提交 a4f2683e 编写于 作者: L lvmingfu

modify codes formats in quantization tutorials for r0.7

上级 215ba304
...@@ -82,47 +82,71 @@ Next, the LeNet network is used as an example to describe steps 3 and 6. ...@@ -82,47 +82,71 @@ Next, the LeNet network is used as an example to describe steps 3 and 6.
Define a fusion network and replace the specified operators. Define a fusion network and replace the specified operators.
1. Use the `nn.Conv2dBnAct` operator to replace the three operators `nn.Conv2d`, `nn.batchnorm`, and `nn.relu` in the original network model. 1. Use the `nn.Conv2dBnAct` operator to replace the two operators `nn.Conv2d` and `nn.ReLU` in the original network model.
2. Use the `nn.DenseBnAct` operator to replace the three operators `nn.Dense`, `nn.batchnorm`, and `nn.relu` in the original network model. 2. Use the `nn.DenseBnAct` operator to replace the two operators `nn.Dense` and `nn.ReLU` in the original network model.
> Even if the `nn.Dense` and `nn.Conv2d` operators are not followed by `nn.batchnorm` and `nn.relu`, the preceding two replacement operations must be performed as required. > Even if the `nn.Dense` and `nn.Conv2d` operators are not followed by `nn.BatchNorm*` and `nn.ReLU`, the preceding two replacement operations must be performed as required.
The definition of the original network model is as follows: The definition of the original network model LeNet5 is as follows:
```python ```python
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""weight initial for conv layer"""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""weight initial for fc layer"""
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
class LeNet5(nn.Cell): class LeNet5(nn.Cell):
def __init__(self, num_class=10): """
super(LeNet5, self).__init__() Lenet network
self.num_class = num_class
self.conv1 = nn.Conv2d(1, 6, kernel_size=5) Args:
self.bn1 = nn.batchnorm(6) num_class (int): Num classes. Default: 10.
self.act1 = nn.relu()
self.conv2 = nn.Conv2d(6, 16, kernel_size=5) Returns:
self.bn2 = nn.batchnorm(16) Tensor, output tensor
self.act2 = nn.relu() Examples:
>>> LeNet(num_class=10)
self.fc1 = nn.Dense(16 * 5 * 5, 120) """
self.fc2 = nn.Dense(120, 84) def __init__(self, num_class=10, channel=1):
self.act3 = nn.relu() super(LeNet5, self).__init__()
self.fc3 = nn.Dense(84, self.num_class) self.num_class = num_class
self.conv1 = conv(channel, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, self.num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
def construct(self, x): def construct(self, x):
x = self.conv1(x) x = self.conv1(x)
x = self.bn1(x) x = self.relu(x)
x = self.act1(x)
x = self.max_pool2d(x) x = self.max_pool2d(x)
x = self.conv2(x) x = self.conv2(x)
x = self.bn2(x) x = self.relu(x)
x = self.act2(x)
x = self.max_pool2d(x) x = self.max_pool2d(x)
x = self.flattern(x) x = self.flatten(x)
x = self.fc1(x) x = self.fc1(x)
x = self.act3(x) x = self.relu(x)
x = self.fc2(x) x = self.fc2(x)
x = self.act3(x) x = self.relu(x)
x = self.fc3(x) x = self.fc3(x)
return x return x
``` ```
......
...@@ -82,47 +82,71 @@ MindSpore的感知量化训练是在训练基础上,使用低精度数据替 ...@@ -82,47 +82,71 @@ MindSpore的感知量化训练是在训练基础上,使用低精度数据替
定义融合网络,在定义网络后,替换指定的算子。 定义融合网络,在定义网络后,替换指定的算子。
1. 使用`nn.Conv2dBnAct`算子替换原网络模型中的3个算子`nn.Conv2d``nn.batchnorm``nn.relu` 1. 使用`nn.Conv2dBnAct`算子替换原网络模型中的2个算子`nn.Conv2d``nn.ReLU`
2. 使用`nn.DenseBnAct`算子替换原网络模型中的3个算子`nn.Dense``nn.batchnorm``nn.relu` 2. 使用`nn.DenseBnAct`算子替换原网络模型中的2个算子`nn.Dense``nn.ReLU`
> 即使`nn.Dense`和`nn.Conv2d`算子后面没有`nn.batchnorm`和`nn.relu`,都要按规定使用上述两个算子进行融合替换。 > 无论`nn.Dense`和`nn.Conv2d`算子后面有没有`nn.BatchNorm*`和`nn.ReLU`,都要按规定使用上述两个算子进行融合替换。
原网络模型的定义如下所示: 原网络模型LeNet5的定义如下所示:
```python ```python
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""weight initial for conv layer"""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""weight initial for fc layer"""
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
class LeNet5(nn.Cell): class LeNet5(nn.Cell):
def __init__(self, num_class=10): """
super(LeNet5, self).__init__() Lenet network
self.num_class = num_class
self.conv1 = nn.Conv2d(1, 6, kernel_size=5) Args:
self.bn1 = nn.batchnorm(6) num_class (int): Num classes. Default: 10.
self.act1 = nn.relu()
self.conv2 = nn.Conv2d(6, 16, kernel_size=5) Returns:
self.bn2 = nn.batchnorm(16) Tensor, output tensor
self.act2 = nn.relu() Examples:
>>> LeNet(num_class=10)
self.fc1 = nn.Dense(16 * 5 * 5, 120) """
self.fc2 = nn.Dense(120, 84) def __init__(self, num_class=10, channel=1):
self.act3 = nn.relu() super(LeNet5, self).__init__()
self.fc3 = nn.Dense(84, self.num_class) self.num_class = num_class
self.conv1 = conv(channel, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, self.num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
def construct(self, x): def construct(self, x):
x = self.conv1(x) x = self.conv1(x)
x = self.bn1(x) x = self.relu(x)
x = self.act1(x)
x = self.max_pool2d(x) x = self.max_pool2d(x)
x = self.conv2(x) x = self.conv2(x)
x = self.bn2(x) x = self.relu(x)
x = self.act2(x)
x = self.max_pool2d(x) x = self.max_pool2d(x)
x = self.flattern(x) x = self.flatten(x)
x = self.fc1(x) x = self.fc1(x)
x = self.act3(x) x = self.relu(x)
x = self.fc2(x) x = self.fc2(x)
x = self.act3(x) x = self.relu(x)
x = self.fc3(x) x = self.fc3(x)
return x return x
``` ```
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册