Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
docs
提交
7ad03657
D
docs
项目概览
MindSpore
/
docs
通知
4
Star
2
Fork
2
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
docs
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7ad03657
编写于
4月 28, 2020
作者:
X
Xiaoda
提交者:
Gitee
4月 28, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update tutorials/source_zh_cn/advanced_use/mixed_precision.md.
上级
5c8c4dd2
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
37 addition
and
64 deletion
+37
-64
tutorials/source_zh_cn/advanced_use/mixed_precision.md
tutorials/source_zh_cn/advanced_use/mixed_precision.md
+37
-64
未找到文件。
tutorials/source_zh_cn/advanced_use/mixed_precision.md
浏览文件 @
7ad03657
...
@@ -35,70 +35,56 @@ MindSpore混合精度典型的计算流程如下图所示:
...
@@ -35,70 +35,56 @@ MindSpore混合精度典型的计算流程如下图所示:
## 自动混合精度
## 自动混合精度
使用自动混合精度,需要调用相应的接口,将待训练网络和优化器作为输入传进去;该接口会将整张网络的算子转换成FP16算子(除BatchNorm算子和Loss涉及到的算子外)。
使用自动混合精度,需要调用相应的接口,将待训练网络和优化器作为输入传进去;该接口会将整张网络的算子转换成FP16算子(除BatchNorm算子和Loss涉及到的算子外)。
另外要注意:使用混合精度后,一般要用上Loss Scale,避免数值计算溢出。
具体的实现步骤为:
具体的实现步骤为:
1.
引入MindSpore的混合精度的接口amp;
1.
引入MindSpore的混合精度的接口amp;
2.
定义网络:该步骤和普通的网络定义没有区别(无需手动配置某个算子的精度);
2.
定义网络:该步骤和普通的网络定义没有区别(无需手动配置某个算子的精度);
3.
使用amp.build_train_network()接口封装网络模型
和优化器
,在该步骤中MindSpore会将有需要的算子自动进行类型转换。
3.
使用amp.build_train_network()接口封装网络模型
、优化器和损失函数
,在该步骤中MindSpore会将有需要的算子自动进行类型转换。
代码样例如下:
代码样例如下:
```
python
```
python
import
numpy
as
np
import
numpy
as
np
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
import
mindspore.common.dtype
as
mstype
from
mindspore
import
Tensor
,
context
from
mindspore
import
Tensor
,
context
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
operations
as
P
from
mindspore.nn
import
WithLossCell
from
mindspore.nn
import
Momentum
from
mindspore.nn
import
Momentum
from
mindspore.nn.loss
import
MSELoss
# The interface of Auto_mixed precision
# The interface of Auto_mixed precision
from
mindspore
.train
import
amp
from
mindspore
import
amp
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
context
.
set_context
(
device_target
=
"Ascend"
)
context
.
set_context
(
device_target
=
"Ascend"
)
# Define network
# Define network
class
LeNet5
(
nn
.
Cell
):
class
Net
(
nn
.
Cell
):
def
__init__
(
self
):
def
__init__
(
self
,
input_channel
,
out_channel
):
super
(
LeNet5
,
self
).
__init__
()
super
(
Net
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
1
,
6
,
5
,
pad_mode
=
'valid'
)
self
.
dense
=
nn
.
Dense
(
input_channel
,
out_channel
)
self
.
conv2
=
nn
.
Conv2d
(
6
,
16
,
5
,
pad_mode
=
'valid'
)
self
.
relu
=
P
.
ReLU
()
self
.
fc1
=
nn
.
Dense
(
16
*
5
*
5
,
120
)
self
.
fc2
=
nn
.
Dense
(
120
,
84
)
self
.
fc3
=
nn
.
Dense
(
84
,
10
)
self
.
relu
=
nn
.
ReLU
()
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
flatten
=
P
.
Flatten
()
def
construct
(
self
,
x
):
def
construct
(
self
,
x
):
x
=
self
.
max_pool2d
(
self
.
relu
(
self
.
conv1
(
x
)))
x
=
self
.
dense
(
x
)
x
=
self
.
max_pool2d
(
self
.
relu
(
self
.
conv2
(
x
)))
x
=
self
.
relu
(
x
)
x
=
self
.
flatten
(
x
)
x
=
self
.
relu
(
self
.
fc1
(
x
))
x
=
self
.
relu
(
self
.
fc2
(
x
))
x
=
self
.
fc3
(
x
)
return
x
return
x
# Initialize network
# Initialize network
net
=
LeNet5
(
)
net
=
Net
(
512
,
128
)
# Define training data, label and sens
# Define training data, label
predict
=
Tensor
(
np
.
ones
([
1
,
1
,
32
,
32
]).
astype
(
np
.
float32
)
*
0.01
)
predict
=
Tensor
(
np
.
ones
([
64
,
512
]).
astype
(
np
.
float32
)
*
0.01
)
label
=
Tensor
(
np
.
zeros
([
1
,
10
]).
astype
(
np
.
float32
))
label
=
Tensor
(
np
.
zeros
([
64
,
128
]).
astype
(
np
.
float32
))
scaling_sens
=
Tensor
(
np
.
full
((
1
),
1.0
),
dtype
=
mstype
.
float32
)
# Define Loss and Optimizer
# Define Loss and Optimizer
loss
=
MSELos
s
()
loss
=
nn
.
SoftmaxCrossEntropyWithLogit
s
()
optimizer
=
Momentum
(
params
=
net
.
trainable_params
(),
learning_rate
=
0.1
,
momentum
=
0.9
)
optimizer
=
Momentum
(
params
=
net
.
trainable_params
(),
learning_rate
=
0.1
,
momentum
=
0.9
)
net_with_loss
=
WithLossCell
(
net
,
loss
)
train_network
=
amp
.
build_train_network
(
net
,
optimizer
,
loss
,
level
=
"O2"
,
loss_scale_manager
=
None
)
train_network
=
amp
.
build_train_network
(
net_with_loss
,
optimizer
,
level
=
"O2"
)
# Run training
# Run training
output
=
train_network
(
predict
,
label
,
scaling_sens
)
output
=
train_network
(
predict
,
label
)
```
```
...
@@ -109,66 +95,53 @@ MindSpore还支持手动混合精度。假定在网络中只有一个Dense Layer
...
@@ -109,66 +95,53 @@ MindSpore还支持手动混合精度。假定在网络中只有一个Dense Layer
以下是一个手动混合精度的实现步骤:
以下是一个手动混合精度的实现步骤:
1.
定义网络: 该步骤与自动混合精度中的步骤2类似;
1.
定义网络: 该步骤与自动混合精度中的步骤2类似;
2.
配置混合精度:
LeNet通过net.to_float(mstype.float16),把该Cell及其子Cell中所有的算子都配置成FP16;然后,将LeNet中的fc3
算子手动配置成FP32;
2.
配置混合精度:
通过net.to_float(mstype.float16),把该Cell及其子Cell中所有的算子都配置成FP16;然后,将模型中的dense
算子手动配置成FP32;
3.
使用TrainOneStep
WithLossScale
Cell封装网络模型和优化器。
3.
使用TrainOneStepCell封装网络模型和优化器。
代码样例如下:
代码样例如下:
```
python
```
python
import
numpy
as
np
import
numpy
as
np
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
import
mindspore.common.dtype
as
mstype
import
mindspore.common.dtype
as
mstype
from
mindspore
import
Tensor
,
context
from
mindspore
import
Tensor
,
context
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
operations
as
P
from
mindspore.nn
import
WithLossCell
,
TrainOneStep
WithLossScale
Cell
from
mindspore.nn
import
WithLossCell
,
TrainOneStepCell
from
mindspore.nn
import
Momentum
from
mindspore.nn
import
Momentum
from
mindspore.nn.loss
import
MSELoss
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
)
context
.
set_context
(
device_target
=
"Ascend"
)
context
.
set_context
(
device_target
=
"Ascend"
)
# Define network
# Define network
class
LeNet5
(
nn
.
Cell
):
class
Net
(
nn
.
Cell
):
def
__init__
(
self
):
def
__init__
(
self
,
input_channel
,
out_channel
):
super
(
LeNet5
,
self
).
__init__
()
super
(
Net
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
1
,
6
,
5
,
pad_mode
=
'valid'
)
self
.
dense
=
nn
.
Dense
(
input_channel
,
out_channel
)
self
.
conv2
=
nn
.
Conv2d
(
6
,
16
,
5
,
pad_mode
=
'valid'
)
self
.
relu
=
P
.
ReLU
()
self
.
fc1
=
nn
.
Dense
(
16
*
5
*
5
,
120
)
self
.
fc2
=
nn
.
Dense
(
120
,
84
)
self
.
fc3
=
nn
.
Dense
(
84
,
10
)
self
.
relu
=
nn
.
ReLU
()
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
flatten
=
P
.
Flatten
()
def
construct
(
self
,
x
):
def
construct
(
self
,
x
):
x
=
self
.
max_pool2d
(
self
.
relu
(
self
.
conv1
(
x
)))
x
=
self
.
dense
(
x
)
x
=
self
.
max_pool2d
(
self
.
relu
(
self
.
conv2
(
x
)))
x
=
self
.
relu
(
x
)
x
=
self
.
flatten
(
x
)
x
=
self
.
relu
(
self
.
fc1
(
x
))
x
=
self
.
relu
(
self
.
fc2
(
x
))
x
=
self
.
fc3
(
x
)
return
x
return
x
# Initialize network and set mixing precision
# Initialize network and set mixing precision
net
=
LeNet5
(
)
net
=
Net
(
512
,
128
)
net
.
to_float
(
mstype
.
float16
)
net
.
to_float
(
mstype
.
float16
)
net
.
fc3
.
to_float
(
mstype
.
float32
)
net
.
dense
.
to_float
(
mstype
.
float32
)
# Define training data, label and sens
# Define training data, label
predict
=
Tensor
(
np
.
ones
([
1
,
1
,
32
,
32
]).
astype
(
np
.
float32
)
*
0.01
)
predict
=
Tensor
(
np
.
ones
([
64
,
512
]).
astype
(
np
.
float32
)
*
0.01
)
label
=
Tensor
(
np
.
zeros
([
1
,
10
]).
astype
(
np
.
float32
))
label
=
Tensor
(
np
.
zeros
([
64
,
128
]).
astype
(
np
.
float32
))
scaling_sens
=
Tensor
(
np
.
full
((
1
),
1.0
),
dtype
=
mstype
.
float32
)
# Define Loss and Optimizer
# Define Loss and Optimizer
net
.
set_train
()
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
()
loss
=
MSELoss
()
optimizer
=
Momentum
(
params
=
net
.
trainable_params
(),
learning_rate
=
0.1
,
momentum
=
0.9
)
optimizer
=
Momentum
(
params
=
net
.
trainable_params
(),
learning_rate
=
0.1
,
momentum
=
0.9
)
net_with_loss
=
WithLossCell
(
net
,
loss
)
net_with_loss
=
WithLossCell
(
net
,
loss
)
train_network
=
TrainOneStep
WithLossScale
Cell
(
net_with_loss
,
optimizer
)
train_network
=
TrainOneStepCell
(
net_with_loss
,
optimizer
)
train_network
.
set_train
()
train_network
.
set_train
()
# Run training
# Run training
output
=
train_network
(
predict
,
label
,
scaling_sens
)
output
=
train_network
(
predict
,
label
)
```
```
\ No newline at end of file
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录