提交 a8a8f427 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!91 fix r0.2 to install

Merge pull request !91 from Hanshize/r0.2
......@@ -21,7 +21,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindSpore master | Ubuntu 16.04(及以上) x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindSpore master | Ubuntu 16.04(及以上) x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.2/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- Ubuntu版本为18.04时,GCC 7.3.0可以直接通过apt命令安装。
- 在联网状态下,安装whl包时会自动下载requirements.txt中的依赖项,其余情况需自行安装。
......@@ -62,7 +62,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.2
```
2. 在源码根目录下执行如下命令编译MindSpore。
......@@ -122,7 +122,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindarmour.git
git clone https://gitee.com/mindspore/mindarmour.git -b r0.2
```
2. 在源码根目录下,执行如下命令编译并安装MindArmour。
......
......@@ -21,7 +21,7 @@ This document describes how to quickly install MindSpore on a Ubuntu system with
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindSpore master | Ubuntu 16.04 or later x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> same as the executable file installation dependencies. |
| MindSpore master | Ubuntu 16.04 or later x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.2/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> same as the executable file installation dependencies. |
- When Ubuntu version is 18.04, GCC 7.3.0 can be installed by using apt command.
- When the network is connected, dependency items in the requirements.txt file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......@@ -62,7 +62,7 @@ This document describes how to quickly install MindSpore on a Ubuntu system with
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.2
```
2. Run the following command in the root directory of the source code to compile MindSpore:
......@@ -122,7 +122,7 @@ If you need to conduct AI model security research or enhance the security of the
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindarmour.git
git clone https://gitee.com/mindspore/mindarmour.git -b r0.2
```
2. Run the following command in the root directory of the source code to compile and install MindArmour:
......
......@@ -20,7 +20,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindSpore master | Windows 10 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [MinGW-W64 GCC-7.3.0](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z) x86_64-posix-seh <br> - [ActivePerl](http://downloads.activestate.com/ActivePerl/releases/5.24.3.2404/ActivePerl-5.24.3.2404-MSWin32-x64-404865.exe) 5.24.3.2404 <br> - [CMake](https://cmake.org/download/) 3.14.1 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindSpore master | Windows 10 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.2/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [MinGW-W64 GCC-7.3.0](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z) x86_64-posix-seh <br> - [ActivePerl](http://downloads.activestate.com/ActivePerl/releases/5.24.3.2404/ActivePerl-5.24.3.2404-MSWin32-x64-404865.exe) 5.24.3.2404 <br> - [CMake](https://cmake.org/download/) 3.14.1 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载requirements.txt中的依赖项,其余情况需自行安装。
......@@ -62,7 +62,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.2
```
2. 在源码根目录下执行如下命令编译MindSpore。
......
......@@ -20,7 +20,7 @@ This document describes how to quickly install MindSpore on a Windows system wit
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindSpore master | Windows 10 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [MinGW-W64 GCC-7.3.0](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z) x86_64-posix-seh <br> - [ActivePerl](http://downloads.activestate.com/ActivePerl/releases/5.24.3.2404/ActivePerl-5.24.3.2404-MSWin32-x64-404865.exe) 5.24.3.2404 <br> - [CMake](https://cmake.org/download/) 3.14.1 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
| MindSpore master | Windows 10 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.2/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [MinGW-W64 GCC-7.3.0](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z) x86_64-posix-seh <br> - [ActivePerl](http://downloads.activestate.com/ActivePerl/releases/5.24.3.2404/ActivePerl-5.24.3.2404-MSWin32-x64-404865.exe) 5.24.3.2404 <br> - [CMake](https://cmake.org/download/) 3.14.1 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
- When the network is connected, dependency items in the requirements.txt file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......@@ -62,7 +62,7 @@ This document describes how to quickly install MindSpore on a Windows system wit
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.2
```
2. Run the following command in the root directory of the source code to compile MindSpore:
......
......@@ -33,7 +33,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindSpore master | - Ubuntu 16.04(及以上) x86_64 <br> - EulerOS 2.8 arrch64 <br> - EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI处理器配套软件包(对应版本Atlas T 1.1.T107) <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI处理器配套软件包(对应版本Atlas T 1.1.T107) <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindSpore master | - Ubuntu 16.04(及以上) x86_64 <br> - EulerOS 2.8 arrch64 <br> - EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI处理器配套软件包(对应版本Atlas T 1.1.T107) <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.2/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI处理器配套软件包(对应版本Atlas T 1.1.T107) <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- 确认当前用户有权限访问Ascend 910 AI处理器配套软件包(对应版本Atlas T 1.1.T107)的安装路径`/usr/local/Ascend`,若无权限,需要root用户将当前用户添加到`/usr/local/Ascend`所在的用户组,具体配置请详见配套软件包的说明文档。
- Ubuntu版本为18.04时,GCC 7.3.0可以直接通过apt命令安装。
......@@ -82,7 +82,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.2
```
2. 在源码根目录下,执行如下命令编译MindSpore。
......@@ -185,7 +185,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindinsight.git
git clone https://gitee.com/mindspore/mindinsight.git -b r0.2
```
> **不能**直接在仓库主页下载zip包获取源码。
......@@ -250,7 +250,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindarmour.git
git clone https://gitee.com/mindspore/mindarmour.git -b r0.2
```
2. 在源码根目录下,执行如下命令编译并安装MindArmour。
......
......@@ -32,7 +32,7 @@ This document describes how to quickly install MindSpore on an Ascend AI process
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindSpore master | - Ubuntu 16.04 or later x86_64 <br> - EulerOS 2.8 arrch64 <br> - EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI processor software package(Version:Atlas T 1.1.T107) <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI processor software package(Version:Atlas T 1.1.T107) <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
| MindSpore master | - Ubuntu 16.04 or later x86_64 <br> - EulerOS 2.8 arrch64 <br> - EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI processor software package(Version:Atlas T 1.1.T107) <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.2/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI processor software package(Version:Atlas T 1.1.T107) <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
- Confirm that the current user has the right to access the installation path `/usr/local/Ascend `of Ascend 910 AI processor software package(Version:Atlas T 1.1.T107). If not, the root user needs to add the current user to the user group where `/usr/local/Ascend` is located. For the specific configuration, please refer to the software package instruction document.
- When Ubuntu version is 18.04, GCC 7.3.0 can be installed by using apt command.
......@@ -81,7 +81,7 @@ The compilation and installation must be performed on the Ascend 910 AI processo
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.2
```
2. Run the following command in the root directory of the source code to compile MindSpore:
......@@ -184,7 +184,7 @@ If you need to analyze information such as model scalars, graphs, and model trac
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindinsight.git
git clone https://gitee.com/mindspore/mindinsight.git -b r0.2
```
> You are **not** supposed to obtain the source code from the zip package downloaded from the repository homepage.
......@@ -251,7 +251,7 @@ If you need to conduct AI model security research or enhance the security of the
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindarmour.git
git clone https://gitee.com/mindspore/mindarmour.git -b r0.2
```
2. Run the following command in the root directory of the source code to compile and install MindArmour:
......
......@@ -28,7 +28,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindSpore master | Ubuntu 16.04(及以上) x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CUDA 9.2](https://developer.nvidia.com/cuda-92-download-archive) / [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> - [OpenMPI](https://www.open-mpi.org/faq/?category=building#easy-build) 3.1.5 (可选,单机多卡/多机多卡训练需要) <br> - [NCCL](https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#debian) 2.4.8-1 (可选,单机多卡/多机多卡训练需要) <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [Autoconf](https://www.gnu.org/software/autoconf) >= 2.69 <br> - [Libtool](https://www.gnu.org/software/libtool) >= 2.4.6-29.fc30 <br> - [Automake](https://www.gnu.org/software/automake) >= 1.15.1 <br> - [CUDA 9.2](https://developer.nvidia.com/cuda-92-download-archive) / [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindSpore master | Ubuntu 16.04(及以上) x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CUDA 9.2](https://developer.nvidia.com/cuda-92-download-archive) / [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> - [OpenMPI](https://www.open-mpi.org/faq/?category=building#easy-build) 3.1.5 (可选,单机多卡/多机多卡训练需要) <br> - [NCCL](https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#debian) 2.4.8-1 (可选,单机多卡/多机多卡训练需要) <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.2/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [Autoconf](https://www.gnu.org/software/autoconf) >= 2.69 <br> - [Libtool](https://www.gnu.org/software/libtool) >= 2.4.6-29.fc30 <br> - [Automake](https://www.gnu.org/software/automake) >= 1.15.1 <br> - [CUDA 9.2](https://developer.nvidia.com/cuda-92-download-archive) / [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- Ubuntu版本为18.04时,GCC 7.3.0可以直接通过apt命令安装。
- 在联网状态下,安装whl包时会自动下载requirements.txt中的依赖项,其余情况需自行安装。
......@@ -64,7 +64,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.2
```
2. 在源码根目录下执行如下命令编译MindSpore。
......@@ -149,7 +149,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindinsight.git
git clone https://gitee.com/mindspore/mindinsight.git -b r0.2
```
> **不能**直接在仓库主页下载zip包获取源码。
......@@ -214,7 +214,7 @@
1. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindarmour.git
git clone https://gitee.com/mindspore/mindarmour.git -b r0.2
```
2. 在源码根目录下,执行如下命令编译并安装MindArmour。
......
......@@ -28,7 +28,7 @@ This document describes how to quickly install MindSpore on a NVIDIA GPU environ
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindSpore master | Ubuntu 16.04 or later x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CUDA 9.2](https://developer.nvidia.com/cuda-92-download-archive) / [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> - [OpenMPI](https://www.open-mpi.org/faq/?category=building#easy-build) 3.1.5 (optional, required for single-node/multi-GPU and multi-node/multi-GPU training) <br> - [NCCL](https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#debian) 2.4.8-1 (optional, required for single-node/multi-GPU and multi-node/multi-GPU training) <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/master/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [Autoconf](https://www.gnu.org/software/autoconf) >= 2.69 <br> - [Libtool](https://www.gnu.org/software/libtool) >= 2.4.6-29.fc30 <br> - [Automake](https://www.gnu.org/software/automake) >= 1.15.1 <br> - [CUDA 9.2](https://developer.nvidia.com/cuda-92-download-archive) / [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
| MindSpore master | Ubuntu 16.04 or later x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CUDA 9.2](https://developer.nvidia.com/cuda-92-download-archive) / [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> - [OpenMPI](https://www.open-mpi.org/faq/?category=building#easy-build) 3.1.5 (optional, required for single-node/multi-GPU and multi-node/multi-GPU training) <br> - [NCCL](https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#debian) 2.4.8-1 (optional, required for single-node/multi-GPU and multi-node/multi-GPU training) <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.2/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [Autoconf](https://www.gnu.org/software/autoconf) >= 2.69 <br> - [Libtool](https://www.gnu.org/software/libtool) >= 2.4.6-29.fc30 <br> - [Automake](https://www.gnu.org/software/automake) >= 1.15.1 <br> - [CUDA 9.2](https://developer.nvidia.com/cuda-92-download-archive) / [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
- When Ubuntu version is 18.04, GCC 7.3.0 can be installed by using apt command.
- When the network is connected, dependency items in the requirements.txt file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......@@ -64,7 +64,7 @@ This document describes how to quickly install MindSpore on a NVIDIA GPU environ
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.2
```
2. Run the following command in the root directory of the source code to compile MindSpore:
......@@ -149,7 +149,7 @@ If you need to analyze information such as model scalars, graphs, and model trac
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindinsight.git
git clone https://gitee.com/mindspore/mindinsight.git -b r0.2
```
> You are **not** supposed to obtain the source code from the zip package downloaded from the repository homepage.
......@@ -216,7 +216,7 @@ If you need to conduct AI model security research or enhance the security of the
1. Download the source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindarmour.git
git clone https://gitee.com/mindspore/mindarmour.git -b r0.2
```
2. Run the following command in the root directory of the source code to compile and install MindArmour:
......
......@@ -62,7 +62,7 @@ Next, let's use MindSpore to solve the image classification task. The overall pr
5. Call the high-level `Model` API to train and save the model file.
6. Load the saved model for inference.
> This example is for the hardware platform of the Ascend 910 AI processor. You can find the complete executable sample code at: <https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/resnet>.
> This example is for the hardware platform of the Ascend 910 AI processor. You can find the complete executable sample code at: <https://gitee.com/mindspore/docs/blob/r0.2/tutorials/tutorial_code/resnet>.
The key parts of the task process code are explained below.
......
......@@ -30,7 +30,7 @@ Among them:
In this tutorial, we will learn how to train the ResNet-50 network in `DATA_PARALLEL` or `AUTO_PARALLEL` mode on MindSpore.
> The current sample is for the Ascend 910 AI processor. CPU and GPU processors are not supported for now.
> You can find the complete executable sample code at:<https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/distributed_training/resnet50_distributed_training.py>.
> You can find the complete executable sample code at:<https://gitee.com/mindspore/docs/blob/r0.2/tutorials/tutorial_code/distributed_training/resnet50_distributed_training.py>.
## Preparations
......@@ -160,7 +160,7 @@ def create_dataset(repeat_num=1, batch_size=32, rank_id=0, rank_size=1):
In `DATA_PARALLEL` and `AUTO_PARALLEL` modes, the network definition mode is the same as that of a single-node system. For sample code, see at
<https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/resnet/resnet.py>.
<https://gitee.com/mindspore/docs/blob/r0.2/tutorials/tutorial_code/resnet/resnet.py>.
## Defining the Loss Function and Optimizer
......
......@@ -27,7 +27,7 @@ At the beginning of AI algorithm design, related security threats are sometimes
This section describes how to use MindArmour in adversarial attack and defense by taking the Fast Gradient Sign Method (FGSM) attack algorithm and Natural Adversarial Defense (NAD) algorithm as examples.
> The current sample is for CPU, GPU and Ascend 910 AI processor. You can find the complete executable sample code at:<https://gitee.com/mindspore/docs/tree/master/tutorials/tutorial_code/model_safety>
> The current sample is for CPU, GPU and Ascend 910 AI processor. You can find the complete executable sample code at:<https://gitee.com/mindspore/docs/tree/r0.2/tutorials/tutorial_code/model_safety>
> - mnist_attack_fgsm.py: contains attack code.
> - mnist_defense_nad.py: contains defense code.
......
......@@ -58,7 +58,7 @@ The compilation procedure is as follows:
2. Download source code from the code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.2
```
3. Run the following command in the root directory of the source code to compile MindSpore Predict: -I indicates options for compiling MindSpore Predict and the parameter is the target platform architecture. Currently, only the Android arm64 platform is supported.
......
......@@ -35,7 +35,7 @@ During the practice, a simple image classification function is implemented. The
5. Load the saved model for inference.
6. Validate the model, load the test dataset and trained model, and validate the result accuracy.
> You can find the complete executable sample code at <https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/lenet.py>.
> You can find the complete executable sample code at <https://gitee.com/mindspore/docs/blob/r0.2/tutorials/tutorial_code/lenet.py>.
This is a simple and basic application process. For other advanced and complex applications, extend this basic process as needed.
......
......@@ -63,7 +63,7 @@ MindSpore当前支持的图像分类网络包括:典型网络LeNet、AlexNet
6. 加载保存的模型进行推理
> 本例面向Ascend 910 AI处理器硬件平台,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/resnet>
> 本例面向Ascend 910 AI处理器硬件平台,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/blob/r0.2/tutorials/tutorial_code/resnet>
下面对任务流程中各个环节及代码关键片段进行解释说明。
......
......@@ -30,7 +30,7 @@
本篇教程我们主要讲解如何在MindSpore上通过数据并行及自动并行模式训练ResNet-50网络。
> 本例面向Ascend 910 AI处理器硬件平台,暂不支持CPU和GPU场景。
> 你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/distributed_training/resnet50_distributed_training.py>
> 你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/blob/r0.2/tutorials/tutorial_code/distributed_training/resnet50_distributed_training.py>
## 准备环节
......@@ -164,7 +164,7 @@ def create_dataset(repeat_num=1, batch_size=32, rank_id=0, rank_size=1):
## 定义网络
数据并行及自动并行模式下,网络定义方式与单机一致。代码请参考: <https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/resnet/resnet.py>
数据并行及自动并行模式下,网络定义方式与单机一致。代码请参考: <https://gitee.com/mindspore/docs/blob/r0.2/tutorials/tutorial_code/resnet/resnet.py>
## 定义损失函数及优化器
......
......@@ -26,7 +26,7 @@ AI算法设计之初普遍未考虑相关的安全威胁,使得AI算法的判
这里通过图像分类任务上的对抗性攻防,以攻击算法FGSM和防御算法NAD为例,介绍MindArmour在对抗攻防上的使用方法。
> 本例面向CPU、GPU、Ascend 910 AI处理器,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/tree/master/tutorials/tutorial_code/model_safety>
> 本例面向CPU、GPU、Ascend 910 AI处理器,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/tree/r0.2/tutorials/tutorial_code/model_safety>
> - mnist_attack_fgsm.py:包含攻击代码。
> - mnist_defense_nad.py:包含防御代码。
......
......@@ -57,7 +57,7 @@ MindSpore Predict是一个轻量级的深度神经网络推理引擎,提供了
2. 从代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.2
```
3. 在源码根目录下,执行如下命令编译MindSpore Predict。-I为编译MindSpore Predict的编译参数,-I的参数为目标端侧平台,目前仅支持安卓arm64平台。
......
......@@ -36,7 +36,7 @@
5. 加载保存的模型,进行推理。
6. 验证模型,加载测试数据集和训练后的模型,验证结果精度。
> 你可以在这里找到完整可运行的样例代码:<https://gitee.com/mindspore/docs/blob/master/tutorials/tutorial_code/lenet.py> 。
> 你可以在这里找到完整可运行的样例代码:<https://gitee.com/mindspore/docs/blob/r0.2/tutorials/tutorial_code/lenet.py> 。
这是简单、基础的应用流程,其他高级、复杂的应用可以基于这个基本流程进行扩展。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册