提交 79368bee 编写于 作者: J JunYuLiu

update r0.7 links

上级 ac150e26
......@@ -18,7 +18,7 @@
- [Supported Features](#supported-features)
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/FAQ.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_en/FAQ.md" target="_blank"><img src="./_static/logo_source.png"></a>
## Installation
......@@ -103,7 +103,7 @@ A: After MindSpore is installed on a CPU hardware platform, run the `python -c'i
Q: What can I do if the LSTM example on the official website cannot run on Ascend?
A: Currently, the LSTM runs only on a GPU or CPU and does not support the hardware environment. You can click [here](https://www.mindspore.cn/docs/en/master/operator_list.html) to view the supported operators.
A: Currently, the LSTM runs only on a GPU or CPU and does not support the hardware environment. You can click [here](https://www.mindspore.cn/docs/en/r0.7/operator_list.html) to view the supported operators.
<br/>
......@@ -121,7 +121,7 @@ A: MindSpore uses protocol buffers (protobuf) to store training parameters and c
Q: How do I use models trained by MindSpore on Ascend 310?
A: Ascend 310 supports the offline model (OM). Therefore, you need to export the Open Neural Network Exchange (ONNX) or Ascend intermediate representation (AIR) model and then convert it into OM supported by Ascend 310. For details, see [Multi-Platform Inference](https://www.mindspore.cn/tutorial/en/master/use/multi_platform_inference.html).
A: Ascend 310 supports the offline model (OM). Therefore, you need to export the Open Neural Network Exchange (ONNX) or Ascend intermediate representation (AIR) model and then convert it into OM supported by Ascend 310. For details, see [Multi-Platform Inference](https://www.mindspore.cn/tutorial/en/r0.7/use/multi_platform_inference.html).
<br/>
......@@ -133,19 +133,19 @@ A: When building a network, use `if self.training: x = dropput(x)`. During verif
Q: Where can I view the sample code or tutorial of MindSpore training and inference?
A: Please visit the [MindSpore official website](https://www.mindspore.cn/tutorial/en/master/index.html).
A: Please visit the [MindSpore official website](https://www.mindspore.cn/tutorial/en/r0.7/index.html).
<br/>
Q: What types of model is currently supported by MindSpore for training?
A: MindSpore has basic support for common training scenarios, please refer to [Release note](https://gitee.com/mindspore/mindspore/blob/master/RELEASE.md) for detailed information.
A: MindSpore has basic support for common training scenarios, please refer to [Release note](https://gitee.com/mindspore/mindspore/blob/r0.7/RELEASE.md) for detailed information.
<br/>
Q: What are the available recommendation or text generation networks or models provided by MindSpore?
A: Currently, recommendation models such as Wide & Deep, DeepFM, and NCF are under development. In the natural language processing (NLP) field, Bert\_NEZHA is available and models such as MASS are under development. You can rebuild the network into a text generation network based on the scenario requirements. Please stay tuned for updates on the [MindSpore Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
A: Currently, recommendation models such as Wide & Deep, DeepFM, and NCF are under development. In the natural language processing (NLP) field, Bert\_NEZHA is available and models such as MASS are under development. You can rebuild the network into a text generation network based on the scenario requirements. Please stay tuned for updates on the [MindSpore Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.7/model_zoo).
<br/>
......@@ -163,7 +163,7 @@ A: Ascend 310 can only be used for inference. MindSpore supports training on Asc
Q: Does MindSpore require computing units such as GPUs and NPUs? What hardware support is required?
A: MindSpore currently supports CPU, GPU, Ascend, and NPU. Currently, you can try out MindSpore through Docker images on laptops or in environments with GPUs. Some models in MindSpore Model Zoo support GPU-based training and inference, and other models are being improved. For distributed parallel training, MindSpore supports multi-GPU training. You can obtain the latest information from [Road Map](https://www.mindspore.cn/docs/en/master/roadmap.html) and [project release notes](https://gitee.com/mindspore/mindspore/blob/master/RELEASE.md).
A: MindSpore currently supports CPU, GPU, Ascend, and NPU. Currently, you can try out MindSpore through Docker images on laptops or in environments with GPUs. Some models in MindSpore Model Zoo support GPU-based training and inference, and other models are being improved. For distributed parallel training, MindSpore supports multi-GPU training. You can obtain the latest information from [Road Map](https://www.mindspore.cn/docs/en/r0.7/roadmap.html) and [project release notes](https://gitee.com/mindspore/mindspore/blob/r0.7/RELEASE.md).
<br/>
......@@ -175,13 +175,13 @@ A: MindSpore provides pluggable device management interface so that developer co
Q: What is the relationship between MindSpore and ModelArts? Can MindSpore be used on ModelArts?
A: ModelArts is an online training and inference platform on HUAWEI CLOUD. MindSpore is a Huawei deep learning framework. You can view the tutorials on the [MindSpore official website](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/use_on_the_cloud.html) to learn how to train MindSpore models on ModelArts.
A: ModelArts is an online training and inference platform on HUAWEI CLOUD. MindSpore is a Huawei deep learning framework. You can view the tutorials on the [MindSpore official website](https://www.mindspore.cn/tutorial/zh-CN/r0.7/advanced_use/use_on_the_cloud.html) to learn how to train MindSpore models on ModelArts.
<br/>
Q: Does MindSpore support Windows 10?
A: The MindSpore CPU version can be installed on Windows 10. For details about the installation procedure, please refer to the [MindSpore official website tutorial](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mindspore_cpu_win_install.html)
A: The MindSpore CPU version can be installed on Windows 10. For details about the installation procedure, please refer to the [MindSpore official website tutorial](https://www.mindspore.cn/tutorial/zh-CN/r0.7/advanced_use/mindspore_cpu_win_install.html)
## Backend Running
......@@ -207,7 +207,7 @@ A: The problem is that the Graph mode is selected but the PyNative mode is used.
- PyNative mode: dynamic graph mode. In this mode, operators in the neural network are delivered and executed one by one, facilitating the compilation and debugging of the neural network model.
- Graph mode: static graph mode. In this mode, the neural network model is compiled into an entire graph and then delivered for execution. This mode uses technologies such as graph optimization to improve the running performance and facilitates large-scale deployment and cross-platform running.
You can select a proper mode and writing method to complete the training by referring to the official website [tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/debugging_in_pynative_mode.html).
You can select a proper mode and writing method to complete the training by referring to the official website [tutorial](https://www.mindspore.cn/tutorial/en/r0.7/advanced_use/debugging_in_pynative_mode.html).
## Programming Language Extensions
......@@ -253,7 +253,7 @@ A: The TensorFlow's object detection pipeline API belongs to the TensorFlow's Mo
Q: How do I migrate scripts or models of other frameworks to MindSpore?
A: For details about script or model migration, please visit the [MindSpore official website](https://www.mindspore.cn/tutorial/en/master/advanced_use/network_migration.html).
A: For details about script or model migration, please visit the [MindSpore official website](https://www.mindspore.cn/tutorial/en/r0.7/advanced_use/network_migration.html).
<br/>
......
......@@ -2,7 +2,7 @@
`Ascend` `GPU` `CPU` `On Device` `Model Development` `Model Optimization` `Framework Development` `Intermediate` `Expert` `Contributor`
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/architecture.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_en/architecture.md" target="_blank"><img src="./_static/logo_source.png"></a>
The MindSpore framework consists of the Frontend Expression layer, Graph Engine layer, and Backend Runtime layer.
......
......@@ -13,10 +13,10 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/benchmark.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_en/benchmark.md" target="_blank"><img src="./_static/logo_source.png"></a>
This document describes the MindSpore benchmarks.
For details about the MindSpore networks, see [Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
For details about the MindSpore networks, see [Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.7/model_zoo).
## Training Performance
......@@ -29,7 +29,7 @@ For details about the MindSpore networks, see [Model Zoo](https://gitee.com/mind
| | | | | Ascend: 16 * Ascend 910 </br> CPU:384 Cores | Mixed | 256 | 32768 images/sec | 0.96 |
1. The preceding performance is obtained based on ModelArts, the HUAWEI CLOUD AI development platform. It is the average performance obtained by the Ascend 910 AI processor during the overall training process.
2. For details about other open source frameworks, see [ResNet-50 v1.5 for TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Classification/ConvNets/resnet50v1.5).
2. For details about other open source frameworks, see [ResNet-50 v1.5 for TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/r0.7/TensorFlow/Classification/ConvNets/resnet50v1.5).
### BERT
......@@ -39,7 +39,7 @@ For details about the MindSpore networks, see [Model Zoo](https://gitee.com/mind
| | | | | Ascend: 8 * Ascend 910 </br> CPU:192 Cores | Mixed | 96 | 2069 sentences/sec | 0.96 |
1. The preceding performance is obtained based on ModelArts, the HUAWEI CLOUD AI development platform. The network contains 24 hidden layers, the sequence length is 128 tokens, and the vocabulary contains 21128 tokens.
2. For details about other open source frameworks, see [BERT For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT).
2. For details about other open source frameworks, see [BERT For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/r0.7/TensorFlow/LanguageModeling/BERT).
### Wide & Deep (data parallel)
......@@ -49,7 +49,7 @@ For details about the MindSpore networks, see [Model Zoo](https://gitee.com/mind
| | | | | Ascend: 8 * Ascend 910 </br> CPU:192 Cores | Mixed | 16000*8 | 4872849 samples/sec | 0.76 |
1. The preceding performance is obtained based on Atlas 800, and the model is data parallel.
2. For details about other open source frameworks, see [Wide & Deep For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/WideAndDeep)
2. For details about other open source frameworks, see [Wide & Deep For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/r0.7/TensorFlow/Recommendation/WideAndDeep)
### Wide & Deep (Host-Device model parallel)
......@@ -61,4 +61,4 @@ For details about the MindSpore networks, see [Model Zoo](https://gitee.com/mind
| | | | | Ascend: 32 * Ascend 910 </br> CPU:768 Cores | Mixed | 8000*32 | 433423 samples/sec | 0.20 |
1. The preceding performance is obtained based on Atlas 800, and the model is model parallel.
2. For details about other open source frameworks, see [Wide & Deep For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/WideAndDeep)
2. For details about other open source frameworks, see [Wide & Deep For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/r0.7/TensorFlow/Recommendation/WideAndDeep)
......@@ -25,7 +25,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/constraints_on_network_construction.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_en/constraints_on_network_construction.md" target="_blank"><img src="./_static/logo_source.png"></a>
## Overview
MindSpore can compile user source code based on the Python syntax into computational graphs, and can convert common functions or instances inherited from nn.Cell into computational graphs. Currently, MindSpore does not support conversion of any Python source code into computational graphs. Therefore, there are constraints on source code compilation, including syntax constraints and network definition constraints. As MindSpore evolves, the constraints may change.
......@@ -206,8 +206,8 @@ Currently, the following syntax is not supported in network constructors:
## Network Definition Constraints
### Instance Types on the Entire Network
* Common Python function with the [@ms_function](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.html#mindspore.ms_function) decorator.
* Cell subclass inherited from [nn.Cell](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell).
* Common Python function with the [@ms_function](https://www.mindspore.cn/api/en/r0.7/api/python/mindspore/mindspore.html#mindspore.ms_function) decorator.
* Cell subclass inherited from [nn.Cell](https://www.mindspore.cn/api/en/r0.7/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell).
### Network Input Type
* The training data input parameters of the entire network must be of the Tensor type.
......@@ -220,13 +220,13 @@ Currently, the following syntax is not supported in network constructors:
| Category | Content
| :----------- |:--------
| `Cell` instance |[mindspore/nn/*](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.nn.html), and custom [Cell](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell).
| `Cell` instance |[mindspore/nn/*](https://www.mindspore.cn/api/en/r0.7/api/python/mindspore/mindspore.nn.html), and custom [Cell](https://www.mindspore.cn/api/en/r0.7/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell).
| Member function of a `Cell` instance | Member functions of other classes in the construct function of Cell can be called.
| Function | Custom Python functions and system functions listed in the preceding content.
| Dataclass instance | Class decorated with @dataclass.
| Primitive operator |[mindspore/ops/operations/*](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html).
| Composite operator |[mindspore/ops/composite/*](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.composite.html).
| Operator generated by constexpr |Uses the value generated by [@constexpr](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.html#mindspore.ops.constexpr) to calculate operators.
| Primitive operator |[mindspore/ops/operations/*](https://www.mindspore.cn/api/en/r0.7/api/python/mindspore/mindspore.ops.operations.html).
| Composite operator |[mindspore/ops/composite/*](https://www.mindspore.cn/api/en/r0.7/api/python/mindspore/mindspore.ops.composite.html).
| Operator generated by constexpr |Uses the value generated by [@constexpr](https://www.mindspore.cn/api/en/r0.7/api/python/mindspore/mindspore.ops.html#mindspore.ops.constexpr) to calculate operators.
### Other Constraints
......
......@@ -15,7 +15,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/design/mindinsight/graph_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_en/design/mindinsight/graph_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## Background
......@@ -71,4 +71,4 @@ RESTful API is used for data interaction between the MindInsight frontend and ba
#### File API Design
Data interaction between MindSpore and MindInsight uses the data format defined by [Protocol Buffer](https://developers.google.cn/protocol-buffers/docs/pythontutorial).
The main entry is the [summary.proto file](https://gitee.com/mindspore/mindinsight/blob/master/mindinsight/datavisual/proto_files/mindinsight_summary.proto). A message object of a computational graph is defined as `GraphProto`. For details about `GraphProto`, see the [anf_ir.proto file](https://gitee.com/mindspore/mindinsight/blob/master/mindinsight/datavisual/proto_files/mindinsight_anf_ir.proto).
\ No newline at end of file
The main entry is the [summary.proto file](https://gitee.com/mindspore/mindinsight/blob/r0.7/mindinsight/datavisual/proto_files/mindinsight_summary.proto). A message object of a computational graph is defined as `GraphProto`. For details about `GraphProto`, see the [anf_ir.proto file](https://gitee.com/mindspore/mindinsight/blob/r0.7/mindinsight/datavisual/proto_files/mindinsight_anf_ir.proto).
\ No newline at end of file
......@@ -14,7 +14,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/design/mindinsight/tensor_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_en/design/mindinsight/tensor_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## Background
......@@ -55,7 +55,7 @@ Figure 2 shows tensors recorded by a user in a form of a histogram.
### API Design
In tensor visualization, there are file API and RESTful API. The file API is the [summary.proto](https://gitee.com/mindspore/mindspore/blob/master/mindspore/ccsrc/utils/summary.proto) file, which is used for data interconnection between MindInsight and MindSpore. RESTful API is an internal API used for data interaction between the MindInsight frontend and backend.
In tensor visualization, there are file API and RESTful API. The file API is the [summary.proto](https://gitee.com/mindspore/mindspore/blob/r0.7/mindspore/ccsrc/utils/summary.proto) file, which is used for data interconnection between MindInsight and MindSpore. RESTful API is an internal API used for data interaction between the MindInsight frontend and backend.
#### File API Design
......@@ -100,4 +100,4 @@ The `summary.proto` file is the main entry. TensorProto data is stored in the su
repeated Value value = 1;
}
```
TensorProto is defined in the [anf_ir.proto](https://gitee.com/mindspore/mindspore/blob/master/mindspore/ccsrc/utils/anf_ir.proto) file.
\ No newline at end of file
TensorProto is defined in the [anf_ir.proto](https://gitee.com/mindspore/mindspore/blob/r0.7/mindspore/ccsrc/utils/anf_ir.proto) file.
\ No newline at end of file
......@@ -18,7 +18,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/design/mindinsight/training_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_en/design/mindinsight/training_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
[MindInsight](https://gitee.com/mindspore/mindinsight) is a visualized debugging and tuning component of MindSpore. MindInsight can be used to complete tasks such as training visualization, performance tuning, and precision tuning.
......@@ -40,11 +40,11 @@ The training information collection function in MindSpore consists of training i
Training information collection APIs include:
- Training information collection API based on the summary operator. This API contains four summary operators, that is, the ScalarSummary operator for recording scalar data, the ImageSummary operator for recording image data, the HistogramSummary operator for recording parameter distribution histogram data, and the TensorSummary operator for recording tensor data. For details about the operators, see [Operator List](https://www.mindspore.cn/docs/en/master/operator_list.html).
- Training information collection API based on the summary operator. This API contains four summary operators, that is, the ScalarSummary operator for recording scalar data, the ImageSummary operator for recording image data, the HistogramSummary operator for recording parameter distribution histogram data, and the TensorSummary operator for recording tensor data. For details about the operators, see [Operator List](https://www.mindspore.cn/docs/en/r0.7/operator_list.html).
- Training information collection API based on the Python API. You can use the [SummaryRecord.add_value](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.train.html#mindspore.train.summary.SummaryRecord.add_value) method to collect training information in Python code.
- Training information collection API based on the Python API. You can use the [SummaryRecord.add_value](https://www.mindspore.cn/api/en/r0.7/api/python/mindspore/mindspore.train.html#mindspore.train.summary.SummaryRecord.add_value) method to collect training information in Python code.
- Easy-to-use training information collection callback. The [SummaryCollector](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.train.html#mindspore.train.callback.SummaryCollector) callback function can be used to conveniently collect common training information to training logs.
- Easy-to-use training information collection callback. The [SummaryCollector](https://www.mindspore.cn/api/en/r0.7/api/python/mindspore/mindspore.train.html#mindspore.train.callback.SummaryCollector) callback function can be used to conveniently collect common training information to training logs.
The training information persistence module mainly includes a summary_record module used to manage a cache and a write_pool module used to process data in parallel and write data into a file. After the training information is made persistent, it is stored in the training log file (summary file).
......
......@@ -2,7 +2,7 @@
`Ascend` `GPU` `CPU` `Whole Process` `Beginner` `Intermediate` `Expert`
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/glossary.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_en/glossary.md" target="_blank"><img src="./_static/logo_source.png"></a>
| Acronym and Abbreviation | Description |
| ----- | ----- |
......
......@@ -2,7 +2,7 @@
`Ascend` `GPU` `CPU` `Whole Process` `Beginner` `Intermediate` `Expert`
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/help_seeking_path.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_en/help_seeking_path.md" target="_blank"><img src="./_static/logo_source.png"></a>
This document describes how to seek help and support when you encounter problems in using MindSpore. The following flowchart shows the overall help-seeking process which starts from users encountering a problem in using MindSpore and ends with they finding a proper solution. Help-seeking methods are introduced based on the flowchart.
......
......@@ -10,49 +10,49 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/tree/master/docs/source_en/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/tree/r0.7/docs/source_en/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
## Model Zoo
| Domain | Sub Domain | Network | Ascend | GPU | CPU
|:------ |:------| :----------- |:------ |:------ |:-----
|Computer Vision (CV) | Image Classification | [AlexNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/alexnet/src/alexnet.py) | Supported | Supported | Doing
| Computer Vision (CV) | Image Classification | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/googlenet/src/googlenet.py) | Supported | Doing | Doing
| Computer Vision (CV) | Image Classification | [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/lenet.py) | Supported | Supported | Supported
| Computer Vision (CV) | Image Classification | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
|Computer Vision (CV) | Image Classification | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
|Computer Vision (CV) | Image Classification | [ResNext50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnext50/src/image_classification.py) | Supported | Supported | Doing
| Computer Vision (CV) | Image Classification | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/vgg16/src/vgg.py) | Supported | Doing | Doing
| Computer Vision (CV) | Image Classification | [InceptionV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/inceptionv3/src/inception_v3.py) | Supported | Supported | Doing
| Computer Vision (CV) | Mobile Image Classification<br>Image Classification<br>Semantic Tegmentation | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| Computer Vision (CV) | Mobile Image Classification<br>Image Classification<br>Semantic Tegmentation | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|Computer Vision (CV) | Targets Detection | [SSD](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/ssd/src/ssd.py) | Supported |Doing | Doing
| Computer Vision (CV) | Targets Detection | [YoloV3-ResNet18](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/yolov3_resnet18/src/yolov3.py) | Supported | Doing | Doing
| Computer Vision (CV) | Targets Detection | [FasterRCNN](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/faster_rcnn_r50.py) | Supported | Doing | Doing
| Computer Vision (CV) | Semantic Segmentation | [DeeplabV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| Computer Vision(CV) | Targets Detection | [WarpCTC](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/warpctc/src/warpctc.py) | Doing | Supported | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [BERT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/lstm.py) | Doing | Supported | Supported
| Natural Language Processing (NLP) | Natural Language Understanding | [MASS](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/mass/src/transformer/transformer_for_train.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [TinyBert](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/tinybert/src/tinybert_model.py) | Supported | Doing | Doing
| Recommender | Recommender System, CTR prediction | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Doing | Doing
| Recommender | Recommender System, Search ranking | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py) | Supported | Supported | Doing
| Graph Neural Networks(GNN)| Text Classification | [GCN](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/gnn/gcn/src/gcn.py) | Supported | Doing | Doing
| Graph Neural Networks(GNN)| Text Classification | [GAT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/gnn/gat/src/gat.py) | Supported | Doing | Doing
> You can also use [MindWizard Tool](https://gitee.com/mindspore/mindinsight/tree/master/mindinsight/wizard/) to quickly generate classic network scripts.
|Computer Vision (CV) | Image Classification | [AlexNet](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/alexnet/src/alexnet.py) | Supported | Supported | Doing
| Computer Vision (CV) | Image Classification | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/googlenet/src/googlenet.py) | Supported | Doing | Doing
| Computer Vision (CV) | Image Classification | [LeNet](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/lenet/src/lenet.py) | Supported | Supported | Supported
| Computer Vision (CV) | Image Classification | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
|Computer Vision (CV) | Image Classification | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
|Computer Vision (CV) | Image Classification | [ResNext50](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/resnext50/src/image_classification.py) | Supported | Supported | Doing
| Computer Vision (CV) | Image Classification | [VGG16](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/vgg16/src/vgg.py) | Supported | Doing | Doing
| Computer Vision (CV) | Image Classification | [InceptionV3](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/inceptionv3/src/inception_v3.py) | Supported | Supported | Doing
| Computer Vision (CV) | Mobile Image Classification<br>Image Classification<br>Semantic Tegmentation | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| Computer Vision (CV) | Mobile Image Classification<br>Image Classification<br>Semantic Tegmentation | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|Computer Vision (CV) | Targets Detection | [SSD](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/ssd/src/ssd.py) | Supported |Doing | Doing
| Computer Vision (CV) | Targets Detection | [YoloV3-ResNet18](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/yolov3_resnet18/src/yolov3.py) | Supported | Doing | Doing
| Computer Vision (CV) | Targets Detection | [FasterRCNN](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/faster_rcnn_r50.py) | Supported | Doing | Doing
| Computer Vision (CV) | Semantic Segmentation | [DeeplabV3](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| Computer Vision(CV) | Targets Detection | [WarpCTC](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/warpctc/src/warpctc.py) | Doing | Supported | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [BERT](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/bert/src/bert_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [Transformer](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/lstm/src/lstm.py) | Doing | Supported | Supported
| Natural Language Processing (NLP) | Natural Language Understanding | [MASS](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/mass/src/transformer/transformer_for_train.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [TinyBert](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/tinybert/src/tinybert_model.py) | Supported | Doing | Doing
| Recommender | Recommender System, CTR prediction | [DeepFM](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Doing | Doing
| Recommender | Recommender System, Search ranking | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py) | Supported | Supported | Doing
| Graph Neural Networks(GNN)| Text Classification | [GCN](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/gnn/gcn/src/gcn.py) | Supported | Doing | Doing
| Graph Neural Networks(GNN)| Text Classification | [GAT](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/gnn/gat/src/gat.py) | Supported | Doing | Doing
> You can also use [MindWizard Tool](https://gitee.com/mindspore/mindinsight/tree/r0.7/mindinsight/wizard/) to quickly generate classic network scripts.
## Pre-trained Models
*It refers to the released MindSpore version. The hardware platforms that support model training are CPU, GPU and Ascend. As shown in the table below, ✓ indicates that the pre-trained model run on the selected platform.
Domain | Sub Domain| Network | Dataset | CPU | GPU | Ascend | 0.5.0-beta*
|:------ |:------ | :------- |:------ |:------ |:------ |:----- |:-----
|Computer Vision (CV) | Image Classification| [AlexNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/alexnet/src/alexnet.py) | CIFAR-10| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/alexnet/alexnet_ascend_0.5.0_cifar10_official_classification_20200716.tar.gz)
|Computer Vision (CV) | Image Classification| [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/lenet.py)| MNIST | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/lenet/lenet_ascend_0.5.0_mnist_official_classification_20200716.tar.gz)
|Computer Vision (CV) | Image Classification| [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/vgg16/src/vgg.py)| CIFAR-10 | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/vgg/vgg16_ascend_0.5.0_cifar10_official_classification_20200715.tar.gz)
|Computer Vision (CV) | Image Classification| [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | CIFAR-10| | | ✓ |[Download](http://download.mindspore.cn/model_zoo/official/cv/resnet/resnet50_v1.5_ascend_0.3.0_cifar10_official_classification_20200718.tar.gz)
|Computer Vision (CV) | Targets Detection| [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53/src/yolo.py) | COCO 2014| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/yolo/yolov3_darknet53_ascend_0.5.0_coco2014_official_object_detection_20200717.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [BERT_Base](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | zhwiki | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_base_ascend_0.5.0_cn-wiki_official_nlp_20200720.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [BERT_NEZHA](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py)| zhwiki| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_nezha_ascend_0.5.0_cn-wiki_official_nlp_20200720.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py)| WMT English-German| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/transformer/transformer_ascend_0.5.0_wmtende_official_machine_translation_20200713.tar.gz)
|Computer Vision (CV) | Image Classification| [AlexNet](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/alexnet/src/alexnet.py) | CIFAR-10| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/alexnet/alexnet_ascend_0.5.0_cifar10_official_classification_20200716.tar.gz)
|Computer Vision (CV) | Image Classification| [LeNet](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/lenet/src/lenet.py)| MNIST | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/lenet/lenet_ascend_0.5.0_mnist_official_classification_20200716.tar.gz)
|Computer Vision (CV) | Image Classification| [VGG16](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/vgg16/src/vgg.py)| CIFAR-10 | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/vgg/vgg16_ascend_0.5.0_cifar10_official_classification_20200715.tar.gz)
|Computer Vision (CV) | Image Classification| [ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/resnet/src/resnet.py) | CIFAR-10| | | ✓ |[Download](http://download.mindspore.cn/model_zoo/official/cv/resnet/resnet50_v1.5_ascend_0.3.0_cifar10_official_classification_20200718.tar.gz)
|Computer Vision (CV) | Targets Detection| [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/tree/r0.7/model_zoo/official/cv/yolov3_darknet53/src/yolo.py) | COCO 2014| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/cv/yolo/yolov3_darknet53_ascend_0.5.0_coco2014_official_object_detection_20200717.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [BERT_Base](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/bert/src/bert_model.py) | zhwiki | | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_base_ascend_0.5.0_cn-wiki_official_nlp_20200720.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [BERT_NEZHA](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/bert/src/bert_model.py)| zhwiki| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_nezha_ascend_0.5.0_cn-wiki_official_nlp_20200720.tar.gz)
| Natural Language Processing (NLP) | Natural Language Understanding| [Transformer](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/transformer/src/transformer_model.py)| WMT English-German| | | ✓ | [Download](http://download.mindspore.cn/model_zoo/official/nlp/transformer/transformer_ascend_0.5.0_wmtende_official_machine_translation_20200713.tar.gz)
此差异已折叠。
......@@ -14,7 +14,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_en/roadmap.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_en/roadmap.md" target="_blank"><img src="./_static/logo_source.png"></a>
MindSpore's top priority plans in the year are displayed as follows. We will continuously adjust the priority based on user feedback.
......
......@@ -18,7 +18,7 @@
- [特性支持](#特性支持)
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/FAQ.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/FAQ.md" target="_blank"><img src="./_static/logo_source.png"></a>
## 安装类
......@@ -102,7 +102,7 @@ A:CPU硬件平台安装MindSpore后测试是否安装成功,只需要执行命
Q:官网的LSTM示例在Ascend上跑不通
A:目前LSTM只支持在GPU和CPU上运行,暂不支持硬件环境,您可以[点击这里](https://www.mindspore.cn/docs/zh-CN/master/operator_list.html)查看算子支持情况。
A:目前LSTM只支持在GPU和CPU上运行,暂不支持硬件环境,您可以[点击这里](https://www.mindspore.cn/docs/zh-CN/r0.7/operator_list.html)查看算子支持情况。
<br/>
......@@ -120,7 +120,7 @@ A:MindSpore采用protbuf存储训练参数,无法直接读取其他框架的
Q:MindSpore训练的模型如何在Ascend 310 上使用?
A:Ascend 310 支持OM模型,所以先导出ONNX或AIR模型,再转化为Ascend 310 支持的OM模型,具体步骤参考[多平台推理](https://www.mindspore.cn/tutorial/zh-CN/master/use/multi_platform_inference.html)
A:Ascend 310 支持OM模型,所以先导出ONNX或AIR模型,再转化为Ascend 310 支持的OM模型,具体步骤参考[多平台推理](https://www.mindspore.cn/tutorial/zh-CN/r0.7/use/multi_platform_inference.html)
<br/>
......@@ -132,19 +132,19 @@ A:在构造网络的时候可以通过 `if self.training: x = dropput(x)`,
Q:从哪里可以查看MindSpore训练及推理的样例代码或者教程?
A:可以访问[MindSpore官网教程](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
A:可以访问[MindSpore官网教程](https://www.mindspore.cn/tutorial/zh-CN/r0.7/index.html)
<br/>
Q:MindSpore支持哪些模型的训练?
A:MindSpore针对典型场景均有模型训练支持,支持情况详见[Release note](https://gitee.com/mindspore/mindspore/blob/master/RELEASE.md)
A:MindSpore针对典型场景均有模型训练支持,支持情况详见[Release note](https://gitee.com/mindspore/mindspore/blob/r0.7/RELEASE.md)
<br/>
Q:MindSpore有哪些现成的推荐类或生成类网络或模型可用?
A:目前正在开发Wide & Deep、DeepFM、NCF等推荐类模型,NLP领域已经支持Bert_NEZHA,正在开发MASS等模型,用户可根据场景需要改造为生成类网络,可以关注[MindSpore Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo)
A:目前正在开发Wide & Deep、DeepFM、NCF等推荐类模型,NLP领域已经支持Bert_NEZHA,正在开发MASS等模型,用户可根据场景需要改造为生成类网络,可以关注[MindSpore Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.7/mindspore/model_zoo)
<br/>
......@@ -162,7 +162,7 @@ A:Ascend 310只能用作推理,MindSpore支持在Ascend 910训练,训练
Q:安装运行MindSpore时,是否要求平台有GPU、NPU等计算单元?需要什么硬件支持?
A:MindSpore当前支持CPU/GPU/Ascend /NPU。目前笔记本电脑或者有GPU的环境,都可以通过Docker镜像来试用。当前MindSpore Model Zoo中有部分模型已经支持GPU的训练和推理,其他模型也在不断地进行完善。在分布式并行训练方面,MindSpore当前支持GPU多卡训练。你可以通过[RoadMap](https://www.mindspore.cn/docs/zh-CN/master/roadmap.html)和项目[Release note](https://gitee.com/mindspore/mindspore/blob/master/RELEASE.md)获取最新信息。
A:MindSpore当前支持CPU/GPU/Ascend /NPU。目前笔记本电脑或者有GPU的环境,都可以通过Docker镜像来试用。当前MindSpore Model Zoo中有部分模型已经支持GPU的训练和推理,其他模型也在不断地进行完善。在分布式并行训练方面,MindSpore当前支持GPU多卡训练。你可以通过[RoadMap](https://www.mindspore.cn/docs/zh-CN/r0.7/roadmap.html)和项目[Release note](https://gitee.com/mindspore/mindspore/blob/r0.7/RELEASE.md)获取最新信息。
<br/>
......@@ -174,13 +174,13 @@ A:MindSpore提供了可插拔式的设备管理接口,其他计算单元(
Q:MindSpore与ModelArts是什么关系,在ModelArts中能使用MindSpore吗?
A:ModelArts是华为公有云线上训练及推理平台,MindSpore是华为深度学习框架,可以查阅[MindSpore官网教程](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/use_on_the_cloud.html),教程中详细展示了用户如何使用ModelArts来做MindSpore的模型训练。
A:ModelArts是华为公有云线上训练及推理平台,MindSpore是华为深度学习框架,可以查阅[MindSpore官网教程](https://www.mindspore.cn/tutorial/zh-CN/r0.7/advanced_use/use_on_the_cloud.html),教程中详细展示了用户如何使用ModelArts来做MindSpore的模型训练。
<br/>
Q:MindSpore是否支持Windows 10?
A:MindSpore CPU版本已经支持在Windows 10系统中安装,具体安装步骤可以查阅[MindSpore官网教程](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mindspore_cpu_win_install.html)
A:MindSpore CPU版本已经支持在Windows 10系统中安装,具体安装步骤可以查阅[MindSpore官网教程](https://www.mindspore.cn/tutorial/zh-CN/r0.7/advanced_use/mindspore_cpu_win_install.html)
## 后端运行
......@@ -206,7 +206,7 @@ A:这边的问题是选择了Graph模式却使用了PyNative的写法,所以
- PyNative模式:也称动态图模式,将神经网络中的各个算子逐一下发执行,方便用户编写和调试神经网络模型。
- Graph模式:也称静态图模式或者图模式,将神经网络模型编译成一整张图,然后下发执行。该模式利用图优化等技术提高运行性能,同时有助于规模部署和跨平台运行。
用户可以参考[官网教程](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/debugging_in_pynative_mode.html)选择合适、统一的模式和写法来完成训练。
用户可以参考[官网教程](https://www.mindspore.cn/tutorial/zh-CN/r0.7/advanced_use/debugging_in_pynative_mode.html)选择合适、统一的模式和写法来完成训练。
## 编程语言拓展
......@@ -254,7 +254,7 @@ A:TensorFlow的对象检测Pipeline接口属于TensorFlow Model模块。待Min
Q:其他框架的脚本或者模型怎么迁移到MindSpore?
A:关于脚本或者模型迁移,可以查询MindSpore官网中关于[网络迁移](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/network_migration.html)的介绍。
A:关于脚本或者模型迁移,可以查询MindSpore官网中关于[网络迁移](https://www.mindspore.cn/tutorial/zh-CN/r0.7/advanced_use/network_migration.html)的介绍。
<br/>
......
......@@ -2,7 +2,7 @@
`Ascend` `GPU` `CPU` `端侧` `模型开发` `模型调优` `框架开发` `中级` `高级` `贡献者`
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/architecture.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/architecture.md" target="_blank"><img src="./_static/logo_source.png"></a>
MindSpore框架架构总体分为MindSpore前端表示层、MindSpore计算图引擎和MindSpore后端运行时三层。
......
......@@ -13,9 +13,9 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/benchmark.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/benchmark.md" target="_blank"><img src="./_static/logo_source.png"></a>
本文介绍MindSpore的基准性能。MindSpore网络定义可参考[Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)
本文介绍MindSpore的基准性能。MindSpore网络定义可参考[Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.7/model_zoo)
## 训练性能
......@@ -28,7 +28,7 @@
| | | | | Ascend: 16 * Ascend 910 </br> CPU:384 Cores | Mixed | 256 | 32768 images/sec | 0.96 |
1. 以上数据基于华为云AI开发平台ModelArts测试获得,是训练过程整体下沉至Ascend 910 AI处理器执行所得的平均性能。
2. 业界其他开源框架数据可参考:[ResNet-50 v1.5 for TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Classification/ConvNets/resnet50v1.5)
2. 业界其他开源框架数据可参考:[ResNet-50 v1.5 for TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/r0.7/TensorFlow/Classification/ConvNets/resnet50v1.5)
### BERT
......@@ -38,7 +38,7 @@
| | | | | Ascend: 8 * Ascend 910 </br> CPU:192 Cores | Mixed | 96 | 2069 sentences/sec | 0.96 |
1. 以上数据基于华为云AI开发平台ModelArts测试获得,其中网络包含24个隐藏层,句长为128个token,字典表包含21128个token。
2. 业界其他开源框架数据可参考:[BERT For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT)
2. 业界其他开源框架数据可参考:[BERT For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/r0.7/TensorFlow/LanguageModeling/BERT)
### Wide & Deep (数据并行)
......@@ -48,7 +48,7 @@
| | | | | Ascend: 8 * Ascend 910 </br> CPU:192 Cores | Mixed | 16000*8 | 4872849 samples/sec | 0.76 |
1. 以上数据基于Atlas 800测试获得,且网络模型为数据并行。
2. 业界其他开源框架数据可参考:[Wide & Deep For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/WideAndDeep)
2. 业界其他开源框架数据可参考:[Wide & Deep For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/r0.7/TensorFlow/Recommendation/WideAndDeep)
### Wide & Deep (Host-Device混合计算模型并行)
......@@ -60,4 +60,4 @@
| | | | | Ascend: 32 * Ascend 910 </br> CPU:768 Cores | Mixed | 8000*32 | 433423 samples/sec | 0.20 |
1. 以上数据基于Atlas 800测试获得,且网络模型为模型并行。
2. 业界其他开源框架数据可参考:[Wide & Deep For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Recommendation/WideAndDeep)
2. 业界其他开源框架数据可参考:[Wide & Deep For TensorFlow](https://github.com/NVIDIA/DeepLearningExamples/tree/r0.7/TensorFlow/Recommendation/WideAndDeep)
......@@ -25,7 +25,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/constraints_on_network_construction.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/constraints_on_network_construction.md" target="_blank"><img src="./_static/logo_source.png"></a>
## 概述
MindSpore完成从用户源码到计算图的编译,用户源码基于Python语法编写,当前MindSpore支持将普通函数或者继承自nn.Cell的实例转换生成计算图,暂不支持将任意Python源码转换成计算图,所以对于用户源码支持的写法有所限制,主要包括语法约束和网络定义约束两方面。随着MindSpore的演进,这些约束可能会发生变化。
......@@ -205,8 +205,8 @@ tuple也支持切片取值操作, 但不支持切片类型为Tensor类型,支
## 网络定义约束
### 整网实例类型
*[@ms_function](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.html#mindspore.ms_function)装饰器的普通Python函数。
* 继承自[nn.Cell](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell)的Cell子类。
*[@ms_function](https://www.mindspore.cn/api/zh-CN/r0.7/api/python/mindspore/mindspore.html#mindspore.ms_function)装饰器的普通Python函数。
* 继承自[nn.Cell](https://www.mindspore.cn/api/zh-CN/r0.7/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell)的Cell子类。
### 网络输入类型
* 整网的训练数据输入参数只能是Tensor类型。
......@@ -219,13 +219,13 @@ tuple也支持切片取值操作, 但不支持切片类型为Tensor类型,支
| 类别 | 内容
| :----------- |:--------
| `Cell`实例 |[mindspore/nn/*](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.nn.html)、自定义[Cell](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell)
| `Cell`实例 |[mindspore/nn/*](https://www.mindspore.cn/api/zh-CN/r0.7/api/python/mindspore/mindspore.nn.html)、自定义[Cell](https://www.mindspore.cn/api/zh-CN/r0.7/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell)
| `Cell`实例的成员函数 | Cell的construct中可以调用其他类成员函数。
| 函数 | 自定义Python函数、前文中列举的系统函数。
| dataclass实例 | 使用@dataclass装饰的类。
| Primitive算子 |[mindspore/ops/operations/*](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html)
| Composite算子 |[mindspore/ops/composite/*](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.composite.html)
| constexpr生成算子 |使用[@constexpr](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.html#mindspore.ops.constexpr)生成的值计算算子。
| Primitive算子 |[mindspore/ops/operations/*](https://www.mindspore.cn/api/zh-CN/r0.7/api/python/mindspore/mindspore.ops.operations.html)
| Composite算子 |[mindspore/ops/composite/*](https://www.mindspore.cn/api/zh-CN/r0.7/api/python/mindspore/mindspore.ops.composite.html)
| constexpr生成算子 |使用[@constexpr](https://www.mindspore.cn/api/zh-CN/r0.7/api/python/mindspore/mindspore.ops.html#mindspore.ops.constexpr)生成的值计算算子。
### 其他约束
......
......@@ -14,7 +14,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/design/mindarmour/differential_privacy_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/design/mindarmour/differential_privacy_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## 总体设计
......@@ -56,10 +56,10 @@ Monitor提供RDP、ZCDP等回调函数,用于监测模型的差分隐私预算
## 代码实现
* [mechanisms.py](https://gitee.com/mindspore/mindarmour/blob/master/mindarmour/diff_privacy/mechanisms/mechanisms.py): 这个文件实现了差分隐私训练所需的噪声生成机制,包括简单高斯噪声、自适应高斯噪声、自适应裁剪高斯噪声等。
* [optimizer.py](https://gitee.com/mindspore/mindarmour/blob/master/mindarmour/diff_privacy/optimizer/optimizer.py): 这个文件实现了使用噪声生成机制在反向传播时添加噪声的根本逻辑。
* [monitor.py](https://gitee.com/mindspore/mindarmour/blob/master/mindarmour/diff_privacy/monitor/monitor.py): 实现了计算差分隐私预算的回调函数,模型训练过程中,会反馈当前的差分隐私预算。
* [model.py](https://gitee.com/mindspore/mindarmour/blob/master/mindarmour/diff_privacy/train/model.py): 这个文件实现了计算损失和梯度的逻辑,差分隐私训练的梯度截断逻辑在此文件中实现,且model.py是用户使用差分隐私训练能力的入口。
* [mechanisms.py](https://gitee.com/mindspore/mindarmour/blob/r0.7/mindarmour/diff_privacy/mechanisms/mechanisms.py): 这个文件实现了差分隐私训练所需的噪声生成机制,包括简单高斯噪声、自适应高斯噪声、自适应裁剪高斯噪声等。
* [optimizer.py](https://gitee.com/mindspore/mindarmour/blob/r0.7/mindarmour/diff_privacy/optimizer/optimizer.py): 这个文件实现了使用噪声生成机制在反向传播时添加噪声的根本逻辑。
* [monitor.py](https://gitee.com/mindspore/mindarmour/blob/r0.7/mindarmour/diff_privacy/monitor/monitor.py): 实现了计算差分隐私预算的回调函数,模型训练过程中,会反馈当前的差分隐私预算。
* [model.py](https://gitee.com/mindspore/mindarmour/blob/r0.7/mindarmour/diff_privacy/train/model.py): 这个文件实现了计算损失和梯度的逻辑,差分隐私训练的梯度截断逻辑在此文件中实现,且model.py是用户使用差分隐私训练能力的入口。
## 参考文献
......
......@@ -10,7 +10,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/design/mindarmour/fuzzer_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/design/mindarmour/fuzzer_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## 背景
......@@ -58,10 +58,10 @@ Fuzzer架构主要包括三个模块:
## 代码实现
1. [fuzzing.py](https://gitee.com/mindspore/mindarmour/blob/master/mindarmour/fuzzing/fuzzing.py):Fuzzer总体流程。
2. [model_coverage_metrics.py](https://gitee.com/mindspore/mindarmour/blob/master/mindarmour/fuzzing/model_coverage_metrics.py):神经元覆盖率指标,包括KMNC,NBC,SNAC。
3. [image_transform.py](https://gitee.com/mindspore/mindarmour/blob/master/mindarmour/fuzzing/image_transform.py):图像变异方法,包括基于像素值的变化方法和仿射变化方法。
4. [adversarial attacks](https://gitee.com/mindspore/mindarmour/tree/master/mindarmour/attacks):对抗样本攻击方法,包含多种黑盒、白盒攻击方法。
1. [fuzzing.py](https://gitee.com/mindspore/mindarmour/blob/r0.7/mindarmour/fuzzing/fuzzing.py):Fuzzer总体流程。
2. [model_coverage_metrics.py](https://gitee.com/mindspore/mindarmour/blob/r0.7/mindarmour/fuzzing/model_coverage_metrics.py):神经元覆盖率指标,包括KMNC,NBC,SNAC。
3. [image_transform.py](https://gitee.com/mindspore/mindarmour/blob/r0.7/mindarmour/fuzzing/image_transform.py):图像变异方法,包括基于像素值的变化方法和仿射变化方法。
4. [adversarial attacks](https://gitee.com/mindspore/mindarmour/tree/r0.7/mindarmour/attacks):对抗样本攻击方法,包含多种黑盒、白盒攻击方法。
## 参考文献
......
......@@ -15,7 +15,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/design/mindinsight/graph_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/design/mindinsight/graph_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## 特性背景
......@@ -71,4 +71,4 @@ RESTful API接口是MindInsight前后端进行数据交互的接口。
#### 文件接口设计
MindSpore与MindInsight之间的数据交互,采用[protobuf](https://developers.google.cn/protocol-buffers/docs/pythontutorial?hl=zh-cn)定义数据格式。
[summary.proto文件](https://gitee.com/mindspore/mindinsight/blob/master/mindinsight/datavisual/proto_files/mindinsight_summary.proto)为总入口,计算图的消息对象定义为 `GraphProto``GraphProto`的详细定义可以参考[anf_ir.proto文件](https://gitee.com/mindspore/mindinsight/blob/master/mindinsight/datavisual/proto_files/mindinsight_anf_ir.proto)
[summary.proto文件](https://gitee.com/mindspore/mindinsight/blob/r0.7/mindinsight/datavisual/proto_files/mindinsight_summary.proto)为总入口,计算图的消息对象定义为 `GraphProto``GraphProto`的详细定义可以参考[anf_ir.proto文件](https://gitee.com/mindspore/mindinsight/blob/r0.7/mindinsight/datavisual/proto_files/mindinsight_anf_ir.proto)
......@@ -25,7 +25,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/design/mindinsight/profiler_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/design/mindinsight/profiler_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## 背景
......
......@@ -14,7 +14,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/design/mindinsight/tensor_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/design/mindinsight/tensor_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## 特性背景
......@@ -55,7 +55,7 @@ Tensor可视支持1-N维的Tensor以表格或直方图的形式展示,对于0
### 接口设计
在张量可视中,主要有文件接口和RESTful API接口,其中文件接口为[summary.proto](https://gitee.com/mindspore/mindspore/blob/master/mindspore/ccsrc/utils/summary.proto)文件,是MindInsight和MindSpore进行数据对接的接口。 RESTful API接口是MindInsight前后端进行数据交互的接口,是内部接口。
在张量可视中,主要有文件接口和RESTful API接口,其中文件接口为[summary.proto](https://gitee.com/mindspore/mindspore/blob/r0.7/mindspore/ccsrc/utils/summary.proto)文件,是MindInsight和MindSpore进行数据对接的接口。 RESTful API接口是MindInsight前后端进行数据交互的接口,是内部接口。
#### 文件接口设计
......@@ -100,4 +100,4 @@ Tensor可视支持1-N维的Tensor以表格或直方图的形式展示,对于0
repeated Value value = 1;
}
```
而TensorProto的定义在[anf_ir.proto](https://gitee.com/mindspore/mindspore/blob/master/mindspore/ccsrc/utils/anf_ir.proto)文件中。
\ No newline at end of file
而TensorProto的定义在[anf_ir.proto](https://gitee.com/mindspore/mindspore/blob/r0.7/mindspore/ccsrc/utils/anf_ir.proto)文件中。
\ No newline at end of file
......@@ -18,7 +18,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/design/mindinsight/training_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/design/mindinsight/training_visual_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
[MindInsight](https://gitee.com/mindspore/mindinsight)是MindSpore的可视化调试调优组件。通过MindInsight可以完成训练可视、性能调优、精度调优等任务。
......@@ -40,11 +40,11 @@
训练信息收集API包括:
- 基于summary算子的训练信息收集API。这部分API主要包括4个summary算子,即用于记录标量数据的ScalarSummary算子,用于记录图片数据的ImageSummary算子,用于记录参数分布图(直方图)数据的HistogramSummary算子和用于记录张量数据的TensorSummary算子。请访问[算子支持列表](https://www.mindspore.cn/docs/zh-CN/master/operator_list.html)以获取关于这些算子的信息。
- 基于summary算子的训练信息收集API。这部分API主要包括4个summary算子,即用于记录标量数据的ScalarSummary算子,用于记录图片数据的ImageSummary算子,用于记录参数分布图(直方图)数据的HistogramSummary算子和用于记录张量数据的TensorSummary算子。请访问[算子支持列表](https://www.mindspore.cn/docs/zh-CN/r0.7/operator_list.html)以获取关于这些算子的信息。
- 基于Python API的训练信息收集API。通过[SummaryRecord.add_value](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.train.html#mindspore.train.summary.SummaryRecord.add_value)方法,可以在Python代码中完成训练信息的收集。
- 基于Python API的训练信息收集API。通过[SummaryRecord.add_value](https://www.mindspore.cn/api/zh-CN/r0.7/api/python/mindspore/mindspore.train.html#mindspore.train.summary.SummaryRecord.add_value)方法,可以在Python代码中完成训练信息的收集。
- 易用的训练信息收集callback。通过[SummaryCollector](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.train.html#mindspore.train.callback.SummaryCollector)这一callback可以方便地收集常用训练信息到训练日志中。
- 易用的训练信息收集callback。通过[SummaryCollector](https://www.mindspore.cn/api/zh-CN/r0.7/api/python/mindspore/mindspore.train.html#mindspore.train.callback.SummaryCollector)这一callback可以方便地收集常用训练信息到训练日志中。
训练信息持久化模块主要包括用于管理缓存的summary_record模块和用于并行处理数据、写入文件的write_pool模块。训练信息持久化后,存储在训练日志文件(summary文件中)。
......
......@@ -18,7 +18,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/design/mindspore/distributed_training_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/design/mindspore/distributed_training_design.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## 背景
......@@ -67,12 +67,12 @@
1. 集合通信
- [management.py](https://gitee.com/mindspore/mindspore/blob/master/mindspore/communication/management.py): 这个文件中涵盖了集合通信过程中常用的`helper`函数接口,例如获取集群数量和卡的序号等。当在Ascend芯片上执行时,框架会加载环境上的`libhccl.so`库文件,通过它来完成从Python层到底层的通信接口调用。
- [comm_ops.py](https://gitee.com/mindspore/mindspore/blob/master/mindspore/ops/operations/comm_ops.py): MindSpore将支持的集合通信操作都包装为算子的形式放在这个文件下,包括`AllReduce`、`AllGather`、`ReduceScatter`和`Broadcast`等。`PrimitiveWithInfer`中除了定义算子所需属性外,还包括构图过程中输入到输出的`shape`和`dtype`推导。
- [management.py](https://gitee.com/mindspore/mindspore/blob/r0.7/mindspore/communication/management.py): 这个文件中涵盖了集合通信过程中常用的`helper`函数接口,例如获取集群数量和卡的序号等。当在Ascend芯片上执行时,框架会加载环境上的`libhccl.so`库文件,通过它来完成从Python层到底层的通信接口调用。
- [comm_ops.py](https://gitee.com/mindspore/mindspore/blob/r0.7/mindspore/ops/operations/comm_ops.py): MindSpore将支持的集合通信操作都包装为算子的形式放在这个文件下,包括`AllReduce`、`AllGather`、`ReduceScatter`和`Broadcast`等。`PrimitiveWithInfer`中除了定义算子所需属性外,还包括构图过程中输入到输出的`shape`和`dtype`推导。
2. 梯度聚合
- [grad_reducer.py](https://gitee.com/mindspore/mindspore/blob/master/mindspore/nn/wrap/grad_reducer.py): 这个文件实现了梯度聚合的过程。对入参`grads`用`HyperMap`展开后插入`AllReduce`算子,这里采用的是全局通信组,用户也可以根据自己网络的需求仿照这个模块进行自定义开发。MindSpore中单机和分布式执行共用一套网络封装接口,在`Cell`内部通过`ParallelMode`来区分是否要对梯度做聚合操作,网络封装接口建议参考`TrainOneStepCell`代码实现。
- [grad_reducer.py](https://gitee.com/mindspore/mindspore/blob/r0.7/mindspore/nn/wrap/grad_reducer.py): 这个文件实现了梯度聚合的过程。对入参`grads`用`HyperMap`展开后插入`AllReduce`算子,这里采用的是全局通信组,用户也可以根据自己网络的需求仿照这个模块进行自定义开发。MindSpore中单机和分布式执行共用一套网络封装接口,在`Cell`内部通过`ParallelMode`来区分是否要对梯度做聚合操作,网络封装接口建议参考`TrainOneStepCell`代码实现。
## 自动并行
......@@ -110,21 +110,21 @@
### 自动并行代码
1. 张量排布模型
- [tensor_layout](https://gitee.com/mindspore/mindspore/tree/master/mindspore/ccsrc/frontend/parallel/tensor_layout):这个目录下包含了张量排布模型相关功能的定义及实现。其中`tensor_layout.h`中声明了一个张量排布模型需要具备的成员变量`tensor_map_origin_``tensor_shape_``device_arrangement_`等。在`tensor_redistribution.h`中声明了实现张量排布间`from_origin_``to_origin_`变换的相关方法,将推导得到的重排布操作保存在`operator_list_`中返回,并计算得到重排布所需的通信开销`comm_cost_`, 内存开销`memory_cost_`及计算开销`computation_cost_`
- [tensor_layout](https://gitee.com/mindspore/mindspore/tree/r0.7/mindspore/ccsrc/frontend/parallel/tensor_layout):这个目录下包含了张量排布模型相关功能的定义及实现。其中`tensor_layout.h`中声明了一个张量排布模型需要具备的成员变量`tensor_map_origin_``tensor_shape_``device_arrangement_`等。在`tensor_redistribution.h`中声明了实现张量排布间`from_origin_``to_origin_`变换的相关方法,将推导得到的重排布操作保存在`operator_list_`中返回,并计算得到重排布所需的通信开销`comm_cost_`, 内存开销`memory_cost_`及计算开销`computation_cost_`
2. 分布式算子
- [ops_info](https://gitee.com/mindspore/mindspore/tree/master/mindspore/ccsrc/frontend/parallel/ops_info):这个目录下包含了分布式算子的具体实现。在`operator_info.h`中定义了分布式算子实现的基类`OperatorInfo`,开发一个分布式算子需要继承于这个基类并显式实现相关的虚函数。其中`InferTensorInfo``InferTensorMap``InferDevMatrixShape`函数定义了推导该算子输入、输出张量排布模型的算法。`InferForwardCommunication``InferMirrorOps`等函数定义了切分该算子需要插入的额外计算、通信操作。`CheckStrategy``GenerateStrategies`函数定义了算子切分策略校验和生成。根据切分策略`SetCostUnderStrategy`将会产生该策略下分布式算子的并行开销值`operator_cost_`
- [ops_info](https://gitee.com/mindspore/mindspore/tree/r0.7/mindspore/ccsrc/frontend/parallel/ops_info):这个目录下包含了分布式算子的具体实现。在`operator_info.h`中定义了分布式算子实现的基类`OperatorInfo`,开发一个分布式算子需要继承于这个基类并显式实现相关的虚函数。其中`InferTensorInfo``InferTensorMap``InferDevMatrixShape`函数定义了推导该算子输入、输出张量排布模型的算法。`InferForwardCommunication``InferMirrorOps`等函数定义了切分该算子需要插入的额外计算、通信操作。`CheckStrategy``GenerateStrategies`函数定义了算子切分策略校验和生成。根据切分策略`SetCostUnderStrategy`将会产生该策略下分布式算子的并行开销值`operator_cost_`
3. 策略搜索算法
- [auto_parallel](https://gitee.com/mindspore/mindspore/tree/master/mindspore/ccsrc/frontend/parallel/auto_parallel):这个目录下实现了并行策略搜索的算法。`graph_costmodel.h`定义了构图信息,其中每个点表示一个算子`OperatorInfo`,有向边`edge_costmodel.h`表示算子的输入输出关系及重排布的代价。`operator_costmodel.h`中定义了每个算子的代价模型,包括计算代价、通信代价和内存代价。`dp_algorithm_costmodel.h`主要描述了动态规划算法的主要流程,由一系列图操作组成。在`costmodel.h`中定义了cost和图操作的数据结构。
- [auto_parallel](https://gitee.com/mindspore/mindspore/tree/r0.7/mindspore/ccsrc/frontend/parallel/auto_parallel):这个目录下实现了并行策略搜索的算法。`graph_costmodel.h`定义了构图信息,其中每个点表示一个算子`OperatorInfo`,有向边`edge_costmodel.h`表示算子的输入输出关系及重排布的代价。`operator_costmodel.h`中定义了每个算子的代价模型,包括计算代价、通信代价和内存代价。`dp_algorithm_costmodel.h`主要描述了动态规划算法的主要流程,由一系列图操作组成。在`costmodel.h`中定义了cost和图操作的数据结构。
4. 设备管理
- [device_manager.h](https://gitee.com/mindspore/mindspore/blob/master/mindspore/ccsrc/frontend/parallel/device_manager.h):这个文件实现了集群设备通信组的创建及管理。其中设备矩阵模型由`device_matrix.h`定义,通信域由`group_manager.h`管理。
- [device_manager.h](https://gitee.com/mindspore/mindspore/blob/r0.7/mindspore/ccsrc/frontend/parallel/device_manager.h):这个文件实现了集群设备通信组的创建及管理。其中设备矩阵模型由`device_matrix.h`定义,通信域由`group_manager.h`管理。
5. 整图切分
- [step_auto_parallel.h](https://gitee.com/mindspore/mindspore/blob/master/mindspore/ccsrc/frontend/parallel/step_auto_parallel.h), [step_parallel.h](https://gitee.com/mindspore/mindspore/blob/master/mindspore/ccsrc/frontend/parallel/step_parallel.h):这两个文件包含了自动并行流程的核心实现。首先由`step_auto_parallel.h`调用策略搜索流程并产生分布式算子的`OperatorInfo`,然后在`step_parallel.h`中处理算子切分和张量重排布等流程,对单机计算图进行分布式改造。
- [step_auto_parallel.h](https://gitee.com/mindspore/mindspore/blob/r0.7/mindspore/ccsrc/frontend/parallel/step_auto_parallel.h), [step_parallel.h](https://gitee.com/mindspore/mindspore/blob/r0.7/mindspore/ccsrc/frontend/parallel/step_parallel.h):这两个文件包含了自动并行流程的核心实现。首先由`step_auto_parallel.h`调用策略搜索流程并产生分布式算子的`OperatorInfo`,然后在`step_parallel.h`中处理算子切分和张量重排布等流程,对单机计算图进行分布式改造。
6. 通信算子反向
- [grad_comm_ops.py](https://gitee.com/mindspore/mindspore/blob/master/mindspore/ops/_grad/grad_comm_ops.py): 这个文件定义了`AllReduce``AllGather`等通信算子的反向操作。
- [grad_comm_ops.py](https://gitee.com/mindspore/mindspore/blob/r0.7/mindspore/ops/_grad/grad_comm_ops.py): 这个文件定义了`AllReduce``AllGather`等通信算子的反向操作。
......@@ -17,7 +17,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/design/mindspore/ir.md" target="_blank"><img src="../../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/design/mindspore/ir.md" target="_blank"><img src="../../_static/logo_source.png"></a>
## 简介
中间表示(IR)是程序编译过程中介于源语言和目标语言之间的程序表示,以方便编译器进行程序分析和优化,因此IR的设计需要考虑从源语言到目标语言的转换难度,同时考虑程序分析和优化的易用性和性能。
......
......@@ -2,7 +2,7 @@
`Ascend` `GPU` `CPU` `全流程` `初级` `中级` `高级`
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/glossary.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/glossary.md" target="_blank"><img src="./_static/logo_source.png"></a>
| 术语/缩略语 | 说明 |
| ----- | ----- |
......
......@@ -2,7 +2,7 @@
`Ascend` `GPU` `CPU` `全流程` `初级` `中级` `高级`
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/help_seeking_path.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/help_seeking_path.md" target="_blank"><img src="./_static/logo_source.png"></a>
本文将简述用户在使用MindSpore遇到问题时,如何使用官方提供的问题求助路径解决问题。MindSpore问题求助整体流程如图中所示,从用户使用MindSpore发现问题开始,直至选择到合适的问题解决方法。下面我们基于问题求助流程图对各种求助方法做解释说明。
......
......@@ -10,49 +10,49 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/tree/master/docs/source_zh_cn/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/tree/r0.7/docs/source_zh_cn/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
## Model Zoo
| 领域 | 子领域 | 网络 | Ascend | GPU | CPU
|:---- |:------- |:---- |:---- |:---- |:----
|计算机视觉(CV) | 图像分类(Image Classification) | [AlexNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/alexnet/src/alexnet.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/googlenet/src/googlenet.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/lenet.py) | Supported | Supported | Supported
| 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNext50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnext50/src/image_classification.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/vgg16/src/vgg.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [InceptionV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/inceptionv3/src/inception_v3.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)<br>目标检测(Image Classification)<br>语义分割(Semantic Tegmentation) | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)<br>目标检测(Image Classification)<br>语义分割(Semantic Tegmentation) | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|计算机视觉(CV) | 目标检测(Targets Detection) | [SSD](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/ssd/src/ssd.py) | Supported |Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [YoloV3-ResNet18](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/yolov3_resnet18/src/yolov3.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [FasterRCNN](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/faster_rcnn_r50.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [DeeplabV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [WarpCTC](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/warpctc/src/warpctc.py) | Doing | Supported | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [BERT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/lstm/src/lstm.py) | Doing | Supported | Supported
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [MASS](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/mass/src/transformer/transformer_for_train.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [TinyBert](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/tinybert/src/tinybert_model.py) | Supported | Doing | Doing
| 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Doing | Doing
| 推荐(Recommender) | 推荐系统、搜索、排序(Recommender System, Search ranking) | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py) | Supported | Supported | Doing
| 图神经网络(GNN) | 文本分类(Text Classification) | [GCN](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/gnn/gcn/src/gcn.py) | Supported | Doing | Doing
| 图神经网络(GNN) | 文本分类(Text Classification) | [GAT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/gnn/gat/src/gat.py) | Supported | Doing | Doing
> 你也可以使用 [MindWizard工具](https://gitee.com/mindspore/mindinsight/tree/master/mindinsight/wizard/) 快速生成经典网络脚本。
|计算机视觉(CV) | 图像分类(Image Classification) | [AlexNet](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/alexnet/src/alexnet.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/googlenet/src/googlenet.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [LeNet](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/lenet/src/lenet.py) | Supported | Supported | Supported
| 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/resnet/src/resnet.py) | Supported | Supported | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/resnet/src/resnet.py) | Supported |Doing | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNext50](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/resnext50/src/image_classification.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [VGG16](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/vgg16/src/vgg.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [InceptionV3](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/inceptionv3/src/inception_v3.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)<br>目标检测(Image Classification)<br>语义分割(Semantic Tegmentation) | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)<br>目标检测(Image Classification)<br>语义分割(Semantic Tegmentation) | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|计算机视觉(CV) | 目标检测(Targets Detection) | [SSD](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/ssd/src/ssd.py) | Supported |Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [YoloV3-ResNet18](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/yolov3_resnet18/src/yolov3.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [FasterRCNN](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/faster_rcnn/src/FasterRcnn/faster_rcnn_r50.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [DeeplabV3](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [WarpCTC](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/warpctc/src/warpctc.py) | Doing | Supported | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [BERT](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/bert/src/bert_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [Transformer](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/transformer/src/transformer_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/lstm/src/lstm.py) | Doing | Supported | Supported
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [MASS](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/mass/src/transformer/transformer_for_train.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [TinyBert](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/tinybert/src/tinybert_model.py) | Supported | Doing | Doing
| 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DeepFM](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/recommend/deepfm/src/deepfm.py) | Supported | Doing | Doing
| 推荐(Recommender) | 推荐系统、搜索、排序(Recommender System, Search ranking) | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py) | Supported | Supported | Doing
| 图神经网络(GNN) | 文本分类(Text Classification) | [GCN](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/gnn/gcn/src/gcn.py) | Supported | Doing | Doing
| 图神经网络(GNN) | 文本分类(Text Classification) | [GAT](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/gnn/gat/src/gat.py) | Supported | Doing | Doing
> 你也可以使用 [MindWizard工具](https://gitee.com/mindspore/mindinsight/tree/r0.7/mindinsight/wizard/) 快速生成经典网络脚本。
## 预训练模型
*代表MindSpore已发布的版本号,支持网络训练的硬件平台有CPU、GPU和Ascend,以下表格中 ✓ 代表模型是基于选中的硬件平台训练而来。
| 领域 | 子领域 | 网络 |数据集 | CPU | GPU | Ascend | 0.5.0-beta*
|:---- |:----- |:---- |:---- |:---- |:---- |:---- |:------
|计算机视觉(CV) | 图像分类(Image Classification) | [AlexNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/alexnet/src/alexnet.py) | CIFAR-10 | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/alexnet/alexnet_ascend_0.5.0_cifar10_official_classification_20200716.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification)| [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/lenet/src/lenet.py)| MNIST | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/lenet/lenet_ascend_0.5.0_mnist_official_classification_20200716.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification)| [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/vgg16/src/vgg.py)|CIFAR-10 | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/vgg/vgg16_ascend_0.5.0_cifar10_official_classification_20200715.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification)| [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/cv/resnet/src/resnet.py) |CIFAR-10 | | | ✓ |[下载](http://download.mindspore.cn/model_zoo/official/cv/resnet/resnet50_v1.5_ascend_0.3.0_cifar10_official_classification_20200718.tar.gz)
|计算机视觉(CV) | 目标检测(Targets Detection)| [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_darknet53) |COCO 2014 | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/yolo/yolov3_darknet53_ascend_0.5.0_coco2014_official_object_detection_20200717.tar.gz)
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding)| [BERT_Base](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py) | zhwiki | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_base_ascend_0.5.0_cn-wiki_official_nlp_20200720.tar.gz)
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding)| [BERT_NEZHA](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/bert/src/bert_model.py)| zhwiki | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_nezha_ascend_0.5.0_cn-wiki_official_nlp_20200720.tar.gz)
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding)| [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/nlp/transformer/src/transformer_model.py)|WMT English-German | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/nlp/transformer/transformer_ascend_0.5.0_wmtende_official_machine_translation_20200713.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification) | [AlexNet](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/alexnet/src/alexnet.py) | CIFAR-10 | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/alexnet/alexnet_ascend_0.5.0_cifar10_official_classification_20200716.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification)| [LeNet](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/lenet/src/lenet.py)| MNIST | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/lenet/lenet_ascend_0.5.0_mnist_official_classification_20200716.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification)| [VGG16](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/vgg16/src/vgg.py)|CIFAR-10 | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/vgg/vgg16_ascend_0.5.0_cifar10_official_classification_20200715.tar.gz)
|计算机视觉(CV) | 图像分类(Image Classification)| [ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/cv/resnet/src/resnet.py) |CIFAR-10 | | | ✓ |[下载](http://download.mindspore.cn/model_zoo/official/cv/resnet/resnet50_v1.5_ascend_0.3.0_cifar10_official_classification_20200718.tar.gz)
|计算机视觉(CV) | 目标检测(Targets Detection)| [YoloV3-DarkNet53](https://gitee.com/mindspore/mindspore/tree/r0.7/model_zoo/official/cv/yolov3_darknet53) |COCO 2014 | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/cv/yolo/yolov3_darknet53_ascend_0.5.0_coco2014_official_object_detection_20200717.tar.gz)
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding)| [BERT_Base](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/bert/src/bert_model.py) | zhwiki | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_base_ascend_0.5.0_cn-wiki_official_nlp_20200720.tar.gz)
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding)| [BERT_NEZHA](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/bert/src/bert_model.py)| zhwiki | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/nlp/bert/bert_nezha_ascend_0.5.0_cn-wiki_official_nlp_20200720.tar.gz)
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding)| [Transformer](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/nlp/transformer/src/transformer_model.py)|WMT English-German | | | ✓ | [下载](http://download.mindspore.cn/model_zoo/official/nlp/transformer/transformer_ascend_0.5.0_wmtende_official_machine_translation_20200713.tar.gz)
此差异已折叠。
......@@ -15,7 +15,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/roadmap.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/roadmap.md" target="_blank"><img src="./_static/logo_source.png"></a>
以下将展示MindSpore近一年的高阶计划,我们会根据用户的反馈诉求,持续调整计划的优先级。
......
......@@ -10,7 +10,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/docs/source_zh_cn/technical_white_paper.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/docs/source_zh_cn/technical_white_paper.md" target="_blank"><img src="./_static/logo_source.png"></a>
## 引言
深度学习研究和应用在近几十年得到了爆炸式的发展,掀起了人工智能的第三次浪潮,并且在图像识别、语音识别与合成、无人驾驶、机器视觉等方面取得了巨大的成功。这也对算法的应用以及依赖的框架有了更高级的要求。深度学习框架的不断发展使得在大型数据集上训练神经网络模型时,可以方便地使用大量的计算资源。
......
# Overall Architecture
<a href="https://gitee.com/mindspore/docs/blob/master/lite/docs/source_en/architecture.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/docs/source_en/architecture.md" target="_blank"><img src="../_static/logo_source.png"></a>
# Glossary
<a href="https://gitee.com/mindspore/docs/blob/master/lite/docs/source_en/glossary.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/docs/source_en/glossary.md" target="_blank"><img src="./_static/logo_source.png"></a>
| Acronym and Abbreviation | Description |
| ----- | ----- |
......
# Operator List
<a href="https://gitee.com/mindspore/docs/blob/master/lite/docs/source_en/operator_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/docs/source_en/operator_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
> √ The checked items are the operators supported by MindSpore Lite。
......
# 总体架构
<a href="https://gitee.com/mindspore/docs/blob/master/lite/docs/source_zh_cn/architecture.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/docs/source_zh_cn/architecture.md" target="_blank"><img src="./_static/logo_source.png"></a>
MindSpore Lite框架的总体架构如下所示:
......
# 术语
<a href="https://gitee.com/mindspore/docs/blob/master/lite/docs/source_zh_cn/glossary.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/docs/source_zh_cn/glossary.md" target="_blank"><img src="./_static/logo_source.png"></a>
| 术语/缩略语 | 说明 |
| ----- | ----- |
......
# 算子支持
<a href="https://gitee.com/mindspore/docs/blob/master/lite/docs/source_zh_cn/operator_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/docs/source_zh_cn/operator_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
> √勾选的项为MindSpore Lite所支持的算子。
......
......@@ -10,7 +10,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_en/deploy.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_en/deploy.md" target="_blank"><img src="./_static/logo_source.png"></a>
This document describes how to quickly install MindSpore Lite on the Ubuntu system.
......@@ -92,7 +92,7 @@ TODO: Add document content.
First, download source code from the MindSpore code repository.
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.7
```
Then, run the following commands in the root directory of the source code to compile MindSpore Lite of different versions:
......
# Quick Start (Lite)
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_en/quick_start/quick_start_lite.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_en/quick_start/quick_start_lite.md" target="_blank"><img src="../_static/logo_source.png"></a>
......@@ -12,7 +12,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_en/use/benchmark_tool.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_en/use/benchmark_tool.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -22,9 +22,9 @@ The Benchmark tool is used to perform benchmark testing on a MindSpore Lite mode
To use the Benchmark tool, you need to prepare the environment as follows:
- Compilation: Install compilation dependencies and perform compilation. The code of the Benchmark tool is stored in the `mindspore/lite/tools/benchmark` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements] (https://www.mindspore.cn/lite/docs/en/master/deploy.html#id2) and [Compilation Example] (https://www.mindspore.cn/lite/docs/en/master/deploy.html#id5) in the deployment document.
- Compilation: Install compilation dependencies and perform compilation. The code of the Benchmark tool is stored in the `mindspore/lite/tools/benchmark` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements] (https://www.mindspore.cn/lite/docs/en/r0.7/deploy.html#id2) and [Compilation Example] (https://www.mindspore.cn/lite/docs/en/r0.7/deploy.html#id5) in the deployment document.
- Run: Obtain the `Benchmark` tool and configure environment variables. For details, see [Output Description] (https://www.mindspore.cn/lite/docs/zh-CN/master/deploy.html#id4) in the deployment document.
- Run: Obtain the `Benchmark` tool and configure environment variables. For details, see [Output Description] (https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id4) in the deployment document.
## Parameter Description
......
......@@ -11,7 +11,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_en/use/converter_tool.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_en/use/converter_tool.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -23,9 +23,9 @@ Currently, the following input formats are supported: MindSpore, TensorFlow Lite
To use the MindSpore Lite model conversion tool, you need to prepare the environment as follows:
- Compilation: Install basic and additional compilation dependencies and perform compilation. The compilation version is x86_64. The code of the model conversion tool is stored in the `mindspore/lite/tools/converter` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements] (https://www.mindspore.cn/lite/docs/zh-CN/master/deploy.html#id2) and [Compilation Example] (https://www.mindspore.cn/lite/docs/zh-CN/master/deploy.html#id5) in the deployment document.
- Compilation: Install basic and additional compilation dependencies and perform compilation. The compilation version is x86_64. The code of the model conversion tool is stored in the `mindspore/lite/tools/converter` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements] (https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id2) and [Compilation Example] (https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id5) in the deployment document.
- Run: Obtain the `converter` tool and configure environment variables by referring to [Output Description](https://www.mindspore.cn/lite/docs/zh-CN/master/deploy.html#id4) in the deployment document.
- Run: Obtain the `converter` tool and configure environment variables by referring to [Output Description](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id4) in the deployment document.
## Parameter Description
......
# Runtime
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_en/use/runtime.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_en/use/runtime.md" target="_blank"><img src="../_static/logo_source.png"></a>
......@@ -10,7 +10,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_en/use/timeprofiler_tool.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_en/use/timeprofiler_tool.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -20,9 +20,9 @@ The TimeProfiler tool can be used to analyze the time consumption of forward inf
To use the TimeProfiler tool, you need to prepare the environment as follows:
- Compilation: Install compilation dependencies and perform compilation. The code of the TimeProfiler tool is stored in the `mindspore/lite/tools/time_profiler` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements] (https://www.mindspore.cn/lite/docs/en/master/deploy.html#id2) and [Compilation Example] (https://www.mindspore.cn/lite/docs/en/master/deploy.html#id5) in the deployment document.
- Compilation: Install compilation dependencies and perform compilation. The code of the TimeProfiler tool is stored in the `mindspore/lite/tools/time_profiler` directory of the MindSpore source code. For details about the compilation operations, see the [Environment Requirements] (https://www.mindspore.cn/lite/docs/en/r0.7/deploy.html#id2) and [Compilation Example] (https://www.mindspore.cn/lite/docs/en/r0.7/deploy.html#id5) in the deployment document.
- Run: Obtain the `time_profiler` tool and configure environment variables by referring to [Output Description](https://www.mindspore.cn/lite/docs/zh-CN/master/deploy.html#id4) in the deployment document.
- Run: Obtain the `time_profiler` tool and configure environment variables by referring to [Output Description](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id4) in the deployment document.
## Parameter Description
......
......@@ -16,7 +16,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_zh_cn/deploy.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_zh_cn/deploy.md" target="_blank"><img src="./_static/logo_source.png"></a>
本文档介绍如何在Ubuntu和Windows系统上快速安装MindSpore Lite。
......@@ -101,7 +101,7 @@ TODO:补全文件内容
首先,从MindSpore代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.7
```
然后,在源码根目录下,执行如下命令,可编译不同版本的MindSpore Lite。
......@@ -168,7 +168,7 @@ MindSpore Lite的编译选项如下。
首先,使用git工具从MindSpore代码仓下载源码。
```bash
git clone https://gitee.com/mindspore/mindspore.git
git clone https://gitee.com/mindspore/mindspore.git -b r0.7
```
然后,使用cmd工具在源码根目录下,执行如下命令即可编译MindSpore Lite。
......
......@@ -17,7 +17,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_zh_cn/quick_start/quick_start.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_zh_cn/quick_start/quick_start.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......@@ -28,17 +28,17 @@
2. 将模型转换成MindSpore Lite模型格式。
3. 在端侧使用MindSpore Lite推理模型。详细说明如何在端侧利用MindSpore Lite C++ API(Android JNI)和MindSpore Lite图像分类模型完成端侧推理,实现对设备摄像头捕获的内容进行分类,并在APP图像预览界面中,显示出最可能的分类结果。
> 你可以在这里找到[Android图像分类模型](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite)和[示例代码](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/official/lite/image_classif)。
> 你可以在这里找到[Android图像分类模型](https://download.mindspore.cn/model_zoo/official/lite/mobilenetv2_openimage_lite)和[示例代码](https://gitee.com/mindspore/mindspore/blob/r0.7/model_zoo/official/lite/image_classif)。
## 选择模型
MindSpore团队提供了一系列预置终端模型,你可以在应用程序中使用这些预置的终端模型。
MindSpore Model Zoo中图像分类模型可[在此下载](#TODO)
同时,你也可以使用预置模型做迁移学习,以实现自己的图像分类任务,操作流程参见[重训练章节](https://www.mindspore.cn/tutorial/zh-CN/master/use/saving_and_loading_model_parameters.html#id6)
同时,你也可以使用预置模型做迁移学习,以实现自己的图像分类任务,操作流程参见[重训练章节](https://www.mindspore.cn/tutorial/zh-CN/r0.7/use/saving_and_loading_model_parameters.html#id6)
## 转换模型
如果你需要对MindSpore提供的模型进行重训,重训完成后,需要将模型导出为[.mindir格式](https://www.mindspore.cn/tutorial/zh-CN/master/use/saving_and_loading_model_parameters.html#mindir)。然后使用MindSpore Lite[模型转换工具](https://www.mindspore.cn/lite/tutorial/zh-CN/master/use/converter_tool.html)将.mindir模型转换成.ms格式。
如果你需要对MindSpore提供的模型进行重训,重训完成后,需要将模型导出为[.mindir格式](https://www.mindspore.cn/tutorial/zh-CN/r0.7/use/saving_and_loading_model_parameters.html#mindir)。然后使用MindSpore Lite[模型转换工具](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/use/converter_tool.html)将.mindir模型转换成.ms格式。
以MindSpore MobilenetV2模型为例,如下脚本将其转换为MindSpore Lite模型用于端侧推理。
```bash
......@@ -90,7 +90,7 @@ MindSpore Model Zoo中图像分类模型可[在此下载](#TODO)。
## 示例程序详细说明
本端侧图像分类Android示例程序分为JAVA层和JNI层,其中,JAVA层主要通过Android Camera 2 API实现摄像头获取图像帧,以及相应的图像处理等功能;JNI层在[Runtime](https://www.mindspore.cn/lite/tutorial/zh-CN/master/use/runtime.html)中完成模型推理的过程。
本端侧图像分类Android示例程序分为JAVA层和JNI层,其中,JAVA层主要通过Android Camera 2 API实现摄像头获取图像帧,以及相应的图像处理等功能;JNI层在[Runtime](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/use/runtime.html)中完成模型推理的过程。
> 此处详细说明示例程序的JNI层实现,JAVA层运用Android Camera 2 API实现开启设备摄像头以及图像帧处理等功能,需读者具备一定的Android开发基础知识。
......@@ -136,7 +136,7 @@ app
### 配置MindSpore Lite依赖项
Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/lite/docs/zh-CN/master/deploy.html)生成`libmindspore-lite.so`库文件,或直接下载MindSpore Lite提供的已编译完成的AMR64、ARM32、x86等[软件包](#TODO)
Android JNI层调用MindSpore C++ API时,需要相关库文件支持。可通过MindSpore Lite[源码编译](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html)生成`libmindspore-lite.so`库文件,或直接下载MindSpore Lite提供的已编译完成的AMR64、ARM32、x86等[软件包](#TODO)
在Android Studio中将编译完成的`libmindspore-lite.so`库文件(可包含多个兼容架构),分别放置在APP工程的`app/libs/ARM64-V8a`(ARM64)或`app/libs/armeabi-v7a`(ARM32)目录下,并在应用的`build.gradle`文件中配置CMake编译支持,以及`arm64-v8a``armeabi-v7a`的编译支持。  
......
......@@ -12,7 +12,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_zh_cn/use/benchmark_tool.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_zh_cn/use/benchmark_tool.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......@@ -22,9 +22,9 @@ Benchmark工具是一款可以对MindSpore Lite模型进行基准测试的工具
使用Benchmark工具,需要进行如下环境准备工作。
- 编译:Benchmark工具代码在MindSpore源码的`mindspore/lite/tools/benchmark`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id5),安装编译依赖基本项,并执行编译。
- 编译:Benchmark工具代码在MindSpore源码的`mindspore/lite/tools/benchmark`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id5),安装编译依赖基本项,并执行编译。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id4),获得`benchmark`工具,并配置环境变量。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id4),获得`benchmark`工具,并配置环境变量。
## 参数说明
......
......@@ -17,7 +17,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_zh_cn/use/converter_tool.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_zh_cn/use/converter_tool.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......@@ -31,9 +31,9 @@ MindSpore Lite提供离线转换模型功能的工具,支持多种类型的模
使用MindSpore Lite模型转换工具,需要进行如下环境准备工作。
- 编译:模型转换工具代码在MindSpore源码的`mindspore/lite/tools/converter`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id5),安装编译依赖基本项与模型转换工具所需附加项,并编译x86_64版本。
- 编译:模型转换工具代码在MindSpore源码的`mindspore/lite/tools/converter`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id5),安装编译依赖基本项与模型转换工具所需附加项,并编译x86_64版本。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id4),获得`converter`工具,并配置环境变量。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id4),获得`converter`工具,并配置环境变量。
### 参数说明
......@@ -119,17 +119,17 @@ bash build.sh -I x86_64
使用MindSpore Lite模型转换工具,需要进行如下环境准备工作。
- 编译:模型转换工具代码在MindSpore源码的`mindspore/lite/tools/converter`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/docs/zh-CN/master/deploy.html#id7)[编译示例](https://www.mindspore.cn/lite/docs/zh-CN/master/deploy.html#id10),安装编译依赖基本项与模型转换工具所需附加项,并编译Windows版本。
- 编译:模型转换工具代码在MindSpore源码的`mindspore/lite/tools/converter`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id7)[编译示例](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id10),安装编译依赖基本项与模型转换工具所需附加项,并编译Windows版本。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/docs/zh-CN/master/deploy.html#id9),获得`converter`工具,并将MinGW/bin目录下的几个依赖文件(libgcc_s_seh-1.dll、libwinpthread-1.dll、libssp-0.dll、libstdc++-6.dll)拷贝至`converter`工具的主目录。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/deploy.html#id9),获得`converter`工具,并将MinGW/bin目录下的几个依赖文件(libgcc_s_seh-1.dll、libwinpthread-1.dll、libssp-0.dll、libstdc++-6.dll)拷贝至`converter`工具的主目录。
### 参数说明
参考Linux环境模型转换工具的[参数说明](https://www.mindspore.cn/lite/docs/zh-CN/master/converter_tool.html#id4)
参考Linux环境模型转换工具的[参数说明](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/converter_tool.html#id4)
### 模型可视化
参考Linux环境模型转换工具的[模型可视化](https://www.mindspore.cn/lite/docs/zh-CN/master/converter_tool.html#id5)
参考Linux环境模型转换工具的[模型可视化](https://www.mindspore.cn/lite/docs/zh-CN/r0.7/converter_tool.html#id5)
### 使用示例
......
......@@ -9,7 +9,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_zh_cn/use/post_training_quantization.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_zh_cn/use/post_training_quantization.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......
......@@ -30,7 +30,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_zh_cn/use/runtime.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_zh_cn/use/runtime.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......
......@@ -10,7 +10,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/lite/tutorials/source_zh_cn/use/timeprofiler_tool.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/blob/r0.7/lite/tutorials/source_zh_cn/use/timeprofiler_tool.md" target="_blank"><img src="../_static/logo_source.png"></a>
## 概述
......@@ -20,9 +20,9 @@ TimeProfiler工具可以对MindSpore Lite模型网络层的前向推理进行耗
使用TimeProfiler工具,需要进行如下环境准备工作。
- 编译:TimeProfiler工具代码在MindSpore源码的`mindspore/lite/tools/time_profiler`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id5),安装编译依赖基本项,并执行编译。
- 编译:TimeProfiler工具代码在MindSpore源码的`mindspore/lite/tools/time_profiler`目录中,参考部署文档中的[环境要求](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id2)[编译示例](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id5),安装编译依赖基本项,并执行编译。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/master/deploy.html#id4),获得`time_profiler`工具,并配置环境变量。
- 运行:参考部署文档中的[输出件说明](https://www.mindspore.cn/lite/tutorial/zh-CN/r0.7/deploy.html#id4),获得`time_profiler`工具,并配置环境变量。
## 参数说明
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册