提交 9773a3d5 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!328 Update benchmark of resnet

Merge pull request !328 from TingWang/update-benchmark-r0.5
......@@ -9,11 +9,11 @@ For details about the MindSpore pre-trained model, see [Model Zoo](https://gitee
### ResNet
| Network | Network Type | Dataset | MindSpore Version | Resource                 | Precision | Batch Size | Throughput | Speedup |
| Network | Network Type | Dataset | MindSpore Version | Resource                 | Precision | Batch Size | Throughput | Speedup |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| ResNet-50 v1.5 | CNN | ImageNet2012 | 0.2.0-alpha | Ascend: 1 * Ascend 910 </br> CPU:24 Cores | Mixed | 32 | 1787 images/sec | - |
| | | | | Ascend: 8 * Ascend 910 </br> CPU:192 Cores | Mixed | 32 | 13689 images/sec | 0.95 |
| | | | | Ascend: 16 * Ascend 910 </br> CPU:384 Cores | Mixed | 32 | 27090 images/sec | 0.94 |
| ResNet-50 v1.5 | CNN | ImageNet2012 | 0.5.0-beta | Ascend: 1 * Ascend 910 </br> CPU:24 Cores | Mixed | 256 | 2115 images/sec | - |
| | | | | Ascend: 8 * Ascend 910 </br> CPU:192 Cores | Mixed | 256 | 16600 images/sec | 0.98 |
| | | | | Ascend: 16 * Ascend 910 </br> CPU:384 Cores | Mixed | 256 | 32768 images/sec | 0.96 |
1. The preceding performance is obtained based on ModelArts, the HUAWEI CLOUD AI development platform. It is the average performance obtained by the Ascend 910 AI processor during the overall training process.
2. For details about other open source frameworks, see [ResNet-50 v1.5 for TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Classification/RN50v1.5#nvidia-dgx-2-16x-v100-32g).
......
......@@ -8,11 +8,11 @@
### ResNet
| Network | Network Type | Dataset | MindSpore Version | Resource &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; | Precision | Batch Size | Throughput | Speedup |
| Network | Network Type | Dataset | MindSpore Version | Resource &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; | Precision | Batch Size | Throughput | Speedup |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |
| ResNet-50 v1.5 | CNN | ImageNet2012 | 0.2.0-alpha | Ascend: 1 * Ascend 910 </br> CPU:24 Cores | Mixed | 32 | 1787 images/sec | - |
| | | | | Ascend: 8 * Ascend 910 </br> CPU:192 Cores | Mixed | 32 | 13689 images/sec | 0.95 |
| | | | | Ascend: 16 * Ascend 910 </br> CPU:384 Cores | Mixed | 32 | 27090 images/sec | 0.94 |
| ResNet-50 v1.5 | CNN | ImageNet2012 | 0.5.0-beta | Ascend: 1 * Ascend 910 </br> CPU:24 Cores | Mixed | 256 | 2115 images/sec | - |
| | | | | Ascend: 8 * Ascend 910 </br> CPU:192 Cores | Mixed | 256 | 16600 images/sec | 0.98 |
| | | | | Ascend: 16 * Ascend 910 </br> CPU:384 Cores | Mixed | 256 | 32768 images/sec | 0.96 |
1. 以上数据基于华为云AI开发平台ModelArts测试获得,是训练过程整体下沉至Ascend 910 AI处理器执行所得的平均性能。
2. 业界其他开源框架数据可参考:[ResNet-50 v1.5 for TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Classification/RN50v1.5#nvidia-dgx-2-16x-v100-32g)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册