From a4f2683e6c0cd8e4d0fc2d046af19951f1192f1d Mon Sep 17 00:00:00 2001 From: lvmingfu <630944715@qq.com> Date: Sat, 29 Aug 2020 18:04:37 +0800 Subject: [PATCH] modify codes formats in quantization tutorials for r0.7 --- .../advanced_use/quantization_aware.md | 74 ++++++++++++------- .../advanced_use/quantization_aware.md | 74 ++++++++++++------- 2 files changed, 98 insertions(+), 50 deletions(-) diff --git a/tutorials/source_en/advanced_use/quantization_aware.md b/tutorials/source_en/advanced_use/quantization_aware.md index 7285bd3a..6d09f1fb 100644 --- a/tutorials/source_en/advanced_use/quantization_aware.md +++ b/tutorials/source_en/advanced_use/quantization_aware.md @@ -82,47 +82,71 @@ Next, the LeNet network is used as an example to describe steps 3 and 6. Define a fusion network and replace the specified operators. -1. Use the `nn.Conv2dBnAct` operator to replace the three operators `nn.Conv2d`, `nn.batchnorm`, and `nn.relu` in the original network model. -2. Use the `nn.DenseBnAct` operator to replace the three operators `nn.Dense`, `nn.batchnorm`, and `nn.relu` in the original network model. +1. Use the `nn.Conv2dBnAct` operator to replace the two operators `nn.Conv2d` and `nn.ReLU` in the original network model. +2. Use the `nn.DenseBnAct` operator to replace the two operators `nn.Dense` and `nn.ReLU` in the original network model. -> Even if the `nn.Dense` and `nn.Conv2d` operators are not followed by `nn.batchnorm` and `nn.relu`, the preceding two replacement operations must be performed as required. +> Even if the `nn.Dense` and `nn.Conv2d` operators are not followed by `nn.BatchNorm*` and `nn.ReLU`, the preceding two replacement operations must be performed as required. -The definition of the original network model is as follows: +The definition of the original network model LeNet5 is as follows: ```python +def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): + """weight initial for conv layer""" + weight = weight_variable() + return nn.Conv2d(in_channels, out_channels, + kernel_size=kernel_size, stride=stride, padding=padding, + weight_init=weight, has_bias=False, pad_mode="valid") + + +def fc_with_initialize(input_channels, out_channels): + """weight initial for fc layer""" + weight = weight_variable() + bias = weight_variable() + return nn.Dense(input_channels, out_channels, weight, bias) + + +def weight_variable(): + """weight initial""" + return TruncatedNormal(0.02) + + class LeNet5(nn.Cell): - def __init__(self, num_class=10): + """ + Lenet network + + Args: + num_class (int): Num classes. Default: 10. + + Returns: + Tensor, output tensor + Examples: + >>> LeNet(num_class=10) + + """ + def __init__(self, num_class=10, channel=1): super(LeNet5, self).__init__() self.num_class = num_class - - self.conv1 = nn.Conv2d(1, 6, kernel_size=5) - self.bn1 = nn.batchnorm(6) - self.act1 = nn.relu() - - self.conv2 = nn.Conv2d(6, 16, kernel_size=5) - self.bn2 = nn.batchnorm(16) - self.act2 = nn.relu() - - self.fc1 = nn.Dense(16 * 5 * 5, 120) - self.fc2 = nn.Dense(120, 84) - self.act3 = nn.relu() - self.fc3 = nn.Dense(84, self.num_class) + self.conv1 = conv(channel, 6, 5) + self.conv2 = conv(6, 16, 5) + self.fc1 = fc_with_initialize(16 * 5 * 5, 120) + self.fc2 = fc_with_initialize(120, 84) + self.fc3 = fc_with_initialize(84, self.num_class) + self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) + self.flatten = nn.Flatten() def construct(self, x): x = self.conv1(x) - x = self.bn1(x) - x = self.act1(x) + x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) - x = self.bn2(x) - x = self.act2(x) + x = self.relu(x) x = self.max_pool2d(x) - x = self.flattern(x) + x = self.flatten(x) x = self.fc1(x) - x = self.act3(x) + x = self.relu(x) x = self.fc2(x) - x = self.act3(x) + x = self.relu(x) x = self.fc3(x) return x ``` diff --git a/tutorials/source_zh_cn/advanced_use/quantization_aware.md b/tutorials/source_zh_cn/advanced_use/quantization_aware.md index 6649f7d3..63680c94 100644 --- a/tutorials/source_zh_cn/advanced_use/quantization_aware.md +++ b/tutorials/source_zh_cn/advanced_use/quantization_aware.md @@ -82,47 +82,71 @@ MindSpore的感知量化训练是在训练基础上,使用低精度数据替 定义融合网络,在定义网络后,替换指定的算子。 -1. 使用`nn.Conv2dBnAct`算子替换原网络模型中的3个算子`nn.Conv2d`、`nn.batchnorm`和`nn.relu`。 -2. 使用`nn.DenseBnAct`算子替换原网络模型中的3个算子`nn.Dense`、`nn.batchnorm`和`nn.relu`。 +1. 使用`nn.Conv2dBnAct`算子替换原网络模型中的2个算子`nn.Conv2d`和`nn.ReLU`。 +2. 使用`nn.DenseBnAct`算子替换原网络模型中的2个算子`nn.Dense`和`nn.ReLU`。 -> 即使`nn.Dense`和`nn.Conv2d`算子后面没有`nn.batchnorm`和`nn.relu`,都要按规定使用上述两个算子进行融合替换。 +> 无论`nn.Dense`和`nn.Conv2d`算子后面有没有`nn.BatchNorm*`和`nn.ReLU`,都要按规定使用上述两个算子进行融合替换。 -原网络模型的定义如下所示: +原网络模型LeNet5的定义如下所示: ```python +def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): + """weight initial for conv layer""" + weight = weight_variable() + return nn.Conv2d(in_channels, out_channels, + kernel_size=kernel_size, stride=stride, padding=padding, + weight_init=weight, has_bias=False, pad_mode="valid") + + +def fc_with_initialize(input_channels, out_channels): + """weight initial for fc layer""" + weight = weight_variable() + bias = weight_variable() + return nn.Dense(input_channels, out_channels, weight, bias) + + +def weight_variable(): + """weight initial""" + return TruncatedNormal(0.02) + + class LeNet5(nn.Cell): - def __init__(self, num_class=10): + """ + Lenet network + + Args: + num_class (int): Num classes. Default: 10. + + Returns: + Tensor, output tensor + Examples: + >>> LeNet(num_class=10) + + """ + def __init__(self, num_class=10, channel=1): super(LeNet5, self).__init__() self.num_class = num_class - - self.conv1 = nn.Conv2d(1, 6, kernel_size=5) - self.bn1 = nn.batchnorm(6) - self.act1 = nn.relu() - - self.conv2 = nn.Conv2d(6, 16, kernel_size=5) - self.bn2 = nn.batchnorm(16) - self.act2 = nn.relu() - - self.fc1 = nn.Dense(16 * 5 * 5, 120) - self.fc2 = nn.Dense(120, 84) - self.act3 = nn.relu() - self.fc3 = nn.Dense(84, self.num_class) + self.conv1 = conv(channel, 6, 5) + self.conv2 = conv(6, 16, 5) + self.fc1 = fc_with_initialize(16 * 5 * 5, 120) + self.fc2 = fc_with_initialize(120, 84) + self.fc3 = fc_with_initialize(84, self.num_class) + self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) + self.flatten = nn.Flatten() def construct(self, x): x = self.conv1(x) - x = self.bn1(x) - x = self.act1(x) + x = self.relu(x) x = self.max_pool2d(x) x = self.conv2(x) - x = self.bn2(x) - x = self.act2(x) + x = self.relu(x) x = self.max_pool2d(x) - x = self.flattern(x) + x = self.flatten(x) x = self.fc1(x) - x = self.act3(x) + x = self.relu(x) x = self.fc2(x) - x = self.act3(x) + x = self.relu(x) x = self.fc3(x) return x ``` -- GitLab