The implementation logic is: You can use the `run_context.original_args` method to obtain the `cb_params` dictionary, which contains the main attribute information described above.
In addition, you can modify and add values in the dictionary. In the preceding example, an `init_time` object is defined in `begin` and transferred to the `cb_params` dictionary.
A decision is made at each `step_end`. When the training time is greater than the configured time threshold, a training termination signal will be sent to the `run_context` to terminate the training in advance and the current values of epoch, step, and loss will be printed.
```
epoch: 20 step: 32 loss: 2.298344373703003
```
- Save the checkpoint file with the highest accuracy during training.
```python
from mindspore.train.serialization import _exec_save_checkpoint
This callback function is used to terminate the training within a specified period. You can use the `run_context.original_args` method to obtain the `cb_params` dictionary, which contains the main attribute information described above.
In addition, you can modify and add values in the dictionary. In the preceding example, an `init_time` object is defined in `begin` and transferred to the `cb_params` dictionary.
A decision is made at each `step_end`. When the training time is greater than the configured time threshold, a training termination signal will be sent to the `run_context` to terminate the training in advance and the current values of epoch, step, and loss will be printed.
The specific implementation logic is: define a callback object, and initialize the object to receive the model object and the ds_eval (verification dataset). Verify the accuracy of the model in the step_end phase. When the accuracy is the current highest, manually trigger the save checkpoint method to save the current parameters.