提交 89899ee1 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!641 Update constraints_on_network_construction.md

Merge pull request !641 from fanglei/master
...@@ -93,7 +93,7 @@ ...@@ -93,7 +93,7 @@
| `**` |Scalar and `Tensor` | `**` |Scalar and `Tensor`
| `//` |Scalar and `Tensor` | `//` |Scalar and `Tensor`
| `%` |Scalar and `Tensor` | `%` |Scalar and `Tensor`
| `[]` |The operation object type can be `list`, `tuple`, or `Tensor`. Accessed multiple subscripts of lists and dictionaries can be used as r-values instead of l-values. The index type cannot be Tensor. For details about access constraints for the tuple and Tensor types, see the description of slicing operations. | `[]` |The operation object type can be `list`, `tuple`, or `Tensor`. Accessed multiple subscripts of lists and dictionaries can be used as r-values instead of l-values. Only when the operation object type is `tuple(nn.Cell)`, the index type can be Tensor. `tuple(nn.Cell)` means all elements type of tuple are `nn.Cell`. For details about access constraints for the tuple and Tensor types, see the description of slicing operations.
### Index operation ### Index operation
...@@ -145,7 +145,27 @@ The index operation includes `tuple` and` Tensor`. The following focuses on the ...@@ -145,7 +145,27 @@ The index operation includes `tuple` and` Tensor`. The following focuses on the
- Assignment: for example `tensor_x[..., ::, 1:] = u`. - Assignment: for example `tensor_x[..., ::, 1:] = u`.
- Not supported in other situations - Not supported in other situations
In addition, tuple also supports slice value operation, `tuple_x [start: stop: step]`, which has the same effect as Python, and will not be repeated here. The slice value operations of the tuple type needs to focus on the slice value operation of the operation object type `tuple(nn.Cell)`. This operation is currently only supported by the GPU backend in Graph mode, and its syntax format is like `layers[index](*inputs)`, the example code is as follows:
```python
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.relu = nn.ReLU()
self.softmax = nn.Softmax()
self.layers = (self.relu, self.softmax)
def construct(self, x, index):
x = self.layers[index](x)
return x
```
The grammar has the following constraints:
* Only supports slice value operation with operation object type `tuple(nn.Cell)`.
* The data type of the index value needs to be a Tensor scalar of type `int32`.
* The value range of index value is `[-n, n)`, where `n` is the size of the tuple, and the maximum supported tuple size is 1000.
* The number, type and shape of the input data of the `Construct` function of each Cell element in the tuple are the same, and the number of data output after the `Construct` function runs, the type and shape are also the same.
* Each element in the tuple needs to be defined before the tuple is defined.
Other types of tuple also support slice value operations, but do not support index type as Tensor, support `tuple_x [start: stop: step]`, which has the same effect as Python, and will not be repeated here.
### Unsupported Syntax ### Unsupported Syntax
......
...@@ -93,7 +93,7 @@ ...@@ -93,7 +93,7 @@
| `**` |标量、`Tensor` | `**` |标量、`Tensor`
| `//` |标量、`Tensor` | `//` |标量、`Tensor`
| `%` |标量、`Tensor` | `%` |标量、`Tensor`
| `[]` |操作对象类型支持`list``tuple``Tensor`,支持多重下标访问作为右值,但不支持多重下标访问作为左值,且索引类型不支持Tensor;Tuple、Tensor类型访问限制见切片操作中的说明。 | `[]` |操作对象类型支持`list``tuple``Tensor`,支持多重下标访问作为右值,但不支持多重下标访问作为左值,且索引类型仅当操作对象类型为`tuple(nn.Cell)`的取值操作时支持Tensor(这个操作目前Graph模式下仅GPU后端支持,其中`tuple(nn.Cell)`是指元素类型为nn.Cell的tuple类型);Tuple、Tensor类型访问限制见切片操作中的说明。
### 索引操作 ### 索引操作
...@@ -102,12 +102,15 @@ ...@@ -102,12 +102,15 @@
- 切片索引:index为`slice` - 切片索引:index为`slice`
- 取值:`tensor_x[start:stop:step]`,其中Slice(start:stop:step)与Python的语法相同,这里不再赘述。 - 取值:`tensor_x[start:stop:step]`,其中Slice(start:stop:step)与Python的语法相同,这里不再赘述。
- 赋值:`tensor_x[start:stop:step]=u` - 赋值:`tensor_x[start:stop:step]=u`
- Ellipsis索引:index为`ellipsis` - Ellipsis索引:index为`ellipsis`
- 取值:`tensor_x[...]` - 取值:`tensor_x[...]`
- 赋值:`tensor_x[...]=u` - 赋值:`tensor_x[...]=u`
- 布尔常量索引:index为`True`,index为`False`暂不支持。 - 布尔常量索引:index为`True`,index为`False`暂不支持。
- 取值:`tensor_x[True]` - 取值:`tensor_x[True]`
- 赋值:暂不支持。 - 赋值:暂不支持。
- Tensor索引:index为`Tensor` - Tensor索引:index为`Tensor`
- 取值:`tensor_x[index]``index`必须是`int32``int64`类型的`Tensor`,元素取值范围在`[0, tensor_x.shape[0])` - 取值:`tensor_x[index]``index`必须是`int32``int64`类型的`Tensor`,元素取值范围在`[0, tensor_x.shape[0])`
- 赋值:`tensor_x[index]=U` - 赋值:`tensor_x[index]=U`
...@@ -124,10 +127,11 @@ ...@@ -124,10 +127,11 @@
- 包含`Tensor``Tuple`需满足下面条件: - 包含`Tensor``Tuple`需满足下面条件:
每个`Tensor``shape`一样; 每个`Tensor``shape`一样;
`(len(Tuple),) + Tensor.shape`等于或者可广播为`index.shape + tensor_x.shape[1:]` `(len(Tuple),) + Tensor.shape`等于或者可广播为`index.shape + tensor_x.shape[1:]`
- None常量索引:index为`None` - None常量索引:index为`None`
- 取值:`tensor_x[None]`,结果与numpy保持一致。 - 取值:`tensor_x[None]`,结果与numpy保持一致。
- 赋值:暂不支持。 - 赋值:暂不支持。
- tuple索引:index为`tuple` - tuple索引:index为`tuple`
- tuple元素为slice: - tuple元素为slice:
- 取值:例如`tensor_x[::, :4, 3:0:-1]` - 取值:例如`tensor_x[::, :4, 3:0:-1]`
...@@ -140,7 +144,27 @@ ...@@ -140,7 +144,27 @@
- 赋值:例如`tensor_x[..., ::, 1:]=u` - 赋值:例如`tensor_x[..., ::, 1:]=u`
- 其他情况暂不支持 - 其他情况暂不支持
另外tuple也支持切片取值操作,`tuple_x[start:stop:step]`,与Python的效果相同,这里不再赘述。 tuple类型的切片取值操作,需要重点介绍一下操作对象类型为`tuple(nn.Cell)`的切片取值操作,该操作目前在Graph模式下仅GPU后端支持运行,其语法格式形如`layers[index](*inputs)`,具体示例代码如下:
```python
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.relu = nn.ReLU()
self.softmax = nn.Softmax()
self.layers = (self.relu, self.softmax)
def construct(self, x, index):
x = self.layers[index](x)
return x
```
同时该语法有以下几个约束:
* 只支持操作对象类型为`tuple(nn.Cell)`的切片取值操作。
* 索引值index的数据类型需要是`int32`类型的Tensor标量。
* 索引值index的取值范围为`[-n, n)`, 其中`n`为tuple的size,支持的tuple的size的最大值为1000。
* tuple中的每个Cell元素的Construct函数的输入数据的数目,类型和shape要求相同,且Construct函数运行后输出的数据的数目,类型和shape也要求相同。
* tuple中的每个Cell元素,需要在tuple定义之前完成定义。
其它类型的tuple也支持切片取值操作, 但不支持索引类型为Tensor类型,支持`tuple_x[start:stop:step]`,其中操作对象为与Python的效果相同,这里不再赘述。
### 不支持的语法 ### 不支持的语法
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册