Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
docs
提交
47cb16f5
D
docs
项目概览
MindSpore
/
docs
通知
5
Star
3
Fork
2
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
docs
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
47cb16f5
编写于
7月 22, 2020
作者:
J
jiangzhiwen
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize GetDatasize
上级
f7d0e345
变更
19
隐藏空白更改
内联
并排
Showing
19 changed file
with
22 addition
and
24 deletion
+22
-24
tutorials/notebook/data_loading_enhance/data_loading_enhancement.ipynb
...ebook/data_loading_enhance/data_loading_enhancement.ipynb
+1
-1
tutorials/notebook/mindinsight/mindinsight_model_lineage_and_data_lineage.ipynb
...dinsight/mindinsight_model_lineage_and_data_lineage.ipynb
+2
-2
tutorials/notebook/nlp_application.ipynb
tutorials/notebook/nlp_application.ipynb
+2
-2
tutorials/source_en/advanced_use/computer_vision_application.md
...als/source_en/advanced_use/computer_vision_application.md
+1
-1
tutorials/source_en/advanced_use/differential_privacy.md
tutorials/source_en/advanced_use/differential_privacy.md
+1
-2
tutorials/source_en/advanced_use/distributed_training.md
tutorials/source_en/advanced_use/distributed_training.md
+1
-1
tutorials/source_en/advanced_use/nlp_application.md
tutorials/source_en/advanced_use/nlp_application.md
+1
-1
tutorials/source_en/quick_start/quick_start.md
tutorials/source_en/quick_start/quick_start.md
+1
-1
tutorials/source_en/use/data_preparation/data_processing_and_augmentation.md
.../use/data_preparation/data_processing_and_augmentation.md
+1
-1
tutorials/source_zh_cn/advanced_use/computer_vision_application.md
.../source_zh_cn/advanced_use/computer_vision_application.md
+1
-1
tutorials/source_zh_cn/advanced_use/differential_privacy.md
tutorials/source_zh_cn/advanced_use/differential_privacy.md
+1
-2
tutorials/source_zh_cn/advanced_use/distributed_training.md
tutorials/source_zh_cn/advanced_use/distributed_training.md
+1
-1
tutorials/source_zh_cn/advanced_use/nlp_application.md
tutorials/source_zh_cn/advanced_use/nlp_application.md
+1
-1
tutorials/source_zh_cn/quick_start/quick_start.md
tutorials/source_zh_cn/quick_start/quick_start.md
+1
-1
tutorials/source_zh_cn/use/data_preparation/data_processing_and_augmentation.md
.../use/data_preparation/data_processing_and_augmentation.md
+1
-1
tutorials/tutorial_code/distributed_training/resnet50_distributed_training.py
...ode/distributed_training/resnet50_distributed_training.py
+1
-1
tutorials/tutorial_code/lenet.py
tutorials/tutorial_code/lenet.py
+1
-1
tutorials/tutorial_code/resnet/cifar_resnet50.py
tutorials/tutorial_code/resnet/cifar_resnet50.py
+2
-2
tutorials/tutorial_code/sample_for_cloud/resnet50_train.py
tutorials/tutorial_code/sample_for_cloud/resnet50_train.py
+1
-1
未找到文件。
tutorials/notebook/data_loading_enhance/data_loading_enhancement.ipynb
浏览文件 @
47cb16f5
...
...
@@ -119,7 +119,7 @@
"source": [
"- ### repeat\n",
"\n",
"在有限的数据集内,为了优化网络,通常会将一个数据集训练多次。加倍数据集,通
常用在多个`epoch`训练中,通
过`repeat`来加倍数据量。\n",
"在有限的数据集内,为了优化网络,通常会将一个数据集训练多次。加倍数据集,通过`repeat`来加倍数据量。\n",
"\n",
"我们可以定义`ds2`数据集,调用`repeat`来加倍数据量。其中,将倍数设为2,故`ds3`数据量为原始数据集`ds2`的2倍。"
]
...
...
tutorials/notebook/mindinsight/mindinsight_model_lineage_and_data_lineage.ipynb
浏览文件 @
47cb16f5
...
...
@@ -425,7 +425,7 @@
" mnist_path = \"./MNIST_Data\"\n",
" \n",
" net_loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')\n",
" repeat_size =
epoch_size
\n",
" repeat_size =
1
\n",
" # create the network\n",
" network = LeNet5()\n",
"\n",
...
...
@@ -702,4 +702,4 @@
},
"nbformat": 4,
"nbformat_minor": 4
}
}
\ No newline at end of file
tutorials/notebook/nlp_application.ipynb
浏览文件 @
47cb16f5
...
...
@@ -567,7 +567,7 @@
"\n",
" return data_set\n",
"\n",
"ds_train = lstm_create_dataset(args.preprocess_path, cfg.batch_size
, cfg.num_epochs
)"
"ds_train = lstm_create_dataset(args.preprocess_path, cfg.batch_size)"
]
},
{
...
...
@@ -5143,4 +5143,4 @@
},
"nbformat": 4,
"nbformat_minor": 4
}
}
\ No newline at end of file
tutorials/source_en/advanced_use/computer_vision_application.md
浏览文件 @
47cb16f5
...
...
@@ -203,7 +203,7 @@ The trained model file (such as `resnet.ckpt`) can be used to predict the class
```
python
param_dict
=
load_checkpoint
(
args_opt
.
checkpoint_path
)
load_param_into_net
(
net
,
param_dict
)
eval_dataset
=
create_dataset
(
1
,
training
=
False
)
eval_dataset
=
create_dataset
(
training
=
False
)
res
=
model
.
eval
(
eval_dataset
)
print
(
"result: "
,
res
)
```
...
...
tutorials/source_en/advanced_use/differential_privacy.md
浏览文件 @
47cb16f5
...
...
@@ -234,8 +234,7 @@ ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
# get training dataset
ds_train
=
generate_mnist_dataset
(
os
.
path
.
join
(
cfg
.
data_path
,
"train"
),
cfg
.
batch_size
,
cfg
.
epoch_size
)
cfg
.
batch_size
)
```
### Introducing the Differential Privacy
...
...
tutorials/source_en/advanced_use/distributed_training.md
浏览文件 @
47cb16f5
...
...
@@ -247,7 +247,7 @@ context.set_context(device_id=device_id) # set device_id
def
test_train_cifar
(
epoch_size
=
10
):
context
.
set_auto_parallel_context
(
parallel_mode
=
ParallelMode
.
AUTO_PARALLEL
,
mirror_mean
=
True
)
loss_cb
=
LossMonitor
()
dataset
=
create_dataset
(
data_path
,
epoch_size
)
dataset
=
create_dataset
(
data_path
)
batch_size
=
32
num_classes
=
10
net
=
resnet50
(
batch_size
,
num_classes
)
...
...
tutorials/source_en/advanced_use/nlp_application.md
浏览文件 @
47cb16f5
...
...
@@ -204,7 +204,7 @@ Load the corresponding dataset, configure the CheckPoint generation information,
model
=
Model
(
network
,
loss
,
opt
,
{
'acc'
:
Accuracy
()})
print
(
"============== Starting Training =============="
)
ds_train
=
lstm_create_dataset
(
args
.
preprocess_path
,
cfg
.
batch_size
,
cfg
.
num_epochs
)
ds_train
=
lstm_create_dataset
(
args
.
preprocess_path
,
cfg
.
batch_size
)
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
cfg
.
save_checkpoint_steps
,
keep_checkpoint_max
=
cfg
.
keep_checkpoint_max
)
ckpoint_cb
=
ModelCheckpoint
(
prefix
=
"lstm"
,
directory
=
args
.
ckpt_path
,
config
=
config_ck
)
...
...
tutorials/source_en/quick_start/quick_start.md
浏览文件 @
47cb16f5
...
...
@@ -355,7 +355,7 @@ if __name__ == "__main__":
epoch_size
=
1
mnist_path
=
"./MNIST_Data"
repeat_size
=
epoch_size
repeat_size
=
1
model
=
Model
(
network
,
net_loss
,
net_opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
train_net
(
args
,
model
,
epoch_size
,
mnist_path
,
repeat_size
,
ckpoint_cb
,
dataset_sink_mode
)
...
...
...
tutorials/source_en/use/data_preparation/data_processing_and_augmentation.md
浏览文件 @
47cb16f5
...
...
@@ -88,7 +88,7 @@ In limited datasets, to optimize the network, a dataset is usually trained for m
> In machine learning, an epoch refers to one cycle through the full training dataset.
During
multiple epochs
,
`repeat`
can be used to increase the data size. The definition of
`repeat`
is as follows:
During
training
,
`repeat`
can be used to increase the data size. The definition of
`repeat`
is as follows:
```
python
def
repeat
(
self
,
count
=
None
):
```
...
...
tutorials/source_zh_cn/advanced_use/computer_vision_application.md
浏览文件 @
47cb16f5
...
...
@@ -205,7 +205,7 @@ model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])
```
python
param_dict
=
load_checkpoint
(
args_opt
.
checkpoint_path
)
load_param_into_net
(
net
,
param_dict
)
eval_dataset
=
create_dataset
(
1
,
training
=
False
)
eval_dataset
=
create_dataset
(
training
=
False
)
res
=
model
.
eval
(
eval_dataset
)
print
(
"result: "
,
res
)
```
...
...
tutorials/source_zh_cn/advanced_use/differential_privacy.md
浏览文件 @
47cb16f5
...
...
@@ -220,8 +220,7 @@ ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet",
# get training dataset
ds_train
=
generate_mnist_dataset
(
os
.
path
.
join
(
cfg
.
data_path
,
"train"
),
cfg
.
batch_size
,
cfg
.
epoch_size
)
cfg
.
batch_size
)
```
### 引入差分隐私
...
...
tutorials/source_zh_cn/advanced_use/distributed_training.md
浏览文件 @
47cb16f5
...
...
@@ -248,7 +248,7 @@ context.set_context(device_id=device_id) # set device_id
def
test_train_cifar
(
epoch_size
=
10
):
context
.
set_auto_parallel_context
(
parallel_mode
=
ParallelMode
.
AUTO_PARALLEL
,
mirror_mean
=
True
)
loss_cb
=
LossMonitor
()
dataset
=
create_dataset
(
data_path
,
epoch_size
)
dataset
=
create_dataset
(
data_path
)
batch_size
=
32
num_classes
=
10
net
=
resnet50
(
batch_size
,
num_classes
)
...
...
tutorials/source_zh_cn/advanced_use/nlp_application.md
浏览文件 @
47cb16f5
...
...
@@ -204,7 +204,7 @@ loss_cb = LossMonitor()
model
=
Model
(
network
,
loss
,
opt
,
{
'acc'
:
Accuracy
()})
print
(
"============== Starting Training =============="
)
ds_train
=
lstm_create_dataset
(
args
.
preprocess_path
,
cfg
.
batch_size
,
cfg
.
num_epochs
)
ds_train
=
lstm_create_dataset
(
args
.
preprocess_path
,
cfg
.
batch_size
)
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
cfg
.
save_checkpoint_steps
,
keep_checkpoint_max
=
cfg
.
keep_checkpoint_max
)
ckpoint_cb
=
ModelCheckpoint
(
prefix
=
"lstm"
,
directory
=
args
.
ckpt_path
,
config
=
config_ck
)
...
...
tutorials/source_zh_cn/quick_start/quick_start.md
浏览文件 @
47cb16f5
...
...
@@ -357,7 +357,7 @@ if __name__ == "__main__":
epoch_size
=
1
mnist_path
=
"./MNIST_Data"
repeat_size
=
epoch_size
repeat_size
=
1
model
=
Model
(
network
,
net_loss
,
net_opt
,
metrics
=
{
"Accuracy"
:
Accuracy
()})
train_net
(
args
,
model
,
epoch_size
,
mnist_path
,
repeat_size
,
ckpoint_cb
,
dataset_sink_mode
)
...
...
...
tutorials/source_zh_cn/use/data_preparation/data_processing_and_augmentation.md
浏览文件 @
47cb16f5
...
...
@@ -89,7 +89,7 @@ ds1 = ds1.repeat(10)
> 在机器学习中,每训练完一个完整的数据集,我们称为训练完了一个epoch。
加倍数据集,通常用在
多个epoch(迭代)
训练中,通过
`repeat`
来加倍数据量。
`repeat`
定义如下:
加倍数据集,通常用在训练中,通过
`repeat`
来加倍数据量。
`repeat`
定义如下:
```
python
def
repeat
(
self
,
count
=
None
):
```
...
...
tutorials/tutorial_code/distributed_training/resnet50_distributed_training.py
浏览文件 @
47cb16f5
...
...
@@ -120,7 +120,7 @@ def test_train_cifar(epoch_size=10):
context
.
set_auto_parallel_context
(
parallel_mode
=
ParallelMode
.
AUTO_PARALLEL
,
mirror_mean
=
True
)
loss_cb
=
LossMonitor
()
data_path
=
os
.
getenv
(
'DATA_PATH'
)
dataset
=
create_dataset
(
data_path
,
epoch_size
)
dataset
=
create_dataset
(
data_path
)
batch_size
=
32
num_classes
=
10
net
=
resnet50
(
batch_size
,
num_classes
)
...
...
tutorials/tutorial_code/lenet.py
浏览文件 @
47cb16f5
...
...
@@ -206,7 +206,7 @@ if __name__ == "__main__":
mnist_path
=
"./MNIST_Data"
# define the loss function
net_loss
=
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
,
reduction
=
'mean'
)
repeat_size
=
epoch_size
repeat_size
=
1
# create the network
network
=
LeNet5
()
# define the optimizer
...
...
tutorials/tutorial_code/resnet/cifar_resnet50.py
浏览文件 @
47cb16f5
...
...
@@ -118,7 +118,7 @@ if __name__ == '__main__':
# as for train, users could use model.train
if
args_opt
.
do_train
:
dataset
=
create_dataset
(
epoch_size
)
dataset
=
create_dataset
()
batch_num
=
dataset
.
get_dataset_size
()
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
batch_num
,
keep_checkpoint_max
=
35
)
ckpoint_cb
=
ModelCheckpoint
(
prefix
=
"train_resnet_cifar10"
,
directory
=
"./"
,
config
=
config_ck
)
...
...
@@ -130,6 +130,6 @@ if __name__ == '__main__':
if
args_opt
.
checkpoint_path
:
param_dict
=
load_checkpoint
(
args_opt
.
checkpoint_path
)
load_param_into_net
(
net
,
param_dict
)
eval_dataset
=
create_dataset
(
1
,
training
=
False
)
eval_dataset
=
create_dataset
(
training
=
False
)
res
=
model
.
eval
(
eval_dataset
)
print
(
"result: "
,
res
)
tutorials/tutorial_code/sample_for_cloud/resnet50_train.py
浏览文件 @
47cb16f5
...
...
@@ -130,7 +130,7 @@ def resnet50_train(args_opt):
# create dataset
print
(
'Create train and evaluate dataset.'
)
train_dataset
=
create_dataset
(
dataset_path
=
local_data_path
,
do_train
=
True
,
repeat_num
=
epoch_size
,
batch_size
=
batch_size
)
repeat_num
=
1
,
batch_size
=
batch_size
)
eval_dataset
=
create_dataset
(
dataset_path
=
local_data_path
,
do_train
=
False
,
repeat_num
=
1
,
batch_size
=
batch_size
)
train_step_size
=
train_dataset
.
get_dataset_size
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录