains `yield`. The other one is a customized class which contains `__getitem__`.
......
......@@ -4,5 +4,5 @@ Defining the Network
.. toctree::
:maxdepth: 1
Network List <https://www.mindspore.cn/docs/en/master/network_list.html>
Network List <https://www.mindspore.cn/docs/en/r0.6/network_list.html>
custom_operator
\ No newline at end of file
......@@ -18,7 +18,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/use/multi_platform_inference.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/use/multi_platform_inference.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -58,15 +58,15 @@ MindSpore supports the following inference scenarios based on the hardware platf
res = model.eval(dataset)
```
In the preceding information:
`model.eval` is an API for model validation. For details about the API, see <https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.html#mindspore.Model.eval>.
> Inference sample code: <https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/eval.py>.
`model.eval` is an API for model validation. For details about the API, see <https://www.mindspore.cn/api/en/r0.6/api/python/mindspore/mindspore.html#mindspore.Model.eval>.
> Inference sample code: <https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/lenet/eval.py>.
2. Use the `model.predict` API to perform inference.
```python
model.predict(input_data)
```
In the preceding information:
`model.predict` is an API for inference. For details about the API, see <https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.html#mindspore.Model.predict>.
`model.predict` is an API for inference. For details about the API, see <https://www.mindspore.cn/api/en/r0.6/api/python/mindspore/mindspore.html#mindspore.Model.predict>.
## Inference on the Ascend 310 AI processor
......@@ -74,7 +74,7 @@ MindSpore supports the following inference scenarios based on the hardware platf
The Ascend 310 AI processor is equipped with the ACL framework and supports the OM format which needs to be converted from the model in ONNX or GEIR format. For inference on the Ascend 310 AI processor, perform the following steps:
1. Generate a model in ONNX or GEIR format on the training platform. For details, see [Export GEIR Model and ONNX Model](https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html#geironnx).
1. Generate a model in ONNX or GEIR format on the training platform. For details, see [Export GEIR Model and ONNX Model](https://www.mindspore.cn/tutorial/en/r0.6/use/saving_and_loading_model_parameters.html#geironnx).
2. Convert the ONNX or GEIR model file into an OM model file and perform inference.
- For performing inference in the cloud environment (ModelArt), see the [Ascend 910 training and Ascend 310 inference samples](https://support.huaweicloud.com/bestpractice-modelarts/modelarts_10_0026.html).
......@@ -88,7 +88,7 @@ The inference is the same as that on the Ascend 910 AI processor.
### Inference Using an ONNX File
1. Generate a model in ONNX format on the training platform. For details, see [Export GEIR Model and ONNX Model](https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html#geironnx).
1. Generate a model in ONNX format on the training platform. For details, see [Export GEIR Model and ONNX Model](https://www.mindspore.cn/tutorial/en/r0.6/use/saving_and_loading_model_parameters.html#geironnx).
2. Perform inference on a GPU by referring to the runtime or SDK document. For example, use TensorRT to perform inference on the NVIDIA GPU. For details, see [TensorRT backend for ONNX](https://github.com/onnx/onnx-tensorrt).
......@@ -100,10 +100,10 @@ The inference is the same as that on the Ascend 910 AI processor.
### Inference Using an ONNX File
Similar to the inference on a GPU, the following steps are required:
1. Generate a model in ONNX format on the training platform. For details, see [Export GEIR Model and ONNX Model](https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html#geironnx).
1. Generate a model in ONNX format on the training platform. For details, see [Export GEIR Model and ONNX Model](https://www.mindspore.cn/tutorial/en/r0.6/use/saving_and_loading_model_parameters.html#geironnx).
2. Perform inference on a CPU by referring to the runtime or SDK document. For details about how to use the ONNX Runtime, see the [ONNX Runtime document](https://github.com/microsoft/onnxruntime).
## On-Device Inference
MindSpore Predict is an inference engine for on-device inference. For details, see [On-Device Inference](https://www.mindspore.cn/tutorial/en/master/advanced_use/on_device_inference.html).
\ No newline at end of file
MindSpore Predict is an inference engine for on-device inference. For details, see [On-Device Inference](https://www.mindspore.cn/tutorial/en/r0.6/advanced_use/on_device_inference.html).
\ No newline at end of file
......@@ -13,7 +13,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/use/saving_and_loading_model_parameters.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_en/use/saving_and_loading_model_parameters.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......
......@@ -26,7 +26,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/checkpoint_for_hybrid_parallel.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/checkpoint_for_hybrid_parallel.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......@@ -316,7 +316,7 @@ load_param_into_net(opt, param_dict)
3. 执行阶段2训练:阶段2为2卡训练环境,每卡上MatMul算子weight的shape为[4, 8],从合并后的CheckPoint文件加载初始化模型参数数据,之后执行训练。
> 具体分布式环境配置和训练部分代码,此处不做详细说明,可以参考[分布式并行训练](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/distributed_training.html)
> 具体分布式环境配置和训练部分代码,此处不做详细说明,可以参考[分布式并行训练](https://www.mindspore.cn/tutorial/zh-CN/r0.6/advanced_use/distributed_training.html)
章节。
>
> 本文档附上对CheckPoint文件做合并处理以及分布式训练前加载CheckPoint文件的示例代码,仅作为参考,实际请参考具体情况实现。
......
......@@ -16,8 +16,8 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/computer_vision_application.md" target="_blank"><img src="../_static/logo_source.png"></a>&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/computer_vision_application.ipynb" target="_blank"><img src="../_static/logo_notebook.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/computer_vision_application.md" target="_blank"><img src="../_static/logo_source.png"></a>&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/notebook/computer_vision_application.ipynb" target="_blank"><img src="../_static/logo_notebook.png"></a>
## 概述
......@@ -37,7 +37,7 @@ def classify(image):
选择合适的model是关键。这里的model一般指的是深度卷积神经网络,如AlexNet、VGG、GoogLeNet、ResNet等等。
MindSpore实现了典型的卷积神经网络,开发者可以参考[model_zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official)
MindSpore实现了典型的卷积神经网络,开发者可以参考[model_zoo](https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official)
MindSpore当前支持的图像分类网络包括:典型网络LeNet、AlexNet、ResNet。
......@@ -61,7 +61,7 @@ MindSpore当前支持的图像分类网络包括:典型网络LeNet、AlexNet
6. 加载保存的模型进行推理
> 本例面向Ascend 910 AI处理器硬件平台,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/resnet>
> 本例面向Ascend 910 AI处理器硬件平台,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/resnet>
下面对任务流程中各个环节及代码关键片段进行解释说明。
......@@ -146,7 +146,7 @@ tar -zvxf cifar-10-binary.tar.gz
ResNet通常是较好的选择。首先,它足够深,常见的有34层,50层,101层。通常层次越深,表征能力越强,分类准确率越高。其次,可学习,采用了残差结构,通过shortcut连接把低层直接跟高层相连,解决了反向传播过程中因为网络太深造成的梯度消失问题。此外,ResNet网络的性能很好,既表现为识别的准确率,也包括它本身模型的大小和参数量。
MindSpore Model Zoo中已经实现了ResNet模型,可以采用[ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py)。调用方法如下:
MindSpore Model Zoo中已经实现了ResNet模型,可以采用[ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnet/src/resnet.py)。调用方法如下:
```python
network = resnet50(class_num=10)
......
......@@ -14,9 +14,9 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/customized_debugging_information.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/customized_debugging_information.md" target="_blank"><img src="../_static/logo_source.png"></a>
&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/customized_debugging_information.ipynb" target="_blank"><img src="../_static/logo_notebook.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/notebook/customized_debugging_information.ipynb" target="_blank"><img src="../_static/logo_notebook.png"></a>
## 概述
......@@ -227,7 +227,7 @@ val:[[1 1]
在Ascend环境上执行训练,当训练结果和预期有偏差时,可以通过异步数据Dump功能保存算子的输入输出进行调试。
> 异步数据Dump不支持`comm_ops`类别的算子,算子类别详见[算子支持列表](https://www.mindspore.cn/docs/zh-CN/master/operator_list.html)。
> 异步数据Dump不支持`comm_ops`类别的算子,算子类别详见[算子支持列表](https://www.mindspore.cn/docs/zh-CN/r0.6/operator_list.html)。
1. 开启IR保存开关: `context.set_context(save_graphs=True)`
2. 执行网络脚本。
......
......@@ -14,8 +14,8 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/dashboard.md" target="_blank"><img src="../_static/logo_source.png"></a>&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/tree/master/tutorials/notebook/mindinsight" target="_blank"><img src="../_static/logo_notebook.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/dashboard.md" target="_blank"><img src="../_static/logo_source.png"></a>&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/tree/r0.6/tutorials/notebook/mindinsight" target="_blank"><img src="../_static/logo_notebook.png"></a>
## 概述
......
......@@ -11,9 +11,9 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/debugging_in_pynative_mode.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/debugging_in_pynative_mode.md" target="_blank"><img src="../_static/logo_source.png"></a>
&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/debugging_in_pynative_mode.ipynb" target="_blank"><img src="../_static/logo_notebook.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/notebook/debugging_in_pynative_mode.ipynb" target="_blank"><img src="../_static/logo_notebook.png"></a>
## 概述
......
# 机器学习中的差分隐私
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/differential_privacy.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/differential_privacy.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......@@ -29,7 +29,7 @@ MindArmour的差分隐私模块Differential-Privacy,实现了差分隐私优
这里以LeNet模型,MNIST 数据集为例,说明如何在MindSpore上使用差分隐私优化器训练神经网络模型。
> 本例面向Ascend 910 AI处理器,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/mindarmour/blob/master/example/mnist_demo/lenet5_dp.py>
> 本例面向Ascend 910 AI处理器,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/mindarmour/blob/r0.6/example/mnist_demo/lenet5_dp.py>
## 实现阶段
......
......@@ -18,14 +18,14 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/distributed_training_ascend.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/distributed_training_ascend.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
本篇教程我们主要讲解,如何在Ascend 910 AI处理器硬件平台上,利用MindSpore通过数据并行及自动并行模式训练ResNet-50网络。
> 你可以在这里下载完整的样例代码:
>
> <https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/distributed_training/resnet50_distributed_training.py>
> <https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/distributed_training/resnet50_distributed_training.py>
## 准备环节
......@@ -157,7 +157,7 @@ def create_dataset(data_path, repeat_num=1, batch_size=32, rank_id=0, rank_size=
## 定义网络
数据并行及自动并行模式下,网络定义方式与单机一致。代码请参考: <https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/resnet/resnet.py>
数据并行及自动并行模式下,网络定义方式与单机一致。代码请参考: <https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/resnet/resnet.py>
## 定义损失函数及优化器
......
......@@ -14,7 +14,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/distributed_training_gpu.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/distributed_training_gpu.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......@@ -28,7 +28,7 @@
> 数据集的下载和加载方式参考:
>
> <https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/distributed_training_ascend.html>。
> <https://www.mindspore.cn/tutorial/zh-CN/r0.6/advanced_use/distributed_training_ascend.html>。
### 配置分布式环境
......@@ -73,7 +73,7 @@ if __name__ == "__main__":
在GPU硬件平台上,网络的定义和Ascend 910 AI处理器一致。
> 网络、优化器、损失函数的定义参考:<https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/distributed_training_ascend.html>。
> 网络、优化器、损失函数的定义参考:<https://www.mindspore.cn/tutorial/zh-CN/r0.6/advanced_use/distributed_training_ascend.html>。
## 运行脚本
......
......@@ -12,7 +12,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/graph_kernel_fusion.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/graph_kernel_fusion.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......@@ -99,7 +99,7 @@ context.set_context(enable_graph_kernel=True)
2. `BERT-large`训练网络
以`BERT-large`网络的训练模型为例,数据集和训练脚本可参照
<https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/bert>,同样我们只需修改`context`参数即可。
<https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official/nlp/bert>,同样我们只需修改`context`参数即可。
## 效果评估
......
......@@ -10,17 +10,17 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/host_device_training.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/host_device_training.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
在深度学习中,工作人员时常会遇到超大模型的训练问题,即模型参数所占内存超过了设备内存上限。为高效地训练超大模型,一种方案便是[分布式并行训练](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/distributed_training.html),也就是将工作交由同构的多个加速器(如Ascend 910 AI处理器,GPU等)共同完成。但是这种方式在面对几百GB甚至几TB级别的模型时,所需的加速器过多。而当从业者实际难以获取大规模集群时,这种方式难以应用。另一种可行的方案是使用主机端(Host)和加速器(Device)的混合训练模式。此方案同时发挥了主机端内存大和加速器端计算快的优势,是一种解决超大模型训练较有效的方式。
在深度学习中,工作人员时常会遇到超大模型的训练问题,即模型参数所占内存超过了设备内存上限。为高效地训练超大模型,一种方案便是[分布式并行训练](https://www.mindspore.cn/tutorial/zh-CN/r0.6/advanced_use/distributed_training.html),也就是将工作交由同构的多个加速器(如Ascend 910 AI处理器,GPU等)共同完成。但是这种方式在面对几百GB甚至几TB级别的模型时,所需的加速器过多。而当从业者实际难以获取大规模集群时,这种方式难以应用。另一种可行的方案是使用主机端(Host)和加速器(Device)的混合训练模式。此方案同时发挥了主机端内存大和加速器端计算快的优势,是一种解决超大模型训练较有效的方式。
在MindSpore中,用户可以将待训练的参数放在主机,同时将必要算子的执行位置配置为主机,其余算子的执行位置配置为加速器,从而方便地实现混合训练。此教程以推荐模型[Wide&Deep](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/recommend/wide_and_deep)为例,讲解MindSpore在主机和Ascend 910 AI处理器的混合训练。
在MindSpore中,用户可以将待训练的参数放在主机,同时将必要算子的执行位置配置为主机,其余算子的执行位置配置为加速器,从而方便地实现混合训练。此教程以推荐模型[Wide&Deep](https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official/recommend/wide_and_deep)为例,讲解MindSpore在主机和Ascend 910 AI处理器的混合训练。
## 准备工作
1. 准备模型代码。Wide&Deep的代码可参见:<https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/recommend/wide_and_deep>,其中,`train_and_eval_auto_parallel.py`为训练的主函数所在,`src/`目录中包含Wide&Deep模型的定义、数据处理和配置信息等,`script/`目录中包含不同配置下的训练脚本。
1. 准备模型代码。Wide&Deep的代码可参见:<https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official/recommend/wide_and_deep>,其中,`train_and_eval_auto_parallel.py`为训练的主函数所在,`src/`目录中包含Wide&Deep模型的定义、数据处理和配置信息等,`script/`目录中包含不同配置下的训练脚本。
2. 准备数据集。数据集下载链接:<https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz>。利用脚本`src/preprocess_data.py`将数据集转换为MindRecord格式。
......
......@@ -11,8 +11,8 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/lineage_and_scalars_comparision.md" target="_blank"><img src="../_static/logo_source.png"></a>&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/tree/master/tutorials/notebook/mindinsight" target="_blank"><img src="../_static/logo_notebook.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/lineage_and_scalars_comparision.md" target="_blank"><img src="../_static/logo_source.png"></a>&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/tree/r0.6/tutorials/notebook/mindinsight" target="_blank"><img src="../_static/logo_notebook.png"></a>
## 概述
......
# MindInsight相关命令
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/mindinsight_commands.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/mindinsight_commands.md" target="_blank"><img src="../_static/logo_source.png"></a>
<!-- TOC -->
......
......@@ -10,7 +10,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/mixed_precision.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/mixed_precision.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......
......@@ -15,7 +15,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/model_security.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/model_security.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......@@ -28,7 +28,7 @@ AI算法设计之初普遍未考虑相关的安全威胁,使得AI算法的判
这里通过图像分类任务上的对抗性攻防,以攻击算法FGSM和防御算法NAD为例,介绍MindArmour在对抗攻防上的使用方法。
> 本例面向CPU、GPU、Ascend 910 AI处理器,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/tree/master/tutorials/tutorial_code/model_safety>
> 本例面向CPU、GPU、Ascend 910 AI处理器,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/tree/r0.6/tutorials/tutorial_code/model_safety>
> - `mnist_attack_fgsm.py`:包含攻击代码。
> - `mnist_defense_nad.py`:包含防御代码。
......
......@@ -17,7 +17,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/network_migration.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/network_migration.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......@@ -29,9 +29,9 @@
### 算子评估
分析待迁移的网络中所包含的算子,结合[MindSpore算子支持列表](https://www.mindspore.cn/docs/zh-CN/master/operator_list.html),梳理出MindSpore对这些算子的支持程度。
分析待迁移的网络中所包含的算子,结合[MindSpore算子支持列表](https://www.mindspore.cn/docs/zh-CN/r0.6/operator_list.html),梳理出MindSpore对这些算子的支持程度。
以ResNet-50为例,[Conv](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Conv2d)[BatchNorm](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.BatchNorm2d)是其中最主要的两个算子,它们已在MindSpore支持的算子列表中。
以ResNet-50为例,[Conv](https://www.mindspore.cn/api/zh-CN/r0.6/api/python/mindspore/mindspore.nn.html#mindspore.nn.Conv2d)[BatchNorm](https://www.mindspore.cn/api/zh-CN/r0.6/api/python/mindspore/mindspore.nn.html#mindspore.nn.BatchNorm2d)是其中最主要的两个算子,它们已在MindSpore支持的算子列表中。
如果发现没有对应算子,建议:
- 使用其他算子替换:分析算子实现公式,审视是否可以采用MindSpore现有算子叠加达到预期目标。
......@@ -55,17 +55,17 @@
MindSpore与TensorFlow、PyTorch在网络结构组织方式上,存在一定差别,迁移前需要对原脚本有较为清晰的了解,明确地知道每一层的shape等信息。
> 你也可以使用[MindConverter工具](https://gitee.com/mindspore/mindinsight/tree/master/mindinsight/mindconverter)实现PyTorch网络定义脚本到MindSpore网络定义脚本的自动转换。
> 你也可以使用[MindConverter工具](https://gitee.com/mindspore/mindinsight/tree/r0.6/mindinsight/mindconverter)实现PyTorch网络定义脚本到MindSpore网络定义脚本的自动转换。
下面,我们以ResNet-50的迁移,并在Ascend 910上训练为例:
1. 导入MindSpore模块。
根据所需使用的接口,导入相应的MindSpore模块,模块列表详见<https://www.mindspore.cn/api/zh-CN/master/index.html>。
根据所需使用的接口,导入相应的MindSpore模块,模块列表详见<https://www.mindspore.cn/api/zh-CN/r0.6/index.html>。
2. 加载数据集和预处理。
使用MindSpore构造你需要使用的数据集。目前MindSpore已支持常见数据集,你可以通过原始格式、`MindRecord`、`TFRecord`等多种接口调用,同时还支持数据处理以及数据增强等相关功能,具体用法可参考[准备数据教程](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/data_preparation.html)。
使用MindSpore构造你需要使用的数据集。目前MindSpore已支持常见数据集,你可以通过原始格式、`MindRecord`、`TFRecord`等多种接口调用,同时还支持数据处理以及数据增强等相关功能,具体用法可参考[准备数据教程](https://www.mindspore.cn/tutorial/zh-CN/r0.6/use/data_preparation/data_preparation.html)。
本例中加载了Cifar-10数据集,可同时支持单卡和多卡的场景。
......@@ -77,7 +77,7 @@ MindSpore与TensorFlow、PyTorch在网络结构组织方式上,存在一定差
num_shards=device_num, shard_id=rank_id)
```
然后对数据进行了数据增强、数据清洗和批处理等操作。代码详见<https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/dataset.py>。
然后对数据进行了数据增强、数据清洗和批处理等操作。代码详见<https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnet/src/dataset.py>。
3. 构建网络。
......@@ -210,7 +210,7 @@ MindSpore与TensorFlow、PyTorch在网络结构组织方式上,存在一定差
6. 构造整网。
将定义好的多个子网连接起来就是整个[ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py)网络的结构了。同样遵循先定义后使用的原则,在`__init__`中定义所有用到的子网,在`construct`中连接子网。
将定义好的多个子网连接起来就是整个[ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/resnet/src/resnet.py)网络的结构了。同样遵循先定义后使用的原则,在`__init__`中定义所有用到的子网,在`construct`中连接子网。
7. 定义损失函数和优化器。
......@@ -231,7 +231,7 @@ MindSpore与TensorFlow、PyTorch在网络结构组织方式上,存在一定差
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
```
如果希望使用`Model`内置的评估方法,则可以使用[metrics](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/customized_debugging_information.html#mindspore-metrics)属性设置希望使用的评估方法。
如果希望使用`Model`内置的评估方法,则可以使用[metrics](https://www.mindspore.cn/tutorial/zh-CN/r0.6/advanced_use/customized_debugging_information.html#mindspore-metrics)属性设置希望使用的评估方法。
```python
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
......@@ -259,14 +259,14 @@ MindSpore与TensorFlow、PyTorch在网络结构组织方式上,存在一定差
#### 云上集成
请参考[在云上使用MindSpore](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/use_on_the_cloud.html),将你的脚本运行在ModelArts。
请参考[在云上使用MindSpore](https://www.mindspore.cn/tutorial/zh-CN/r0.6/advanced_use/use_on_the_cloud.html),将你的脚本运行在ModelArts。
### 推理阶段
在Ascend 910 AI处理器上训练后的模型,支持在不同的硬件平台上执行推理。详细步骤可参考[多平台推理教程](https://www.mindspore.cn/tutorial/zh-CN/master/use/multi_platform_inference.html)
在Ascend 910 AI处理器上训练后的模型,支持在不同的硬件平台上执行推理。详细步骤可参考[多平台推理教程](https://www.mindspore.cn/tutorial/zh-CN/r0.6/use/multi_platform_inference.html)
## 样例参考
1. [常用数据集读取样例](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/loading_the_datasets.html)
1. [常用数据集读取样例](https://www.mindspore.cn/tutorial/zh-CN/r0.6/use/data_preparation/loading_the_datasets.html)
2. [Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)
2. [Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo)
......@@ -21,8 +21,8 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/nlp_application.md" target="_blank"><img src="../_static/logo_source.png"></a>&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/nlp_application.ipynb" target="_blank"><img src="../_static/logo_notebook.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/nlp_application.md" target="_blank"><img src="../_static/logo_source.png"></a>&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/notebook/nlp_application.ipynb" target="_blank"><img src="../_static/logo_notebook.png"></a>
## 概述
......@@ -87,7 +87,7 @@ $F1分数 = (2 * Precision * Recall) / (Precision + Recall)$
> LSTM(Long short-term memory,长短期记忆)网络是一种时间循环神经网络,适合于处理和预测时间序列中间隔和延迟非常长的重要事件。具体介绍可参考网上资料,在此不再赘述。
3. 得到模型之后,使用验证数据集,查看模型精度情况。
> 本例面向GPU或CPU硬件平台,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm>
> 本例面向GPU或CPU硬件平台,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/lstm>
> - `src/config.py`:网络中的一些配置,包括`batch size`、进行几次epoch训练等。
> - `src/dataset.py`:数据集相关,包括转换成MindRecord文件,数据预处理等。
> - `src/imdb.py`: 解析IMDB数据集的工具。
......@@ -156,7 +156,7 @@ if args.preprocess == "true":
```
> 转换成功后会在`preprocess_path`路径下生成`mindrecord`文件; 通常该操作在数据集不变的情况下,无需每次训练都执行。
> `convert_to_mindrecord`函数的具体实现请参考<https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/dataset.py>
> `convert_to_mindrecord`函数的具体实现请参考<https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/lstm/src/dataset.py>
> 其中包含两大步骤:
> 1. 解析文本数据集,包括编码、分词、对齐、处理GloVe原始数据,使之能够适应网络结构。
......@@ -176,7 +176,7 @@ network = SentimentNet(vocab_size=embedding_table.shape[0],
weight=Tensor(embedding_table),
batch_size=cfg.batch_size)
```
> `SentimentNet`网络结构的具体实现请参考<https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/lstm.py>
> `SentimentNet`网络结构的具体实现请参考<https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/lstm/src/lstm.py>
### 预训练模型
......@@ -215,7 +215,7 @@ else:
model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb])
print("============== Training Success ==============")
```
> `lstm_create_dataset`函数的具体实现请参考<https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/dataset.py>
> `lstm_create_dataset`函数的具体实现请参考<https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/nlp/lstm/src/dataset.py>
### 模型验证
......
......@@ -11,7 +11,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/on_device_inference.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/on_device_inference.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......@@ -69,7 +69,7 @@ MindSpore Lite的框架主要由Frontend、IR、Backend、Lite RT、Micro构成
2. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.6
```
3. 在源码根目录下,执行如下命令编译MindSpore Lite。
......
......@@ -12,7 +12,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/parameter_server_training.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/parameter_server_training.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
Parameter Server(参数服务器)是分布式训练中一种广泛使用的架构,相较于同步的AllReduce训练方法,Parameter Server具有更好的灵活性、可扩展性以及节点容灾的能力。具体来讲,参数服务器既支持同步SGD,也支持异步SGD的训练算法;在扩展性上,将模型的计算与模型的更新分别部署在Worker和Server两类进程中,使得Worker和Server的资源可以独立地横向扩缩;另外,在大规模数据中心的环境下,计算设备、网络以及存储经常会出现各种故障而导致部分节点异常,而在参数服务器的架构下,能够较为容易地处理此类的故障而不会对训练中的任务产生影响。
......@@ -34,7 +34,7 @@ Parameter Server(参数服务器)是分布式训练中一种广泛使用的架
### 训练脚本准备
参考<https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet>,使用[MNIST数据集](http://yann.lecun.com/exdb/mnist/),了解如何训练一个LeNet网络。
参考<https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/official/cv/lenet>,使用[MNIST数据集](http://yann.lecun.com/exdb/mnist/),了解如何训练一个LeNet网络。
### 参数设置
......@@ -43,7 +43,7 @@ Parameter Server(参数服务器)是分布式训练中一种广泛使用的架
- 通过`mindspore.nn.Cell.set_param_ps()``nn.Cell`中所有权重递归设置
- 通过`mindspore.common.Parameter.set_param_ps()`对此权重进行设置
[原训练脚本](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/train.py)基础上,设置LeNet模型所有权重通过Parameter Server训练:
[原训练脚本](https://gitee.com/mindspore/mindspore/blob/r0.6/model_zoo/official/cv/lenet/train.py)基础上,设置LeNet模型所有权重通过Parameter Server训练:
```python
network = LeNet5(cfg.num_classes)
network.set_param_ps()
......@@ -58,7 +58,7 @@ export PS_VERBOSE=1 # Print ps-lite log
export MS_SERVER_NUM=1 # Server number
export MS_WORKER_NUM=1 # Worker number
export MS_SCHED_HOST=XXX.XXX.XXX.XXX # Scheduler IP address
export MS_SCHED_PORT=XXXX # Scheduler port
export MS_SCHED_POST=XXXX # Scheduler port
export MS_ROLE=MS_SCHED # The role of this process: MS_SCHED represents the scheduler, MS_WORKER represents the worker, MS_PSERVER represents the Server
```
......@@ -75,7 +75,7 @@ export MS_ROLE=MS_SCHED # The role of this process: MS_SCHED repre
export MS_SERVER_NUM=1
export MS_WORKER_NUM=1
export MS_SCHED_HOST=XXX.XXX.XXX.XXX
export MS_SCHED_PORT=XXXX
export MS_SCHED_POST=XXXX
export MS_ROLE=MS_SCHED
python train.py
```
......@@ -87,7 +87,7 @@ export MS_ROLE=MS_SCHED # The role of this process: MS_SCHED repre
export MS_SERVER_NUM=1
export MS_WORKER_NUM=1
export MS_SCHED_HOST=XXX.XXX.XXX.XXX
export MS_SCHED_PORT=XXXX
export MS_SCHED_POST=XXXX
export MS_ROLE=MS_PSERVER
python train.py
```
......@@ -99,7 +99,7 @@ export MS_ROLE=MS_SCHED # The role of this process: MS_SCHED repre
export MS_SERVER_NUM=1
export MS_WORKER_NUM=1
export MS_SCHED_HOST=XXX.XXX.XXX.XXX
export MS_SCHED_PORT=XXXX
export MS_SCHED_POST=XXXX
export MS_ROLE=MS_WORKER
python train.py
```
......
......@@ -17,7 +17,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/performance_profiling.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/performance_profiling.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
将训练过程中的算子耗时等信息记录到文件中,通过可视化界面供用户查看分析,帮助用户更高效地调试神经网络性能。目前仅支持在Ascend芯片上的性能调试。
......@@ -66,7 +66,7 @@ def test_profiler():
## 启动MindInsight
启动命令请参考[MindInsight相关命令](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mindinsight_commands.html)
启动命令请参考[MindInsight相关命令](https://www.mindspore.cn/tutorial/zh-CN/r0.6/advanced_use/mindinsight_commands.html)
### 性能分析
......
......@@ -18,7 +18,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/quantization_aware.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/quantization_aware.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 背景
......@@ -49,7 +49,7 @@ MindSpore的感知量化训练是在训练基础上,使用低精度数据替
| 规格 | 规格说明 |
| --- | --- |
| 硬件支持 | GPU、Ascend AI 910处理器的硬件平台 |
| 网络支持 | 已实现的网络包括LeNet、ResNet50等网络,具体请参见<https://gitee.com/mindspore/mindspore/tree/master/model_zoo>。 |
| 网络支持 | 已实现的网络包括LeNet、ResNet50等网络,具体请参见<https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo>。 |
| 算法支持 | 在MindSpore的伪量化训练中,支持非对称和对称的量化算法。 |
| 方案支持 | 支持4、7和8比特的量化方案。 |
......@@ -74,7 +74,7 @@ MindSpore的感知量化训练是在训练基础上,使用低精度数据替
接下来,以LeNet网络为例,展开叙述3、6两个步骤。
> 你可以在这里找到完整可运行的样例代码:<https://gitee.com/mindspore/mindspore/tree/master/model_zoo/lenet_quant> 。
> 你可以在这里找到完整可运行的样例代码:<https://gitee.com/mindspore/mindspore/tree/r0.6/model_zoo/lenet_quant> 。
### 定义融合网络
......@@ -173,7 +173,7 @@ net = qat.convert_quant_network(net, quant_delay=0, bn_fold=False, freeze_bn=100
2. 定义网络。
3. 定义融合网络。
4. 定义优化器和损失函数。
5. 加载模型文件模型重训。加载已有模型文件,基于融合网络重新训练生成融合模型。详细模型重载训练,请参见<https://www.mindspore.cn/tutorial/zh-CN/master/use/saving_and_loading_model_parameters.html#id6>
5. 加载模型文件模型重训。加载已有模型文件,基于融合网络重新训练生成融合模型。详细模型重载训练,请参见<https://www.mindspore.cn/tutorial/zh-CN/r0.6/use/saving_and_loading_model_parameters.html#id6>
6. 转化量化网络。
7. 进行量化训练。
......@@ -181,7 +181,7 @@ net = qat.convert_quant_network(net, quant_delay=0, bn_fold=False, freeze_bn=100
使用量化模型进行推理,与普通模型推理一致,分为直接checkpoint文件推理及转化为通用模型格式(ONNX、GEIR等)进行推理。
> 推理详细说明请参见<https://www.mindspore.cn/tutorial/zh-CN/master/use/multi_platform_inference.html>。
> 推理详细说明请参见<https://www.mindspore.cn/tutorial/zh-CN/r0.6/use/multi_platform_inference.html>。
- 使用感知量化训练后得到的checkpoint文件进行推理:
......
......@@ -12,7 +12,7 @@
- [客户端示例](#客户端示例)
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/serving.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/serving.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......@@ -43,7 +43,7 @@ ms_serving [--help] [--model_path <MODEL_PATH>] [--model_name <MODEL_NAME>]
下面以一个简单的网络为例,演示MindSpore Serving如何使用。
### 导出模型
使用[add_model.py](https://gitee.com/mindspore/mindspore/blob/master/serving/example/export_model/add_model.py),构造一个只有Add算子的网络,并导出MindSpore推理部署模型。
使用[add_model.py](https://gitee.com/mindspore/mindspore/blob/r0.6/serving/example/export_model/add_model.py),构造一个只有Add算子的网络,并导出MindSpore推理部署模型。
```python
python add_model.py
......@@ -117,5 +117,5 @@ client received: RPC OK
Status status = stub_->Predict(&context, request, &reply);
```
完整代码参考[ms_client](https://gitee.com/mindspore/mindspore/blob/master/serving/example/cpp_client/ms_client.cc)
完整代码参考[ms_client](https://gitee.com/mindspore/mindspore/blob/r0.6/serving/example/cpp_client/ms_client.cc)
......@@ -13,8 +13,8 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/summary_record.md" target="_blank"><img src="../_static/logo_source.png"></a>&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/tree/master/tutorials/notebook/mindinsight" target="_blank"><img src="../_static/logo_notebook.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/summary_record.md" target="_blank"><img src="../_static/logo_source.png"></a>&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/tree/r0.6/tutorials/notebook/mindinsight" target="_blank"><img src="../_static/logo_notebook.png"></a>
## 概述
......
......@@ -9,11 +9,11 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/system_metrics.md" target="_blank"><img src="../_static/logo_source.png"></a>&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/system_metrics.md" target="_blank"><img src="../_static/logo_source.png"></a>&nbsp;&nbsp;
## 概述
用户可查看昇腾AI处理器、CPU、内存等系统指标,从而分配适当的资源进行训练。直接[启动MindInsight](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mindinsight_commands.html#id3),点击导航栏的“硬件资源”即可查看。
用户可查看昇腾AI处理器、CPU、内存等系统指标,从而分配适当的资源进行训练。直接[启动MindInsight](https://www.mindspore.cn/tutorial/zh-CN/r0.6/advanced_use/mindinsight_commands.html#id3),点击导航栏的“硬件资源”即可查看。
## 昇腾AI处理器看板
......
......@@ -24,7 +24,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/advanced_use/use_on_the_cloud.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/advanced_use/use_on_the_cloud.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......@@ -69,7 +69,7 @@ ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行
### 执行脚本准备
新建一个自己的OBS桶(例如:`resnet50-train`),在桶中创建代码目录(例如:`resnet50_cifar10_train`),并将以下目录中的所有脚本上传至代码目录:
> <https://gitee.com/mindspore/docs/tree/master/tutorials/tutorial_code/sample_for_cloud/>脚本使用ResNet-50网络在CIFAR-10数据集上进行训练,并在训练结束后验证精度。脚本可以在ModelArts采用`1*Ascend`或`8*Ascend`两种不同规格进行训练任务。
> <https://gitee.com/mindspore/docs/tree/r0.6/tutorials/tutorial_code/sample_for_cloud/>脚本使用ResNet-50网络在CIFAR-10数据集上进行训练,并在训练结束后验证精度。脚本可以在ModelArts采用`1*Ascend`或`8*Ascend`两种不同规格进行训练任务。
为了方便后续创建训练作业,先创建训练输出目录和日志输出目录,本示例创建的目录结构如下:
......@@ -108,7 +108,7 @@ ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行
### 适配OBS数据
MindSpore暂时没有提供直接访问OBS数据的接口,需要通过MoXing提供的API与OBS交互。ModelArts训练脚本在容器中执行,通常选用`/cache`目录作为容器数据存储路径。
> 华为云MoXing提供了丰富的API供用户使用<https://github.com/huaweicloud/ModelArts-Lab/tree/master/docs/moxing_api_doc>,本示例中仅需要使用`copy_parallel`接口。
> 华为云MoXing提供了丰富的API供用户使用<https://github.com/huaweicloud/ModelArts-Lab/tree/r0.6/docs/moxing_api_doc>,本示例中仅需要使用`copy_parallel`接口。
1. 将OBS中存储的数据下载至执行容器。
......
......@@ -24,9 +24,9 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_zh_cn/quick_start/quick_start.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/source_zh_cn/quick_start/quick_start.md" target="_blank"><img src="../_static/logo_source.png"></a>
&nbsp;&nbsp;
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/notebook/quick_start.ipynb" target="_blank"><img src="../_static/logo_notebook.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.6/tutorials/notebook/quick_start.ipynb" target="_blank"><img src="../_static/logo_notebook.png"></a>
## 概述
......@@ -40,7 +40,7 @@
5. 加载保存的模型,进行推理。
6. 验证模型,加载测试数据集和训练后的模型,验证结果精度。
> 你可以在这里找到完整可运行的样例代码:<https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/lenet.py> 。
> 你可以在这里找到完整可运行的样例代码:<https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/lenet.py> 。
这是简单、基础的应用流程,其他高级、复杂的应用可以基于这个基本流程进行扩展。
......@@ -86,7 +86,7 @@
import os
```
详细的MindSpore的模块说明,可以在[MindSpore API页面](https://www.mindspore.cn/api/zh-CN/master/index.html)中搜索查询。
详细的MindSpore的模块说明,可以在[MindSpore API页面](https://www.mindspore.cn/api/zh-CN/r0.6/index.html)中搜索查询。
### 配置运行信息
......@@ -182,7 +182,7 @@ def create_dataset(data_path, batch_size=32, repeat_size=1,
先进行shuffle、batch操作,再进行repeat操作,这样能保证1个epoch内数据不重复。
> MindSpore支持进行多种数据处理和增强的操作,各种操作往往组合使用,具体可以参考[数据处理与数据增强](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/data_processing_and_augmentation.html)章节。
> MindSpore支持进行多种数据处理和增强的操作,各种操作往往组合使用,具体可以参考[数据处理与数据增强](https://www.mindspore.cn/tutorial/zh-CN/r0.6/use/data_preparation/data_processing_and_augmentation.html)章节。
## 定义网络
......
......@@ -10,7 +10,7 @@
<div style="display: flex;flex-wrap: wrap;flex-direction: row;justify-content: flex-start;">
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/zh-CN/master/quick_start/quick_video/cpu_ubuntu.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/zh-CN/r0.6/quick_start/quick_video/cpu_ubuntu.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/CPU-Ubuntu.png"
style="max-width: 100%;width: 400px;">
......@@ -34,7 +34,7 @@
</div>
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/zh-CN/master/quick_start/quick_video/cpu_windows.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/zh-CN/r0.6/quick_start/quick_video/cpu_windows.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/windows%E7%AF%87.png"
style="max-width: 100%;width: 400px;">
......@@ -58,7 +58,7 @@
</div>
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/zh-CN/master/quick_start/quick_video/gpu.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/zh-CN/r0.6/quick_start/quick_video/gpu.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/GPU.png"
style="max-width: 100%;width: 400px;">
......@@ -82,7 +82,7 @@
</div>
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/zh-CN/master/quick_start/quick_video/ascend910.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/zh-CN/r0.6/quick_start/quick_video/ascend910.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/Ascend.png"
style="max-width: 100%;width: 400px;">
......@@ -115,7 +115,7 @@
<div style="display: flex;flex-wrap: wrap;flex-direction: row;justify-content: flex-start;">
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/zh-CN/master/quick_start/quick_video/quick_start_video.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/zh-CN/r0.6/quick_start/quick_video/quick_start_video.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/%E5%BF%AB%E9%80%9F%E5%85%A5%E9%97%A8.png"
style="max-width: 100%;width: 400px;">
......@@ -139,7 +139,7 @@
</div>
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/zh-CN/master/quick_start/quick_video/saving_and_loading_model_parameters.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/zh-CN/r0.6/quick_start/quick_video/saving_and_loading_model_parameters.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/%E6%A8%A1%E5%9E%8B%E5%8F%82%E6%95%B0%E7%9A%84%E4%BF%9D%E5%AD%98%E5%92%8C%E5%8A%A0%E8%BD%BD%20.png"
style="max-width: 100%;width: 400px;">
......@@ -163,7 +163,7 @@
</div>
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/zh-CN/master/quick_start/quick_video/customized_debugging.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/zh-CN/r0.6/quick_start/quick_video/customized_debugging.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/%E8%87%AA%E5%AE%9A%E4%B9%89%E8%B0%83%E8%AF%95%20.png"
style="max-width: 100%;width: 400px;">
......@@ -187,7 +187,7 @@
</div>
<div
class="video-item-wraper" style="width: 33.3%;display: flex;justify-content: center;align-items: center;padding: 10px;box-sizing: border-box;">
<a href="https://www.mindspore.cn/tutorial/zh-CN/master/quick_start/quick_video/mindInsight_installation_and_common_commands.html" target="_blank"
<a href="https://www.mindspore.cn/tutorial/zh-CN/r0.6/quick_start/quick_video/mindInsight_installation_and_common_commands.html" target="_blank"
style="position: relative;">
<img src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/cover/%E6%89%8B%E6%8A%8A%E6%89%8B%E7%B3%BB%E5%88%97/%E5%AE%89%E8%A3%85%E4%B8%8E%E5%B8%B8%E7%94%A8%E5%91%BD%E4%BB%A4.png"
style="max-width: 100%;width: 400px;">
......
......@@ -6,4 +6,4 @@
<source id="mp46" src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/video/%E8%87%AA%E5%AE%9A%E4%B9%89%E8%B0%83%E8%AF%95.mp4" type="video/mp4">
</video>
**查看完整教程**<https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/customized_debugging_information.html>
\ No newline at end of file
**查看完整教程**<https://www.mindspore.cn/tutorial/zh-CN/r0.6/advanced_use/customized_debugging_information.html>
\ No newline at end of file
......@@ -8,4 +8,4 @@
**立即安装**<https://www.mindspore.cn/install>
**查看更多命令**<https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mindinsight_commands.html>
\ No newline at end of file
**查看更多命令**<https://www.mindspore.cn/tutorial/zh-CN/r0.6/advanced_use/mindinsight_commands.html>
\ No newline at end of file
......@@ -6,6 +6,6 @@
<source id="mp44" src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/video/%E6%89%8B%E6%8A%8A%E6%89%8B%E5%BF%AB%E9%80%9F%E5%85%A5%E9%97%A8.mp4" type="video/mp4">
</video>
**查看代码**<https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/lenet.py>
**查看代码**<https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/lenet.py>
**查看完整教程**<https://www.mindspore.cn/tutorial/zh-CN/master/quick_start/quick_start.html>
\ No newline at end of file
**查看完整教程**<https://www.mindspore.cn/tutorial/zh-CN/r0.6/quick_start/quick_start.html>
\ No newline at end of file
......@@ -6,4 +6,4 @@
<source id="mp45" src="https://mindspore-website.obs.cn-north-4.myhuaweicloud.com:443/teaching_video/video/%E6%A8%A1%E5%9E%8B%E5%8F%82%E6%95%B0%E7%9A%84%E4%BF%9D%E5%AD%98%E5%92%8C%E5%8A%A0%E8%BD%BD.mp4" type="video/mp4">
</video>
**查看完整教程**<https://www.mindspore.cn/tutorial/zh-CN/master/use/saving_and_loading_model_parameters.html>
\ No newline at end of file
**查看完整教程**<https://www.mindspore.cn/tutorial/zh-CN/r0.6/use/saving_and_loading_model_parameters.html>
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册