提交 62bceb5f 编写于 作者: T Ting Wang

update links for r0.5

Signed-off-by: NTing Wang <kathy.wangting@huawei.com>
上级 479d940b
......@@ -29,7 +29,7 @@ copyright = '2020, MindSpore'
author = 'MindSpore'
# The full version, including alpha/beta/rc tags
release = 'master'
release = 'r0.5'
# -- General configuration ---------------------------------------------------
......
......@@ -47,4 +47,4 @@ MindSpore API
:maxdepth: 1
:caption: C++ API
predict <https://www.mindspore.cn/apicc/en/master/predict/namespacemembers.html>
predict <https://www.mindspore.cn/apicc/en/r0.5/predict/namespacemembers.html>
......@@ -29,7 +29,7 @@ copyright = '2020, MindSpore'
author = 'MindSpore'
# The full version, including alpha/beta/rc tags
release = 'master'
release = 'r0.5'
# -- General configuration ---------------------------------------------------
......
......@@ -47,4 +47,4 @@ MindSpore API
:maxdepth: 1
:caption: C++ API
predict <https://www.mindspore.cn/apicc/zh-CN/master/predict/namespacemembers.html>
predict <https://www.mindspore.cn/apicc/zh-CN/r0.5/predict/namespacemembers.html>
......@@ -3,7 +3,7 @@
<a href="https://gitee.com/mindspore/docs/blob/r0.5/docs/source_en/benchmark.md" target="_blank"><img src="./_static/logo_source.png"></a>
This document describes the MindSpore benchmarks.
For details about the MindSpore pre-trained model, see [Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
For details about the MindSpore pre-trained model, see [Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.5/model_zoo).
## Training Performance
......
......@@ -20,7 +20,7 @@ copyright = '2020, MindSpore'
author = 'MindSpore'
# The full version, including alpha/beta/rc tags
release = 'master'
release = 'r0.5'
# -- General configuration ---------------------------------------------------
......
......@@ -148,8 +148,8 @@ Currently, the following syntax is not supported in network constructors:
## Network Definition Constraints
### Instance Types on the Entire Network
* Common Python function with the [@ms_function](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.html#mindspore.ms_function) decorator.
* Cell subclass inherited from [nn.Cell](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell).
* Common Python function with the [@ms_function](https://www.mindspore.cn/api/en/r0.5/api/python/mindspore/mindspore.html#mindspore.ms_function) decorator.
* Cell subclass inherited from [nn.Cell](https://www.mindspore.cn/api/en/r0.5/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell).
### Network Input Type
* The training data input parameters of the entire network must be of the Tensor type.
......@@ -162,13 +162,13 @@ Currently, the following syntax is not supported in network constructors:
| Category | Content
| :----------- |:--------
| `Cell` instance |[mindspore/nn/*](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.nn.html), and custom [Cell](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell).
| `Cell` instance |[mindspore/nn/*](https://www.mindspore.cn/api/en/r0.5/api/python/mindspore/mindspore.nn.html), and custom [Cell](https://www.mindspore.cn/api/en/r0.5/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell).
| Member function of a `Cell` instance | Member functions of other classes in the construct function of Cell can be called.
| Function | Custom Python functions and system functions listed in the preceding content.
| Dataclass instance | Class decorated with @dataclass.
| Primitive operator |[mindspore/ops/operations/*](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.operations.html).
| Composite operator |[mindspore/ops/composite/*](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.composite.html).
| Operator generated by constexpr |Uses the value generated by [@constexpr](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.ops.html#mindspore.ops.constexpr) to calculate operators.
| Primitive operator |[mindspore/ops/operations/*](https://www.mindspore.cn/api/en/r0.5/api/python/mindspore/mindspore.ops.operations.html).
| Composite operator |[mindspore/ops/composite/*](https://www.mindspore.cn/api/en/r0.5/api/python/mindspore/mindspore.ops.composite.html).
| Operator generated by constexpr |Uses the value generated by [@constexpr](https://www.mindspore.cn/api/en/r0.5/api/python/mindspore/mindspore.ops.html#mindspore.ops.constexpr) to calculate operators.
### Other Constraints
......
# Network List
<a href="https://gitee.com/mindspore/docs/tree/master/docs/source_en/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/tree/r0.5/docs/source_en/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
| Domain | Sub Domain | Network | Ascend | GPU | CPU
|:------ |:------| :----------- |:------ |:------ |:-----
|Computer Version (CV) | Image Classification | [AlexNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/alexnet/src/alexnet.py) | Supported | Supported | Doing
| Computer Version (CV) | Image Classification | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/googlenet/src/googlenet.py) | Supported | Doing | Doing
| Computer Version (CV) | Image Classification | [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/lenet/src/lenet.py) | Supported | Supported | Supported
| Computer Version (CV) | Image Classification | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py) | Supported | Doing | Doing
|Computer Version (CV) | Image Classification | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py) | Supported |Doing | Doing
| Computer Version (CV) | Image Classification | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/vgg16/src/vgg.py) | Supported | Doing | Doing
| Computer Version (CV) | Mobile Image Classification<br>Image Classification<br>Semantic Tegmentation | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| Computer Version (CV) | Mobile Image Classification<br>Image Classification<br>Semantic Tegmentation | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|Computer Version (CV) | Targets Detection | [SSD](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/ssd/src/ssd.py) | Supported |Doing | Doing
| Computer Version (CV) | Targets Detection | [YoloV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/yolov3/src/yolov3.py) | Supported | Doing | Doing
| Computer Version (CV) | Targets Detection | [FasterRCNN](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/faster_rcnn/src/FasterRcnn) | Supported | Doing | Doing
| Computer Version (CV) | Semantic Segmentation | [Deeplabv3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [BERT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/bert/src/bert_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/Transformer/src/transformer_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/lstm/src/lstm.py) | Doing | Supported | Supported
| Recommender | Recommender System, CTR prediction | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/deepfm/src/deepfm.py) | Supported | Doing | Doing
| Recommender | Recommender System, Search ranking | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/wide_and_deep/src/wide_and_deep.py) | Supported | Doing | Doing
|Computer Version (CV) | Image Classification | [AlexNet](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/alexnet/src/alexnet.py) | Supported | Supported | Doing
| Computer Version (CV) | Image Classification | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/googlenet/src/googlenet.py) | Supported | Doing | Doing
| Computer Version (CV) | Image Classification | [LeNet](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/lenet/src/lenet.py) | Supported | Supported | Supported
| Computer Version (CV) | Image Classification | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/resnet/src/resnet.py) | Supported | Doing | Doing
|Computer Version (CV) | Image Classification | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/resnet/src/resnet.py) | Supported |Doing | Doing
| Computer Version (CV) | Image Classification | [VGG16](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/vgg16/src/vgg.py) | Supported | Doing | Doing
| Computer Version (CV) | Mobile Image Classification<br>Image Classification<br>Semantic Tegmentation | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| Computer Version (CV) | Mobile Image Classification<br>Image Classification<br>Semantic Tegmentation | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|Computer Version (CV) | Targets Detection | [SSD](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/ssd/src/ssd.py) | Supported |Doing | Doing
| Computer Version (CV) | Targets Detection | [YoloV3](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/yolov3/src/yolov3.py) | Supported | Doing | Doing
| Computer Version (CV) | Targets Detection | [FasterRCNN](https://gitee.com/mindspore/mindspore/tree/r0.5/model_zoo/faster_rcnn/src/FasterRcnn) | Supported | Doing | Doing
| Computer Version (CV) | Semantic Segmentation | [Deeplabv3](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [BERT](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/bert/src/bert_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [Transformer](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/Transformer/src/transformer_model.py) | Supported | Doing | Doing
| Natural Language Processing (NLP) | Natural Language Understanding | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/lstm/src/lstm.py) | Doing | Supported | Supported
| Recommender | Recommender System, CTR prediction | [DeepFM](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/deepfm/src/deepfm.py) | Supported | Doing | Doing
| Recommender | Recommender System, Search ranking | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/wide_and_deep/src/wide_and_deep.py) | Supported | Doing | Doing
此差异已折叠。
......@@ -2,7 +2,7 @@
<a href="https://gitee.com/mindspore/docs/blob/r0.5/docs/source_zh_cn/benchmark.md" target="_blank"><img src="./_static/logo_source.png"></a>
本文介绍MindSpore的基准性能。MindSpore预训练模型可参考[Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)
本文介绍MindSpore的基准性能。MindSpore预训练模型可参考[Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.5/model_zoo)
## 训练性能
......
......@@ -20,7 +20,7 @@ copyright = '2020, MindSpore'
author = 'MindSpore'
# The full version, including alpha/beta/rc tags
release = 'master'
release = 'r0.5'
# -- General configuration ---------------------------------------------------
......
......@@ -143,8 +143,8 @@
## 网络定义约束
### 整网实例类型
*[@ms_function](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.html#mindspore.ms_function)装饰器的普通Python函数。
* 继承自[nn.Cell](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell)的Cell子类。
*[@ms_function](https://www.mindspore.cn/api/zh-CN/r0.5/api/python/mindspore/mindspore.html#mindspore.ms_function)装饰器的普通Python函数。
* 继承自[nn.Cell](https://www.mindspore.cn/api/zh-CN/r0.5/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell)的Cell子类。
### 网络输入类型
* 整网的训练数据输入参数只能是Tensor类型。
......@@ -157,13 +157,13 @@
| 类别 | 内容
| :----------- |:--------
| `Cell`实例 |[mindspore/nn/*](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.nn.html)、自定义[Cell](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell)
| `Cell`实例 |[mindspore/nn/*](https://www.mindspore.cn/api/zh-CN/r0.5/api/python/mindspore/mindspore.nn.html)、自定义[Cell](https://www.mindspore.cn/api/zh-CN/r0.5/api/python/mindspore/mindspore.nn.html#mindspore.nn.Cell)
| `Cell`实例的成员函数 | Cell的construct中可以调用其他类成员函数。
| 函数 | 自定义Python函数、前文中列举的系统函数。
| dataclass实例 | 使用@dataclass装饰的类。
| Primitive算子 |[mindspore/ops/operations/*](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.operations.html)
| Composite算子 |[mindspore/ops/composite/*](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.composite.html)
| constexpr生成算子 |使用[@constexpr](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.ops.html#mindspore.ops.constexpr)生成的值计算算子。
| Primitive算子 |[mindspore/ops/operations/*](https://www.mindspore.cn/api/zh-CN/r0.5/api/python/mindspore/mindspore.ops.operations.html)
| Composite算子 |[mindspore/ops/composite/*](https://www.mindspore.cn/api/zh-CN/r0.5/api/python/mindspore/mindspore.ops.composite.html)
| constexpr生成算子 |使用[@constexpr](https://www.mindspore.cn/api/zh-CN/r0.5/api/python/mindspore/mindspore.ops.html#mindspore.ops.constexpr)生成的值计算算子。
### 其他约束
......
# 网络支持
<a href="https://gitee.com/mindspore/docs/tree/master/docs/source_zh_cn/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/tree/r0.5/docs/source_zh_cn/network_list.md" target="_blank"><img src="./_static/logo_source.png"></a>
| 领域 | 子领域 | 网络 | Ascend | GPU | CPU
|:------ |:------| :----------- |:------ |:------ |:-----
|计算机视觉(CV) | 图像分类(Image Classification) | [AlexNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/alexnet/src/alexnet.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/googlenet/src/googlenet.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [LeNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/lenet/src/lenet.py) | Supported | Supported | Supported
| 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py) | Supported | Doing | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/resnet/src/resnet.py) | Supported |Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [VGG16](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/vgg16/src/vgg.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)<br>目标检测(Image Classification)<br>语义分割(Semantic Tegmentation) | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)<br>目标检测(Image Classification)<br>语义分割(Semantic Tegmentation) | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|计算机视觉(CV) | 目标检测(Targets Detection) | [SSD](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/ssd/src/ssd.py) | Supported |Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [YoloV3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/yolov3/src/yolov3.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [FasterRCNN](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/faster_rcnn/src/FasterRcnn) | Supported | Doing | Doing
| 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [Deeplabv3](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [BERT](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/bert/src/bert_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [Transformer](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/Transformer/src/transformer_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/lstm/src/lstm.py) | Doing | Supported | Supported
| 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DeepFM](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/deepfm/src/deepfm.py) | Supported | Doing | Doing
| 推荐(Recommender) | 推荐系统、搜索、排序(Recommender System, Search ranking) | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/master/model_zoo/wide_and_deep/src/wide_and_deep.py) | Supported | Doing | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [AlexNet](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/alexnet/src/alexnet.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [GoogleNet](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/googlenet/src/googlenet.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [LeNet](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/lenet/src/lenet.py) | Supported | Supported | Supported
| 计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-50](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/resnet/src/resnet.py) | Supported | Doing | Doing
|计算机视觉(CV) | 图像分类(Image Classification) | [ResNet-101](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/resnet/src/resnet.py) | Supported |Doing | Doing
| 计算机视觉(CV) | 图像分类(Image Classification) | [VGG16](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/vgg16/src/vgg.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)<br>目标检测(Image Classification)<br>语义分割(Semantic Tegmentation) | [MobileNetV2](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/mobilenetv2/src/mobilenetV2.py) | Supported | Supported | Doing
| 计算机视觉(CV) | 移动端图像分类(Mobile Image Classification)<br>目标检测(Image Classification)<br>语义分割(Semantic Tegmentation) | [MobileNetV3](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/mobilenetv3/src/mobilenetV3.py) | Doing | Supported | Doing
|计算机视觉(CV) | 目标检测(Targets Detection) | [SSD](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/ssd/src/ssd.py) | Supported |Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [YoloV3](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/yolov3/src/yolov3.py) | Supported | Doing | Doing
| 计算机视觉(CV) | 目标检测(Targets Detection) | [FasterRCNN](https://gitee.com/mindspore/mindspore/tree/r0.5/model_zoo/faster_rcnn/src/FasterRcnn) | Supported | Doing | Doing
| 计算机视觉(CV) | 语义分割(Semantic Segmentation) | [Deeplabv3](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/deeplabv3/src/deeplabv3.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [BERT](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/bert/src/bert_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [Transformer](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/Transformer/src/transformer_model.py) | Supported | Doing | Doing
| 自然语言处理(NLP) | 自然语言理解(Natural Language Understanding) | [SentimentNet](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/lstm/src/lstm.py) | Doing | Supported | Supported
| 推荐(Recommender) | 推荐系统、点击率预估(Recommender System, CTR prediction) | [DeepFM](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/deepfm/src/deepfm.py) | Supported | Doing | Doing
| 推荐(Recommender) | 推荐系统、搜索、排序(Recommender System, Search ranking) | [Wide&Deep](https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/wide_and_deep/src/wide_and_deep.py) | Supported | Doing | Doing
此差异已折叠。
......@@ -21,7 +21,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindSpore master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindSpore 0.5.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- GCC 7.3.0可以直接通过apt命令安装。
- 在联网状态下,安装whl包时会自动下载`requirements.txt`中的依赖项,其余情况需自行安装。
......@@ -97,7 +97,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---------------------- | :------------------ | :----------------------------------------------------------- | :----------------------- |
| MindArmour master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master<br> - 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.5/setup.py) | 与可执行文件安装依赖相同 |
| MindArmour 0.5.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.5.0-beta <br> - 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.5/setup.py) | 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`setup.py`中的依赖项,其余情况需自行安装。
......
......@@ -21,7 +21,7 @@ This document describes how to quickly install MindSpore on a Ubuntu system with
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindSpore master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> same as the executable file installation dependencies. |
| MindSpore 0.5.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> same as the executable file installation dependencies. |
- GCC 7.3.0 can be installed by using apt command.
- When the network is connected, dependency items in the `requirements.txt` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......@@ -97,7 +97,7 @@ If you need to conduct AI model security research or enhance the security of the
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindArmour master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.5/setup.py). | Same as the executable file installation dependencies. |
| MindArmour 0.5.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.5.0-beta <br> - For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.5/setup.py). | Same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `setup.py` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......
......@@ -4,7 +4,7 @@
<!-- TOC -->
- [Windows系统安装MindSpore](#windows系统安装mindspore)
- [安装MindSpore](#安装mindspore)
- [环境要求](#环境要求)
- [系统要求和软件依赖](#系统要求和软件依赖)
- [Conda安装(可选)](#conda安装可选)
......@@ -20,7 +20,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindSpore master | Windows 10 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [MinGW-W64 GCC-7.3.0](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z) x86_64-posix-seh <br> - [ActivePerl](http://downloads.activestate.com/ActivePerl/releases/5.24.3.2404/ActivePerl-5.24.3.2404-MSWin32-x64-404865.exe) 5.24.3.2404 <br> - [CMake](https://cmake.org/download/) 3.14.1 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindSpore 0.5.0-beta | Windows 10 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [MinGW-W64 GCC-7.3.0](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z) x86_64-posix-seh <br> - [ActivePerl](http://downloads.activestate.com/ActivePerl/releases/5.24.3.2404/ActivePerl-5.24.3.2404-MSWin32-x64-404865.exe) 5.24.3.2404 <br> - [CMake](https://cmake.org/download/) 3.14.1 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`requirements.txt`中的依赖项,其余情况需自行安装。
......
......@@ -4,7 +4,7 @@ This document describes how to quickly install MindSpore on a Windows system wit
<!-- TOC -->
- [MindSpore Installation Guide on Windows](#mindspore-installation-guide-on-windows)
- [MindSpore Installation Guide](#mindspore-installation-guide)
- [Environment Requirements](#environment-requirements)
- [System Requirements and Software Dependencies](#system-requirements-and-software-dependencies)
- [(Optional) Installing Conda](#optional-installing-conda)
......@@ -20,7 +20,7 @@ This document describes how to quickly install MindSpore on a Windows system wit
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindSpore master | Windows 10 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [MinGW-W64 GCC-7.3.0](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z) x86_64-posix-seh <br> - [ActivePerl](http://downloads.activestate.com/ActivePerl/releases/5.24.3.2404/ActivePerl-5.24.3.2404-MSWin32-x64-404865.exe) 5.24.3.2404 <br> - [CMake](https://cmake.org/download/) 3.14.1 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
| MindSpore 0.5.0-beta | Windows 10 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [MinGW-W64 GCC-7.3.0](https://sourceforge.net/projects/mingw-w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/mingw-builds/7.3.0/threads-posix/seh/x86_64-7.3.0-release-posix-seh-rt_v5-rev0.7z) x86_64-posix-seh <br> - [ActivePerl](http://downloads.activestate.com/ActivePerl/releases/5.24.3.2404/ActivePerl-5.24.3.2404-MSWin32-x64-404865.exe) 5.24.3.2404 <br> - [CMake](https://cmake.org/download/) 3.14.1 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `requirements.txt` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......
......@@ -33,7 +33,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindSpore master | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI处理器配套软件包(对应版本Atlas Data Center Solution V100R020C00T100) <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI处理器配套软件包(对应版本Atlas Data Center Solution V100R020C00T100) <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindSpore 0.5.0-beta | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI处理器配套软件包(对应版本Atlas Data Center Solution V100R020C00T100) <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI处理器配套软件包(对应版本Atlas Data Center Solution V100R020C00T100) <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- 确认当前用户有权限访问Ascend 910 AI处理器配套软件包(对应版本Atlas Data Center Solution V100R020C00T100)的安装路径`/usr/local/Ascend`,若无权限,需要root用户将当前用户添加到`/usr/local/Ascend`所在的用户组,具体配置请详见配套软件包的说明文档。
- GCC 7.3.0可以直接通过apt命令安装。
......@@ -160,7 +160,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindInsight master | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindinsight/blob/r0.5/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindInsight 0.5.0-beta | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.5.0-beta <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindinsight/blob/r0.5/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`requirements.txt`中的依赖项,其余情况需自行安装。
......@@ -225,7 +225,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindArmour master | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.5/setup.py) | 与可执行文件安装依赖相同 |
| MindArmour 0.5.0-beta | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.5.0-beta <br> - 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.5/setup.py) | 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`setup.py`中的依赖项,其余情况需自行安装。
......
......@@ -32,7 +32,7 @@ This document describes how to quickly install MindSpore on an Ascend AI process
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindSpore master | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI processor software package(Version:Atlas Data Center Solution V100R020C00T100) <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI processor software package(Version:Atlas Data Center Solution V100R020C00T100) <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
| MindSpore 0.5.0-beta | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI processor software package(Version:Atlas Data Center Solution V100R020C00T100) <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - Ascend 910 AI processor software package(Version:Atlas Data Center Solution V100R020C00T100) <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [gmp](https://gmplib.org/download/gmp/) 6.1.2 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
- Confirm that the current user has the right to access the installation path `/usr/local/Ascend `of Ascend 910 AI processor software package(Version:Atlas Data Center Solution V100R020C00T100). If not, the root user needs to add the current user to the user group where `/usr/local/Ascend` is located. For the specific configuration, please refer to the software package instruction document.
- GCC 7.3.0 can be installed by using apt command.
......@@ -159,7 +159,7 @@ If you need to analyze information such as model scalars, graphs, and model trac
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindInsight master | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindinsight/blob/r0.5/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
| MindInsight 0.5.0-beta | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.5.0-beta <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindinsight/blob/r0.5/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `requirements.txt` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......@@ -226,7 +226,7 @@ If you need to conduct AI model security research or enhance the security of the
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindArmour master | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.5/setup.py). | Same as the executable file installation dependencies. |
| MindArmour 0.5.0-beta | - Ubuntu 18.04 aarch64 <br> - Ubuntu 18.04 x86_64 <br> - EulerOS 2.8 aarch64 <br> - EulerOS 2.5 x86_64 <br> | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.5.0-beta <br> - For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.5/setup.py). | Same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `setup.py` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......
......@@ -28,7 +28,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindSpore master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> - [OpenMPI](https://www.open-mpi.org/faq/?category=building#easy-build) 3.1.5 (可选,单机多卡/多机多卡训练需要) <br> - [NCCL](https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#debian) 2.4.8-1 (可选,单机多卡/多机多卡训练需要) <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [Autoconf](https://www.gnu.org/software/autoconf) >= 2.69 <br> - [Libtool](https://www.gnu.org/software/libtool) >= 2.4.6-29.fc30 <br> - [Automake](https://www.gnu.org/software/automake) >= 1.15.1 <br> - [CUDA 9.2](https://developer.nvidia.com/cuda-92-download-archive) / [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindSpore 0.5.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> - [OpenMPI](https://www.open-mpi.org/faq/?category=building#easy-build) 3.1.5 (可选,单机多卡/多机多卡训练需要) <br> - [NCCL](https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#debian) 2.4.8-1 (可选,单机多卡/多机多卡训练需要) <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [Autoconf](https://www.gnu.org/software/autoconf) >= 2.69 <br> - [Libtool](https://www.gnu.org/software/libtool) >= 2.4.6-29.fc30 <br> - [Automake](https://www.gnu.org/software/automake) >= 1.15.1 <br> - [CUDA 9.2](https://developer.nvidia.com/cuda-92-download-archive) / [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`requirements.txt`中的依赖项,其余情况需自行安装。
- 为了方便用户使用,MindSpore降低了对Autoconf、Libtool、Automake版本的依赖,可以使用系统自带版本。
......@@ -123,7 +123,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---- | :--- | :--- | :--- |
| MindInsight master | - Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindinsight/blob/r0.5/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
| MindInsight 0.5.0-beta | - Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.5.0-beta <br> - 其他依赖项参见[requirements.txt](https://gitee.com/mindspore/mindinsight/blob/r0.5/requirements.txt) | **编译依赖:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **安装依赖:**<br> 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`requirements.txt`中的依赖项,其余情况需自行安装。
......@@ -188,7 +188,7 @@
| 版本号 | 操作系统 | 可执行文件安装依赖 | 源码编译安装依赖 |
| ---------------------- | :------------------ | :----------------------------------------------------------- | :----------------------- |
| MindArmour master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.5/setup.py) | 与可执行文件安装依赖相同 |
| MindArmour 0.5.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.5.0-beta <br> - 其他依赖项参见[setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.5/setup.py) | 与可执行文件安装依赖相同 |
- 在联网状态下,安装whl包时会自动下载`setup.py`中的依赖项,其余情况需自行安装。
......
......@@ -28,7 +28,7 @@ This document describes how to quickly install MindSpore on a NVIDIA GPU environ
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindSpore master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> - [OpenMPI](https://www.open-mpi.org/faq/?category=building#easy-build) 3.1.5 (optional, required for single-node/multi-GPU and multi-node/multi-GPU training) <br> - [NCCL](https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#debian) 2.4.8-1 (optional, required for single-node/multi-GPU and multi-node/multi-GPU training) <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [Autoconf](https://www.gnu.org/software/autoconf) >= 2.69 <br> - [Libtool](https://www.gnu.org/software/libtool) >= 2.4.6-29.fc30 <br> - [Automake](https://www.gnu.org/software/automake) >= 1.15.1 <br> - [CUDA 9.2](https://developer.nvidia.com/cuda-92-download-archive) / [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
| MindSpore 0.5.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> - [OpenMPI](https://www.open-mpi.org/faq/?category=building#easy-build) 3.1.5 (optional, required for single-node/multi-GPU and multi-node/multi-GPU training) <br> - [NCCL](https://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#debian) 2.4.8-1 (optional, required for single-node/multi-GPU and multi-node/multi-GPU training) <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindspore/blob/r0.5/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [patch](http://ftp.gnu.org/gnu/patch/) >= 2.5 <br> - [Autoconf](https://www.gnu.org/software/autoconf) >= 2.69 <br> - [Libtool](https://www.gnu.org/software/libtool) >= 2.4.6-29.fc30 <br> - [Automake](https://www.gnu.org/software/automake) >= 1.15.1 <br> - [CUDA 9.2](https://developer.nvidia.com/cuda-92-download-archive) / [CUDA 10.1](https://developer.nvidia.com/cuda-10.1-download-archive-base) <br> - [CuDNN](https://developer.nvidia.com/rdp/cudnn-archive) >= 7.6 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `requirements.txt` file are automatically downloaded during `.whl` package installation. In other cases, you need to manually install dependency items.
- MindSpore reduces dependency on Autoconf, Libtool, Automake versions for the convenience of users, default versions of these tools built in their systems are now supported.
......@@ -123,7 +123,7 @@ If you need to analyze information such as model scalars, graphs, and model trac
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindInsight master | - Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindinsight/blob/r0.5/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
| MindInsight 0.5.0-beta | - Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.5.0-beta <br> - For details about other dependency items, see [requirements.txt](https://gitee.com/mindspore/mindinsight/blob/r0.5/requirements.txt). | **Compilation dependencies:**<br> - [Python](https://www.python.org/downloads/) 3.7.5 <br> - [CMake](https://cmake.org/download/) >= 3.14.1 <br> - [GCC](https://gcc.gnu.org/releases.html) 7.3.0 <br> - [node.js](https://nodejs.org/en/download/) >= 10.19.0 <br> - [wheel](https://pypi.org/project/wheel/) >= 0.32.0 <br> - [pybind11](https://pypi.org/project/pybind11/) >= 2.4.3 <br> **Installation dependencies:**<br> same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `requirements.txt` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......@@ -190,7 +190,7 @@ If you need to conduct AI model security research or enhance the security of the
| Version | Operating System | Executable File Installation Dependencies | Source Code Compilation and Installation Dependencies |
| ---- | :--- | :--- | :--- |
| MindArmour master | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore master <br> - For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.5/setup.py). | Same as the executable file installation dependencies. |
| MindArmour 0.5.0-beta | Ubuntu 18.04 x86_64 | - [Python](https://www.python.org/downloads/) 3.7.5 <br> - MindSpore 0.5.0-beta <br> - For details about other dependency items, see [setup.py](https://gitee.com/mindspore/mindarmour/blob/r0.5/setup.py). | Same as the executable file installation dependencies. |
- When the network is connected, dependency items in the `setup.py` file are automatically downloaded during .whl package installation. In other cases, you need to manually install dependency items.
......
......@@ -74,7 +74,7 @@ A: MindSpore has basic support for common training scenarios, please refer to [R
Q: What are the available recommendation or text generation networks or models provided by MindSpore?
A: Currently, recommendation models such as Wide & Deep, DeepFM, and NCF are under development. In the natural language processing (NLP) field, Bert\_NEZHA is available and models such as MASS are under development. You can rebuild the network into a text generation network based on the scenario requirements. Please stay tuned for updates on the [MindSpore Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
A: Currently, recommendation models such as Wide & Deep, DeepFM, and NCF are under development. In the natural language processing (NLP) field, Bert\_NEZHA is available and models such as MASS are under development. You can rebuild the network into a text generation network based on the scenario requirements. Please stay tuned for updates on the [MindSpore Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.5/model_zoo).
### Backend Support
......@@ -92,13 +92,13 @@ A: MindSpore provides pluggable device management interface so that developer co
Q: What hardware does MindSpore require?
A: Currently, you can try out MindSpore through Docker images on laptops or in environments with GPUs. Some models in MindSpore Model Zoo support GPU-based training and inference, and other models are being improved. For distributed parallel training, MindSpore supports multi-GPU training. You can obtain the latest information from [RoadMap](https://www.mindspore.cn/docs/en/master/roadmap.html) and project [Release Notes](https://gitee.com/mindspore/mindspore/blob/r0.5/RELEASE.md).
A: Currently, you can try out MindSpore through Docker images on laptops or in environments with GPUs. Some models in MindSpore Model Zoo support GPU-based training and inference, and other models are being improved. For distributed parallel training, MindSpore supports multi-GPU training. You can obtain the latest information from [RoadMap](https://www.mindspore.cn/docs/en/r0.5/roadmap.html) and project [Release Notes](https://gitee.com/mindspore/mindspore/blob/r0.5/RELEASE.md).
### System Support
Q: Does MindSpore support Windows 10?
A: The MindSpore CPU version can be installed on Windows 10. For details about the installation procedure, see tutorials on the [MindSpore official website](https://www.mindspore.cn/tutorial/en/master/advanced_use/mindspore_cpu_win_install.html).
A: The MindSpore CPU version can be installed on Windows 10. For details about the installation procedure, see tutorials on the [MindSpore official website](https://www.mindspore.cn/tutorial/en/r0.5/advanced_use/mindspore_cpu_win_install.html).
### Programming Language
......@@ -122,7 +122,7 @@ A: The MindSpore framework does not support FCA. For semantic models, you can ca
Q: Where can I view the sample code or tutorial of MindSpore training and inference?
A: Please visit the [MindSpore official website](https://www.mindspore.cn/tutorial/en/master/index.html).
A: Please visit the [MindSpore official website](https://www.mindspore.cn/tutorial/en/r0.5/index.html).
## Features
......@@ -140,7 +140,7 @@ A: Automatic parallelism on CPUs and GPUs are being improved. You are advised to
Q: What is the relationship between MindSpore and ModelArts? Can MindSpore be used on ModelArts?
A: ModelArts is an online training and inference platform on HUAWEI CLOUD. MindSpore is a Huawei deep learning framework. You can view the tutorials on the [MindSpore official website](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/use_on_the_cloud.html) to learn how to train MindSpore models on ModelArts.
A: ModelArts is an online training and inference platform on HUAWEI CLOUD. MindSpore is a Huawei deep learning framework. You can view the tutorials on the [MindSpore official website](https://www.mindspore.cn/tutorial/zh-CN/r0.5/advanced_use/use_on_the_cloud.html) to learn how to train MindSpore models on ModelArts.
## Capabilities
......@@ -152,7 +152,7 @@ A: The TensorFlow's object detection pipeline API belongs to the TensorFlow's Mo
Q: How do I migrate scripts or models of other frameworks to MindSpore?
A: For details about script or model migration, please visit the [MindSpore official website](https://www.mindspore.cn/tutorial/en/master/advanced_use/network_migration.html).
A: For details about script or model migration, please visit the [MindSpore official website](https://www.mindspore.cn/tutorial/en/r0.5/advanced_use/network_migration.html).
<br/>
......
......@@ -73,7 +73,7 @@ A:MindSpore针对典型场景均有模型训练支持,支持情况详见[Rel
Q:MindSpore有哪些现成的推荐类或生成类网络或模型可用?
A:目前正在开发Wide & Deep、DeepFM、NCF等推荐类模型,NLP领域已经支持Bert_NEZHA,正在开发MASS等模型,用户可根据场景需要改造为生成类网络,可以关注[MindSpore Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)
A:目前正在开发Wide & Deep、DeepFM、NCF等推荐类模型,NLP领域已经支持Bert_NEZHA,正在开发MASS等模型,用户可根据场景需要改造为生成类网络,可以关注[MindSpore Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.5/model_zoo)
### 后端支持
......@@ -91,13 +91,13 @@ A:MindSpore提供了可插拔式的设备管理接口,其他计算单元(
Q:MindSpore需要什么硬件支持?
A:目前笔记本电脑或者有GPU的环境,都可以通过Docker镜像来试用。当前MindSpore Model Zoo中有部分模型已经支持GPU的训练和推理,其他模型也在不断地进行完善。在分布式并行训练方面,MindSpore当前支持GPU多卡训练。你可以通过[RoadMap](https://www.mindspore.cn/docs/zh-CN/master/roadmap.html)和项目[Release note](https://gitee.com/mindspore/mindspore/blob/r0.5/RELEASE.md)获取最新信息。
A:目前笔记本电脑或者有GPU的环境,都可以通过Docker镜像来试用。当前MindSpore Model Zoo中有部分模型已经支持GPU的训练和推理,其他模型也在不断地进行完善。在分布式并行训练方面,MindSpore当前支持GPU多卡训练。你可以通过[RoadMap](https://www.mindspore.cn/docs/zh-CN/r0.5/roadmap.html)和项目[Release note](https://gitee.com/mindspore/mindspore/blob/r0.5/RELEASE.md)获取最新信息。
### 系统支持
Q:MindSpore是否支持Windows 10?
A:MindSpore CPU版本已经支持在Windows 10系统中安装,具体安装步骤可以查阅[MindSpore官网教程](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mindspore_cpu_win_install.html)
A:MindSpore CPU版本已经支持在Windows 10系统中安装,具体安装步骤可以查阅[MindSpore官网教程](https://www.mindspore.cn/tutorial/zh-CN/r0.5/advanced_use/mindspore_cpu_win_install.html)
### 编程语言扩展
......@@ -121,7 +121,7 @@ A:MindSpore框架本身并不需要支持FCA。对于语义类模型,用户
Q:从哪里可以查看MindSpore训练及推理的样例代码或者教程?
A:可以访问[MindSpore官网教程](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
A:可以访问[MindSpore官网教程](https://www.mindspore.cn/tutorial/zh-CN/r0.5/index.html)
## 特性
......@@ -139,7 +139,7 @@ A:自动并行特性对CPU GPU的支持还在完善中。推荐用户在Ascend
Q:MindSpore与ModelArts是什么关系,在ModelArts中能使用MindSpore吗?
A:ModelArts是华为公有云线上训练及推理平台,MindSpore是华为深度学习框架,可以查阅[MindSpore官网教程](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/use_on_the_cloud.html),教程中详细展示了用户如何使用ModelArts来做MindSpore的模型训练。
A:ModelArts是华为公有云线上训练及推理平台,MindSpore是华为深度学习框架,可以查阅[MindSpore官网教程](https://www.mindspore.cn/tutorial/zh-CN/r0.5/advanced_use/use_on_the_cloud.html),教程中详细展示了用户如何使用ModelArts来做MindSpore的模型训练。
## 能力
......@@ -151,7 +151,7 @@ A:TensorFlow的对象检测Pipeline接口属于TensorFlow Model模块。待Min
Q:其他框架的脚本或者模型怎么迁移到MindSpore?
A:关于脚本或者模型迁移,可以查询MindSpore官网中关于[网络迁移](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/network_migration.html)的介绍。
A:关于脚本或者模型迁移,可以查询MindSpore官网中关于[网络迁移](https://www.mindspore.cn/tutorial/zh-CN/r0.5/advanced_use/network_migration.html)的介绍。
<br/>
......
......@@ -313,7 +313,7 @@ User process:
3. Execute stage 2 training: There are two devices in stage 2 training environment. The weight shape of the MatMul operator on each device is \[4, 8]. Load the initialized model parameter data from the integrated checkpoint file and then perform training.
> For details about the distributed environment configuration and training code, see [Distributed Training](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
> For details about the distributed environment configuration and training code, see [Distributed Training](https://www.mindspore.cn/tutorial/en/r0.5/advanced_use/distributed_training.html).
>
> This document provides the example code for integrating checkpoint files and loading checkpoint files before distributed training. The code is for reference only.
......
# <u>Differential</u> Privacy in Machine Learning
# Differential Privacy in Machine Learning
<!-- TOC -->
......@@ -43,7 +43,7 @@ MindArmour differential privacy module Differential-Privacy implements the diffe
The LeNet model and MNIST dataset are used as an example to describe how to use the differential privacy optimizer to train a neural network model on MindSpore.
> This example is for the Ascend 910 AI processor and supports PYNATIVE_MODE. You can download the complete sample code from <https://gitee.com/mindspore/mindarmour/blob/master/example/mnist_demo/lenet5_dp_model_train.py>.
> This example is for the Ascend 910 AI processor and supports PYNATIVE_MODE. You can download the complete sample code from <https://gitee.com/mindspore/mindarmour/blob/r0.5/example/mnist_demo/lenet5_dp_model_train.py>.
## Implementation
......
......@@ -29,7 +29,7 @@ At the beginning of AI algorithm design, related security threats are sometimes
This section describes how to use MindArmour in adversarial attack and defense by taking the Fast Gradient Sign Method (FGSM) attack algorithm and Natural Adversarial Defense (NAD) algorithm as examples.
> The current sample is for CPU, GPU and Ascend 910 AI processor. You can find the complete executable sample code at:<https://gitee.com/mindspore/docs/tree/master/tutorials/tutorial_code/model_safety>
> The current sample is for CPU, GPU and Ascend 910 AI processor. You can find the complete executable sample code at:<https://gitee.com/mindspore/docs/tree/r0.5/tutorials/tutorial_code/model_safety>
> - `mnist_attack_fgsm.py`: contains attack code.
> - `mnist_defense_nad.py`: contains defense code.
......
......@@ -17,7 +17,7 @@
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/tree/master/tutorials/source_en/advanced_use/network_migration.md" target="_blank"><img src="../_static/logo_source.png"></a>
<a href="https://gitee.com/mindspore/docs/tree/r0.5/tutorials/source_en/advanced_use/network_migration.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
......@@ -29,9 +29,9 @@ Before you start working on your scripts, prepare your operator assessment and h
### Operator Assessment
Analyze the operators contained in the network to be migrated and figure out how does MindSpore support these operators based on the [Operator List](https://www.mindspore.cn/docs/en/master/operator_list.html).
Analyze the operators contained in the network to be migrated and figure out how does MindSpore support these operators based on the [Operator List](https://www.mindspore.cn/docs/en/r0.5/operator_list.html).
Take ResNet-50 as an example. The two major operators [Conv](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Conv2d) and [BatchNorm](https://www.mindspore.cn/api/en/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.BatchNorm2d) exist in the MindSpore Operator List.
Take ResNet-50 as an example. The two major operators [Conv](https://www.mindspore.cn/api/en/r0.5/api/python/mindspore/mindspore.nn.html#mindspore.nn.Conv2d) and [BatchNorm](https://www.mindspore.cn/api/en/r0.5/api/python/mindspore/mindspore.nn.html#mindspore.nn.BatchNorm2d) exist in the MindSpore Operator List.
If any operator does not exist, you are advised to perform the following operations:
......@@ -57,17 +57,17 @@ Prepare the hardware environment, find a platform corresponding to your environm
MindSpore differs from TensorFlow and PyTorch in the network structure. Before migration, you need to clearly understand the original script and information of each layer, such as shape.
> You can also use [MindConverter Tool](https://gitee.com/mindspore/mindinsight/tree/master/mindinsight/mindconverter) to automatically convert the PyTorch network definition script to MindSpore network definition script.
> You can also use [MindConverter Tool](https://gitee.com/mindspore/mindinsight/tree/r0.5/mindinsight/mindconverter) to automatically convert the PyTorch network definition script to MindSpore network definition script.
The ResNet-50 network migration and training on the Ascend 910 is used as an example.
1. Import MindSpore modules.
Import the corresponding MindSpore modules based on the required APIs. For details about the module list, see <https://www.mindspore.cn/api/en/master/index.html>.
Import the corresponding MindSpore modules based on the required APIs. For details about the module list, see <https://www.mindspore.cn/api/en/r0.5/index.html>.
2. Load and preprocess a dataset.
Use MindSpore to build the required dataset. Currently, MindSpore supports common datasets. You can call APIs in the original format, `MindRecord`, and `TFRecord`. In addition, MindSpore supports data processing and data augmentation. For details, see the [Data Preparation](https://www.mindspore.cn/tutorial/en/master/use/data_preparation/data_preparation.html).
Use MindSpore to build the required dataset. Currently, MindSpore supports common datasets. You can call APIs in the original format, `MindRecord`, and `TFRecord`. In addition, MindSpore supports data processing and data augmentation. For details, see the [Data Preparation](https://www.mindspore.cn/tutorial/en/r0.5/use/data_preparation/data_preparation.html).
In this example, the CIFAR-10 dataset is loaded, which supports both single-GPU and multi-GPU scenarios.
......@@ -235,7 +235,7 @@ The ResNet-50 network migration and training on the Ascend 910 is used as an exa
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
```
You can use a built-in assessment method of `Model` by setting the [metrics](https://www.mindspore.cn/tutorial/en/master/advanced_use/customized_debugging_information.html#mindspore-metrics) attribute.
You can use a built-in assessment method of `Model` by setting the [metrics](https://www.mindspore.cn/tutorial/en/r0.5/advanced_use/customized_debugging_information.html#mindspore-metrics) attribute.
```python
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
......@@ -264,15 +264,15 @@ The accuracy optimization process is as follows:
#### On-Cloud Integration
Run your scripts on ModelArts. For details, see [Using MindSpore on Cloud](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/use_on_the_cloud.html).
Run your scripts on ModelArts. For details, see [Using MindSpore on Cloud](https://www.mindspore.cn/tutorial/zh-CN/r0.5/advanced_use/use_on_the_cloud.html).
### Inference Phase
Models trained on the Ascend 910 AI processor can be used for inference on different hardware platforms. Refer to the [Multi-platform Inference Tutorial](https://www.mindspore.cn/tutorial/en/master/use/multi_platform_inference.html) for detailed steps.
Models trained on the Ascend 910 AI processor can be used for inference on different hardware platforms. Refer to the [Multi-platform Inference Tutorial](https://www.mindspore.cn/tutorial/en/r0.5/use/multi_platform_inference.html) for detailed steps.
## Examples
1. [Common dataset examples](https://www.mindspore.cn/tutorial/en/master/use/data_preparation/loading_the_datasets.html)
1. [Common dataset examples](https://www.mindspore.cn/tutorial/en/r0.5/use/data_preparation/loading_the_datasets.html)
2. [Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)
2. [Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.5/model_zoo)
......@@ -85,7 +85,7 @@ Currently, MindSpore GPU and CPU supports SentimentNet network based on the long
Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) architecture used for processing and predicting an important event with a long interval and delay in a time sequence. For details, refer to online documentation.
3. After the model is obtained, use the validation dataset to check the accuracy of model.
> The current sample is for the Ascend 910 AI processor. You can find the complete executable sample code at:<https://gitee.com/mindspore/docs/tree/master/tutorials/tutorial_code/lstm>
> The current sample is for the Ascend 910 AI processor. You can find the complete executable sample code at:<https://gitee.com/mindspore/docs/tree/r0.5/tutorials/tutorial_code/lstm>
> - `main.py`: code file, including code for data preprocessing, network definition, and model training.
> - `config.py`: some configurations on the network, including the `batch size` and number of training epochs.
......
......@@ -64,7 +64,7 @@ def test_profiler():
## Launch MindInsight
The MindInsight launch command can refer to [MindInsight Commands](https://www.mindspore.cn/tutorial/en/master/advanced_use/mindinsight_commands.html).
The MindInsight launch command can refer to [MindInsight Commands](https://www.mindspore.cn/tutorial/en/r0.5/advanced_use/mindinsight_commands.html).
### Performance Analysis
......
......@@ -21,7 +21,7 @@ copyright = '2020, MindSpore'
author = 'MindSpore'
# The full version, including alpha/beta/rc tags
release = 'master'
release = 'r0.5'
# -- General configuration ---------------------------------------------------
......
......@@ -83,7 +83,7 @@ Currently, the `os` libraries are required. For ease of understanding, other req
import os
```
For details about MindSpore modules, search on the [MindSpore API Page](https://www.mindspore.cn/api/en/master/index.html).
For details about MindSpore modules, search on the [MindSpore API Page](https://www.mindspore.cn/api/en/r0.5/index.html).
### Configuring the Running Information
......@@ -179,7 +179,7 @@ In the preceding information:
Perform the shuffle and batch operations, and then perform the repeat operation to ensure that data during an epoch is unique.
> MindSpore supports multiple data processing and augmentation operations, which are usually combined. For details, see section "Data Processing and Augmentation" in the MindSpore Tutorials (https://www.mindspore.cn/tutorial/en/master/use/data_preparation/data_processing_and_augmentation.html).
> MindSpore supports multiple data processing and augmentation operations, which are usually combined. For details, see section "Data Processing and Augmentation" in the MindSpore Tutorials (https://www.mindspore.cn/tutorial/en/r0.5/use/data_preparation/data_processing_and_augmentation.html).
## Defining the Network
......
......@@ -27,14 +27,14 @@ The related concepts are as follows:
- Operator implementation: describes the implementation of the internal computation logic for an operator through the DSL API provided by the Tensor Boost Engine (TBE). The TBE supports the development of custom operators based on the Ascend AI chip. You can apply for Open Beta Tests (OBTs) by visiting <https://www.huaweicloud.com/ascend/tbe>.
- Operator information: describes basic information about a TBE operator, such as the operator name and supported input and output types. It is the basis for the backend to select and map operators.
This section takes a Square operator as an example to describe how to customize an operator. For details, see cases in [tests/st/ops/custom_ops_tbe](https://gitee.com/mindspore/mindspore/tree/master/tests/st/ops/custom_ops_tbe) in the MindSpore source code.
This section takes a Square operator as an example to describe how to customize an operator. For details, see cases in [tests/st/ops/custom_ops_tbe](https://gitee.com/mindspore/mindspore/tree/r0.5/tests/st/ops/custom_ops_tbe) in the MindSpore source code.
## Registering the Operator Primitive
The primitive of an operator is a subclass inherited from `PrimitiveWithInfer`. The type name of the subclass is the operator name.
The definition of the custom operator primitive is the same as that of the built-in operator primitive.
- The attribute is defined by the input parameter of the constructor function `__init__`. The operator in this test case has no attribute. Therefore, `__init__` has only one input parameter. For details about test cases in which operators have attributes, see [custom add3](https://gitee.com/mindspore/mindspore/tree/master/tests/st/ops/custom_ops_tbe/cus_add3.py) in the MindSpore source code.
- The attribute is defined by the input parameter of the constructor function `__init__`. The operator in this test case has no attribute. Therefore, `__init__` has only one input parameter. For details about test cases in which operators have attributes, see [custom add3](https://gitee.com/mindspore/mindspore/tree/r0.5/tests/st/ops/custom_ops_tbe/cus_add3.py) in the MindSpore source code.
- The input and output names are defined by the `init_prim_io_names` function.
- The shape inference method of the output tensor is defined in the `infer_shape` function, and the dtype inference method of the output tensor is defined in the `infer_dtype` function.
......
......@@ -149,7 +149,7 @@ MindSpore can also read datasets in the `TFRecord` data format through the `TFRe
## Loading a Custom Dataset
In real scenarios, there are virous datasets. For a custom dataset or a dataset that can't be loaded by APIs directly, there are tow ways.
One is converting the dataset to MindSpore data format (for details, see [Converting Datasets to the Mindspore Data Format](https://www.mindspore.cn/tutorial/en/master/use/data_preparation/converting_datasets.html)). The other one is using the `GeneratorDataset` object.
One is converting the dataset to MindSpore data format (for details, see [Converting Datasets to the Mindspore Data Format](https://www.mindspore.cn/tutorial/en/r0.5/use/data_preparation/converting_datasets.html)). The other one is using the `GeneratorDataset` object.
The following shows how to use `GeneratorDataset`.
1. Define an iterable object to generate a dataset. There are two examples following. One is a customized function which contains `yield`. The other one is a customized class which contains `__getitem__`.
......
......@@ -4,5 +4,5 @@ Defining the Network
.. toctree::
:maxdepth: 1
Network List <https://www.mindspore.cn/docs/en/master/network_list.html>
Network List <https://www.mindspore.cn/docs/en/r0.5/network_list.html>
custom_operator
\ No newline at end of file
......@@ -26,16 +26,16 @@ Models based on MindSpore training can be used for inference on different hardwa
2. Inference on the Ascend 310 AI processor
1. Export the ONNX or GEIR model by referring to the [Export GEIR Model and ONNX Model](https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html#geironnx).
1. Export the ONNX or GEIR model by referring to the [Export GEIR Model and ONNX Model](https://www.mindspore.cn/tutorial/en/r0.5/use/saving_and_loading_model_parameters.html#geironnx).
2. For performing inference in the cloud environment, see the [Ascend 910 training and Ascend 310 inference samples](https://support.huaweicloud.com/bestpractice-modelarts/modelarts_10_0026.html). For details about the bare-metal environment (compared with the cloud environment where the Ascend 310 AI processor is deployed locally), see the description document of the Ascend 310 AI processor software package.
3. Inference on a GPU
1. Export the ONNX model by referring to the [Export GEIR Model and ONNX Model](https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html#geironnx).
1. Export the ONNX model by referring to the [Export GEIR Model and ONNX Model](https://www.mindspore.cn/tutorial/en/r0.5/use/saving_and_loading_model_parameters.html#geironnx).
2. Perform inference on the NVIDIA GPU by referring to [TensorRT backend for ONNX](https://github.com/onnx/onnx-tensorrt).
## On-Device Inference
The On-Device Inference is based on the MindSpore Predict. Please refer to [On-Device Inference Tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/on_device_inference.html) for details.
The On-Device Inference is based on the MindSpore Predict. Please refer to [On-Device Inference Tutorial](https://www.mindspore.cn/tutorial/en/r0.5/advanced_use/on_device_inference.html) for details.
......@@ -316,7 +316,7 @@ load_param_into_net(opt, param_dict)
3. 执行阶段2训练:阶段2为2卡训练环境,每卡上MatMul算子weight的shape为[4, 8],从合并后的CheckPoint文件加载初始化模型参数数据,之后执行训练。
> 具体分布式环境配置和训练部分代码,此处不做详细说明,可以参考[分布式并行训练](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/distributed_training.html)
> 具体分布式环境配置和训练部分代码,此处不做详细说明,可以参考[分布式并行训练](https://www.mindspore.cn/tutorial/zh-CN/r0.5/advanced_use/distributed_training.html)
章节。
>
> 本文档附上对CheckPoint文件做合并处理以及分布式训练前加载CheckPoint文件的示例代码,仅作为参考,实际请参考具体情况实现。
......
......@@ -29,7 +29,7 @@ MindArmour的差分隐私模块Differential-Privacy,实现了差分隐私优
这里以LeNet模型,MNIST 数据集为例,说明如何在MindSpore上使用差分隐私优化器训练神经网络模型。
> 本例面向Ascend 910 AI处理器,支持PYNATIVE_MODE,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/mindarmour/blob/master/example/mnist_demo/lenet5_dp_model_train.py>
> 本例面向Ascend 910 AI处理器,支持PYNATIVE_MODE,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/mindarmour/blob/r0.5/example/mnist_demo/lenet5_dp_model_train.py>
## 实现阶段
......
......@@ -99,7 +99,7 @@ context.set_context(enable_graph_kernel=True)
2. `BERT-large`训练网络
以`BERT-large`网络的训练模型为例,数据集和训练脚本可参照
<https://gitee.com/mindspore/mindspore/tree/master/model_zoo/bert>,同样我们只需修改`context`参数即可。
<https://gitee.com/mindspore/mindspore/tree/r0.5/model_zoo/bert>,同样我们只需修改`context`参数即可。
## 效果评估
......
......@@ -28,7 +28,7 @@ AI算法设计之初普遍未考虑相关的安全威胁,使得AI算法的判
这里通过图像分类任务上的对抗性攻防,以攻击算法FGSM和防御算法NAD为例,介绍MindArmour在对抗攻防上的使用方法。
> 本例面向CPU、GPU、Ascend 910 AI处理器,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/tree/master/tutorials/tutorial_code/model_safety>
> 本例面向CPU、GPU、Ascend 910 AI处理器,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/tree/r0.5/tutorials/tutorial_code/model_safety>
> - `mnist_attack_fgsm.py`:包含攻击代码。
> - `mnist_defense_nad.py`:包含防御代码。
......
......@@ -29,9 +29,9 @@
### 算子评估
分析待迁移的网络中所包含的算子,结合[MindSpore算子支持列表](https://www.mindspore.cn/docs/zh-CN/master/operator_list.html),梳理出MindSpore对这些算子的支持程度。
分析待迁移的网络中所包含的算子,结合[MindSpore算子支持列表](https://www.mindspore.cn/docs/zh-CN/r0.5/operator_list.html),梳理出MindSpore对这些算子的支持程度。
以ResNet-50为例,[Conv](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.Conv2d)[BatchNorm](https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.nn.html#mindspore.nn.BatchNorm2d)是其中最主要的两个算子,它们已在MindSpore支持的算子列表中。
以ResNet-50为例,[Conv](https://www.mindspore.cn/api/zh-CN/r0.5/api/python/mindspore/mindspore.nn.html#mindspore.nn.Conv2d)[BatchNorm](https://www.mindspore.cn/api/zh-CN/r0.5/api/python/mindspore/mindspore.nn.html#mindspore.nn.BatchNorm2d)是其中最主要的两个算子,它们已在MindSpore支持的算子列表中。
如果发现没有对应算子,建议:
- 使用其他算子替换:分析算子实现公式,审视是否可以采用MindSpore现有算子叠加达到预期目标。
......@@ -55,17 +55,17 @@
MindSpore与TensorFlow、PyTorch在网络结构组织方式上,存在一定差别,迁移前需要对原脚本有较为清晰的了解,明确地知道每一层的shape等信息。
> 你也可以使用[MindConverter工具](https://gitee.com/mindspore/mindinsight/tree/master/mindinsight/mindconverter)实现PyTorch网络定义脚本到MindSpore网络定义脚本的自动转换。
> 你也可以使用[MindConverter工具](https://gitee.com/mindspore/mindinsight/tree/r0.5/mindinsight/mindconverter)实现PyTorch网络定义脚本到MindSpore网络定义脚本的自动转换。
下面,我们以ResNet-50的迁移,并在Ascend 910上训练为例:
1. 导入MindSpore模块。
根据所需使用的接口,导入相应的MindSpore模块,模块列表详见<https://www.mindspore.cn/api/zh-CN/master/index.html>。
根据所需使用的接口,导入相应的MindSpore模块,模块列表详见<https://www.mindspore.cn/api/zh-CN/r0.5/index.html>。
2. 加载数据集和预处理。
使用MindSpore构造你需要使用的数据集。目前MindSpore已支持常见数据集,你可以通过原始格式、`MindRecord`、`TFRecord`等多种接口调用,同时还支持数据处理以及数据增强等相关功能,具体用法可参考[准备数据教程](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/data_preparation.html)。
使用MindSpore构造你需要使用的数据集。目前MindSpore已支持常见数据集,你可以通过原始格式、`MindRecord`、`TFRecord`等多种接口调用,同时还支持数据处理以及数据增强等相关功能,具体用法可参考[准备数据教程](https://www.mindspore.cn/tutorial/zh-CN/r0.5/use/data_preparation/data_preparation.html)。
本例中加载了Cifar-10数据集,可同时支持单卡和多卡的场景。
......@@ -231,7 +231,7 @@ MindSpore与TensorFlow、PyTorch在网络结构组织方式上,存在一定差
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
```
如果希望使用`Model`内置的评估方法,则可以使用[metrics](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/customized_debugging_information.html#mindspore-metrics)属性设置希望使用的评估方法。
如果希望使用`Model`内置的评估方法,则可以使用[metrics](https://www.mindspore.cn/tutorial/zh-CN/r0.5/advanced_use/customized_debugging_information.html#mindspore-metrics)属性设置希望使用的评估方法。
```python
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
......@@ -259,14 +259,14 @@ MindSpore与TensorFlow、PyTorch在网络结构组织方式上,存在一定差
#### 云上集成
请参考[在云上使用MindSpore](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/use_on_the_cloud.html),将你的脚本运行在ModelArts。
请参考[在云上使用MindSpore](https://www.mindspore.cn/tutorial/zh-CN/r0.5/advanced_use/use_on_the_cloud.html),将你的脚本运行在ModelArts。
### 推理阶段
在Ascend 910 AI处理器上训练后的模型,支持在不同的硬件平台上执行推理。详细步骤可参考[多平台推理教程](https://www.mindspore.cn/tutorial/zh-CN/master/use/multi_platform_inference.html)
在Ascend 910 AI处理器上训练后的模型,支持在不同的硬件平台上执行推理。详细步骤可参考[多平台推理教程](https://www.mindspore.cn/tutorial/zh-CN/r0.5/use/multi_platform_inference.html)
## 样例参考
1. [常用数据集读取样例](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/loading_the_datasets.html)
1. [常用数据集读取样例](https://www.mindspore.cn/tutorial/zh-CN/r0.5/use/data_preparation/loading_the_datasets.html)
2. [Model Zoo](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)
\ No newline at end of file
2. [Model Zoo](https://gitee.com/mindspore/mindspore/tree/r0.5/model_zoo)
\ No newline at end of file
......@@ -85,7 +85,7 @@ $F1分数 = (2 * Precision * Recall) / (Precision + Recall)$
> LSTM(Long short-term memory,长短期记忆)网络是一种时间循环神经网络,适合于处理和预测时间序列中间隔和延迟非常长的重要事件。具体介绍可参考网上资料,在此不再赘述。
3. 得到模型之后,使用验证数据集,查看模型精度情况。
> 本例面向GPU或CPU硬件平台,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/tree/master/tutorials/tutorial_code/lstm>
> 本例面向GPU或CPU硬件平台,你可以在这里下载完整的样例代码:<https://gitee.com/mindspore/docs/tree/r0.5/tutorials/tutorial_code/lstm>
> - `main.py`:代码文件,包括数据预处理、网络定义、模型训练等代码。
> - `config.py`:网络中的一些配置,包括`batch size`、进行几次epoch训练等。
......
......@@ -66,7 +66,7 @@ def test_profiler():
## 启动MindInsight
启动命令请参考[MindInsight相关命令](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mindinsight_commands.html)
启动命令请参考[MindInsight相关命令](https://www.mindspore.cn/tutorial/zh-CN/r0.5/advanced_use/mindinsight_commands.html)
### 性能分析
......
......@@ -69,7 +69,7 @@ ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行
### 执行脚本准备
新建一个自己的OBS桶(例如:`resnet50-train`),在桶中创建代码目录(例如:`resnet50_cifar10_train`),并将以下目录中的所有脚本上传至代码目录:
> <https://gitee.com/mindspore/docs/tree/master/tutorials/tutorial_code/sample_for_cloud/>脚本使用ResNet-50网络在CIFAR-10数据集上进行训练,并在训练结束后验证精度。脚本可以在ModelArts采用`1*Ascend`或`8*Ascend`两种不同规格进行训练任务。
> <https://gitee.com/mindspore/docs/tree/r0.5/tutorials/tutorial_code/sample_for_cloud/>脚本使用ResNet-50网络在CIFAR-10数据集上进行训练,并在训练结束后验证精度。脚本可以在ModelArts采用`1*Ascend`或`8*Ascend`两种不同规格进行训练任务。
为了方便后续创建训练作业,先创建训练输出目录和日志输出目录,本示例创建的目录结构如下:
......
......@@ -21,7 +21,7 @@ copyright = '2020, MindSpore'
author = 'MindSpore'
# The full version, including alpha/beta/rc tags
release = 'master'
release = 'r0.5'
# -- General configuration ---------------------------------------------------
......
......@@ -86,7 +86,7 @@
import os
```
详细的MindSpore的模块说明,可以在[MindSpore API页面](https://www.mindspore.cn/api/zh-CN/master/index.html)中搜索查询。
详细的MindSpore的模块说明,可以在[MindSpore API页面](https://www.mindspore.cn/api/zh-CN/r0.5/index.html)中搜索查询。
### 配置运行信息
......@@ -182,7 +182,7 @@ def create_dataset(data_path, batch_size=32, repeat_size=1,
先进行shuffle、batch操作,再进行repeat操作,这样能保证1个epoch内数据不重复。
> MindSpore支持进行多种数据处理和增强的操作,各种操作往往组合使用,具体可以参考[数据处理与数据增强](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/data_processing_and_augmentation.html)章节。
> MindSpore支持进行多种数据处理和增强的操作,各种操作往往组合使用,具体可以参考[数据处理与数据增强](https://www.mindspore.cn/tutorial/zh-CN/r0.5/use/data_preparation/data_processing_and_augmentation.html)章节。
## 定义网络
......
......@@ -27,14 +27,14 @@
- 算子实现:通过TBE(Tensor Boost Engine)提供的特性语言接口,描述算子内部计算逻辑的实现。TBE提供了开发昇腾AI芯片自定义算子的能力。你可以在<https://www.huaweicloud.com/ascend/tbe>页面申请公测。
- 算子信息:描述TBE算子的基本信息,如算子名称、支持的输入输出类型等。它是后端做算子选择和映射时的依据。
本文将以自定义Square算子为例,介绍自定义算子的步骤。更多详细内容可参考MindSpore源码中[tests/st/ops/custom_ops_tbe](https://gitee.com/mindspore/mindspore/tree/master/tests/st/ops/custom_ops_tbe)下的用例。
本文将以自定义Square算子为例,介绍自定义算子的步骤。更多详细内容可参考MindSpore源码中[tests/st/ops/custom_ops_tbe](https://gitee.com/mindspore/mindspore/tree/r0.5/tests/st/ops/custom_ops_tbe)下的用例。
## 注册算子原语
每个算子的原语是一个继承于`PrimitiveWithInfer`的子类,其类型名称即是算子名称。
自定义算子原语与内置算子原语的接口定义完全一致:
- 属性由构造函数`__init__`的入参定义。本用例的算子没有属性,因此`__init__`没有额外的入参。带属性的用例可参考MindSpore源码中的[custom add3](https://gitee.com/mindspore/mindspore/tree/master/tests/st/ops/custom_ops_tbe/cus_add3.py)用例。
- 属性由构造函数`__init__`的入参定义。本用例的算子没有属性,因此`__init__`没有额外的入参。带属性的用例可参考MindSpore源码中的[custom add3](https://gitee.com/mindspore/mindspore/tree/r0.5/tests/st/ops/custom_ops_tbe/cus_add3.py)用例。
- 输入输出的名称通过`init_prim_io_names`函数定义。
- 输出Tensor的shape推理方法在`infer_shape`函数中定义,输出Tensor的dtype推理方法在`infer_dtype`函数中定义。
......
......@@ -149,7 +149,7 @@ MindSpore也支持读取`TFRecord`数据格式的数据集,可以通过`TFReco
## 加载自定义数据集
现实场景中,数据集的种类多种多样,对于自定义数据集或者目前不支持直接加载的数据集,有两种方法可以处理。
一种方法是将数据集转成MindRecord格式(请参考[将数据集转换为MindSpore数据格式](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/converting_datasets.html)章节),另一种方法是通过`GeneratorDataset`对象加载,以下将展示如何使用`GeneratorDataset`
一种方法是将数据集转成MindRecord格式(请参考[将数据集转换为MindSpore数据格式](https://www.mindspore.cn/tutorial/zh-CN/r0.5/use/data_preparation/converting_datasets.html)章节),另一种方法是通过`GeneratorDataset`对象加载,以下将展示如何使用`GeneratorDataset`
1. 定义一个可迭代的对象,用于生成数据集。以下展示了两种示例,一种是含有`yield`返回值的自定义函数,另一种是含有`__getitem__`的自定义类。两种示例都将产生一个含有从0到9数字的数据集。
> 自定义的可迭代对象,每次返回`numpy array`的元组,作为一行数据。
......
......@@ -4,5 +4,5 @@
.. toctree::
:maxdepth: 1
网络支持 <https://www.mindspore.cn/docs/zh-CN/master/network_list.html>
网络支持 <https://www.mindspore.cn/docs/zh-CN/r0.5/network_list.html>
custom_operator
\ No newline at end of file
......@@ -59,7 +59,7 @@ CPU | ONNX格式 | 支持ONNX推理的runtime/SDK,如TensorRT。
res = model.eval(dataset)
```
其中,
`model.eval`为模型验证接口,对应接口说明:<https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.html#mindspore.Model.eval>
`model.eval`为模型验证接口,对应接口说明:<https://www.mindspore.cn/api/zh-CN/r0.5/api/python/mindspore/mindspore.html#mindspore.Model.eval>
> 推理样例代码:<https://gitee.com/mindspore/mindspore/blob/r0.5/model_zoo/lenet/eval.py>。
2. 使用`model.predict`接口来进行推理操作。
......@@ -67,7 +67,7 @@ CPU | ONNX格式 | 支持ONNX推理的runtime/SDK,如TensorRT。
model.predict(input_data)
```
其中,
`model.eval`为推理接口,对应接口说明:<https://www.mindspore.cn/api/zh-CN/master/api/python/mindspore/mindspore.html#mindspore.Model.predict>
`model.eval`为推理接口,对应接口说明:<https://www.mindspore.cn/api/zh-CN/r0.5/api/python/mindspore/mindspore.html#mindspore.Model.predict>
## Ascend 310 AI处理器上推理
......@@ -79,7 +79,7 @@ CPU | ONNX格式 | 支持ONNX推理的runtime/SDK,如TensorRT。
Ascend 310 AI处理器上搭载了ACL框架,他支持OM格式,而OM格式需要从ONNX或者GEIR模型进行转换。所以在Ascend 310 AI处理器上推理,需要下述两个步骤:
1. 在训练平台上生成ONNX或GEIR格式模型,具体步骤请参考[模型导出-导出GEIR模型和ONNX模型](https://www.mindspore.cn/tutorial/zh-CN/master/use/saving_and_loading_model_parameters.html#geironnx)
1. 在训练平台上生成ONNX或GEIR格式模型,具体步骤请参考[模型导出-导出GEIR模型和ONNX模型](https://www.mindspore.cn/tutorial/zh-CN/r0.5/use/saving_and_loading_model_parameters.html#geironnx)
2. 将ONNX/GEIR格式模型文件,转化为OM格式模型,并进行推理。
- 云上(ModelArt环境),请参考[Ascend910训练和Ascend310推理的样例](https://support.huaweicloud.com/bestpractice-modelarts/modelarts_10_0026.html)完成推理操作。
......@@ -93,7 +93,7 @@ Ascend 310 AI处理器上搭载了ACL框架,他支持OM格式,而OM格式需
### 使用ONNX格式文件推理
1. 在训练平台上生成ONNX格式模型,具体步骤请参考[模型导出-导出GEIR模型和ONNX模型](https://www.mindspore.cn/tutorial/zh-CN/master/use/saving_and_loading_model_parameters.html#geironnx)
1. 在训练平台上生成ONNX格式模型,具体步骤请参考[模型导出-导出GEIR模型和ONNX模型](https://www.mindspore.cn/tutorial/zh-CN/r0.5/use/saving_and_loading_model_parameters.html#geironnx)
2. 在GPU上进行推理,具体可以参考推理使用runtime/SDK的文档。如在Nvidia GPU上进行推理,使用常用的TensorRT,可参考[TensorRT backend for ONNX](https://github.com/onnx/onnx-tensorrt)
......@@ -105,10 +105,10 @@ Ascend 310 AI处理器上搭载了ACL框架,他支持OM格式,而OM格式需
### 使用ONNX格式文件推理
与在GPU上进行推理类似,需要以下几个步骤:
1. 在训练平台上生成ONNX格式模型,具体步骤请参考[模型导出-导出GEIR模型和ONNX模型](https://www.mindspore.cn/tutorial/zh-CN/master/use/saving_and_loading_model_parameters.html#geironnx)
1. 在训练平台上生成ONNX格式模型,具体步骤请参考[模型导出-导出GEIR模型和ONNX模型](https://www.mindspore.cn/tutorial/zh-CN/r0.5/use/saving_and_loading_model_parameters.html#geironnx)
2. 在CPU上进行推理,具体可以参考推理使用runtime/SDK的文档。如使用ONNX Runtime,可以参考[ONNX Runtime说明文档](https://github.com/microsoft/onnxruntime)
## 端侧推理
端侧推理需使用MindSpore Predict推理引擎,详细操作请参考[端侧推理教程](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/on_device_inference.html)
\ No newline at end of file
端侧推理需使用MindSpore Predict推理引擎,详细操作请参考[端侧推理教程](https://www.mindspore.cn/tutorial/zh-CN/r0.5/advanced_use/on_device_inference.html)
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册