提交 4395436b 编写于 作者: H hexia

fix serving example and add en

上级 bf50854e
......@@ -13,22 +13,21 @@
- [Client Samples](#client-samples)
- [Python Client Sample](#python-client-sample)
- [C++ Client Sample](#cpp-client-sample)
- [REST API Client Sample](#rest-api-client-sample)
<!-- /TOC -->
<a href="https://gitee.com/mindspore/docs/blob/master/tutorials/source_en/advanced_use/serving.md" target="_blank"><img src="../_static/logo_source.png"></a>
## Overview
MindSpore Serving is a lightweight and high-performance service module that helps MindSpore developers efficiently deploy online inference services in the production environment. After completing model training using MindSpore, you can export the MindSpore model and use MindSpore Serving to create an inference service for the model. Currently, only Ascend 910 is supported.
## Starting Serving
After MindSpore is installed using `pip`, the Serving executable program is stored in `/{your python path}/lib/python3.7/site-packages/mindspore/ms_serving`.
Run the following command to start Serving:
```bash
ms_serving [--help] [--model_path <MODEL_PATH>] [--model_name <MODEL_NAME>]
[--port <PORT>] [--device_id <DEVICE_ID>]
```bash
ms_serving [--help] [--model_path=<MODEL_PATH>] [--model_name=<MODEL_NAME>] [--port=<PORT1>]
[--rest_api_port=<PORT2>] [--device_id=<DEVICE_ID>]
```
Parameters are described as follows:
......@@ -37,15 +36,19 @@ Parameters are described as follows:
|`--help`|Optional|Displays the help information about the startup command. |-|-|-|
|`--model_path=<MODEL_PATH>`|Mandatory|Path for storing the model to be loaded. |String|Null|-|
|`--model_name=<MODEL_NAME>`|Mandatory|Name of the model file to be loaded. |String|Null|-|
|`--=port <PORT>`|Optional|Specifies the external Serving port number. |Integer|5500|1–65535|
|`--port=<PORT>`|Optional|Specifies the external Serving gRPC port number. |Integer|5500|1–65535|
|`--rest_api_port=<PORT2>`|Specifies the external Serving REST API port number. |Integer|5500|1–65535|
|`--device_id=<DEVICE_ID>`|Optional|Specifies device ID to be used.|Integer|0|0 to 7|
> Before running the startup command, add the path `/{your python path}/lib:/{your python path}/lib/python3.7/site-packages/mindspore/lib` to the environment variable `LD_LIBRARY_PATH`.
> port and rest_ api_port cannot be the same.
## Application Example
The following uses a simple network as an example to describe how to use MindSpore Serving.
### Exporting Model
> Before exporting the model, you need to configure MindSpore [base environment](https://www.mindspore.cn/install/en).
Use [add_model.py](https://gitee.com/mindspore/mindspore/blob/master/serving/example/export_model/add_model.py) to build a network with only the Add operator and export the MindSpore inference deployment model.
```python
......@@ -115,7 +118,7 @@ The client code consists of the following parts:
explicit MSClient(std::shared_ptr<Channel> channel) : stub_(MSService::NewStub(channel)) {}
private:
std::unique_ptr<MSService::Stub> stub_;
};MSClient client(grpc::CreateChannel(target_str, grpc::InsecureChannelCredentials()));
};
MSClient client(grpc::CreateChannel(target_str, grpc::InsecureChannelCredentials()));
......@@ -151,3 +154,27 @@ The client code consists of the following parts:
```
For details about the complete code, see [ms_client](https://gitee.com/mindspore/mindspore/blob/master/serving/example/cpp_client/ms_client.cc).
### REST API Client Sample
1. Send data in the form of `data`:
`data` field: flatten each input data of network model into one-dimensional data. Suppose the network model has n inputs, and the final data structure is a two-dimensional list of 1 * n.
As in this example, flatten the model input data `[[1.0, 2.0], [3.0, 4.0]]` and `[[1.0, 2.0], [3.0, 4.0]]` to form `[[1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0]]`.
```
curl -X POST -d '{"data": [[1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0]]}' http://127.0.0.1:5501
```
The following return values are displayed, indicating that the serving service has correctly executed the reasoning of the add network, and the output data structure is similar to that of the input:
```
{"data":[[2.0,4.0,6.0,8.0]]}
```
2. Send data in the form of `tensor`:
`tensor` field: composed of each input of the network model, keeping the original shape of input.
As in this example, the model input data `[[1.0, 2.0], [3.0, 4.0]]` and `[[1.0, 2.0], [3.0, 4.0]]` are combined into `[[[1.0, 2.0], [3.0, 4.0]], [[1.0, 2.0], [3.0, 4.0]]]`.
```
curl -X POST -d '{"tensor": [[[1.0, 2.0], [3.0, 4.0]], [[1.0, 2.0], [3.0, 4.0]]]}' http://127.0.0.1:5501
```
The following return values are displayed, indicating that the serving service has correctly executed the reasoning of the add network, and the output data structure is similar to that of the input:
```
{"tensor":[[2.0,4.0], [6.0,8.0]]}
```
> REST APICurrently only int32 and fp32 are supported as inputs.
\ No newline at end of file
......@@ -23,13 +23,12 @@
MindSpore Serving是一个轻量级、高性能的服务模块,旨在帮助MindSpore开发者在生产环境中高效部署在线推理服务。当用户使用MindSpore完成模型训练后,导出MindSpore模型,即可使用MindSpore Serving创建该模型的推理服务。当前Serving仅支持Ascend 910。
## 启动Serving服务
通过pip安装MindSpore后,Serving可执行程序位于`/{your python path}/lib/python3.7/site-packages/mindspore/ms_serving`
通过pip安装MindSpore后,Serving可执行程序位于`/{your python path}/lib/python3.7/site-packages/mindspore/ms_serving`
启动Serving服务命令如下
```bash
ms_serving [--help] [--model_path <MODEL_PATH>] [--model_name <MODEL_NAME>]
[--port <PORT>] [--device_id <DEVICE_ID>]
```bash
ms_serving [--help] [--model_path=<MODEL_PATH>] [--model_name=<MODEL_NAME>] [--port=<PORT1>]
[--rest_api_port=<PORT2>] [--device_id=<DEVICE_ID>]
```
参数含义如下
......@@ -38,8 +37,8 @@ ms_serving [--help] [--model_path <MODEL_PATH>] [--model_name <MODEL_NAME>]
|`--help`|可选|显示启动命令的帮助信息。|-|-|-|
|`--model_path=<MODEL_PATH>`|必选|指定待加载模型的存放路径。|String|空|-|
|`--model_name=<MODEL_NAME>`|必选|指定待加载模型的文件名。|String|空|-|
|`--port=<PORT>`|可选|指定Serving对外的gRPC端口号。|Integer|5500|1~65535|
|`--rest_api_port=<PORT>`|可选|指定Serving对外的REST API端口号。|Integer|5501|1~65535|
|`--port=<PORT1>`|可选|指定Serving对外的gRPC端口号。|Integer|5500|1~65535|
|`--rest_api_port=<PORT2>`|可选|指定Serving对外的REST API端口号。|Integer|5501|1~65535|
|`--device_id=<DEVICE_ID>`|可选|指定使用的设备号|Integer|0|0~7|
> 执行启动命令前,需将`/{your python path}/lib:/{your python path}/lib/python3.7/site-packages/mindspore/lib`对应的路径加入到环境变量LD_LIBRARY_PATH中 。
......@@ -49,23 +48,27 @@ ms_serving [--help] [--model_path <MODEL_PATH>] [--model_name <MODEL_NAME>]
下面以一个简单的网络为例,演示MindSpore Serving如何使用。
### 导出模型
> 导出模型之前,需要配置MindSpore[基础环境](https://www.mindspore.cn/install)。
使用[add_model.py](https://gitee.com/mindspore/mindspore/blob/master/serving/example/export_model/add_model.py),构造一个只有Add算子的网络,并导出MindSpore推理部署模型。
```python
```python
python add_model.py
```
执行脚本,生成`tensor_add.mindir`文件,该模型的输入为两个shape为[2,2]的二维Tensor,输出结果是两个输入Tensor之和。
### 启动Serving推理服务
```bash
```bash
ms_serving --model_path={model directory} --model_name=tensor_add.mindir
```
当服务端打印日志`MS Serving grpc Listening on 0.0.0.0:5500`时,表示Serving gRPC服务已加载推理模型完毕。
当服务端打印日志`MS Serving restful Listening on 0.0.0.0:5501`时,表示Serving REST服务已加载推理模型完毕。
当服务端打印日志`MS Serving gRPC start success, listening on 0.0.0.0:5500`时,表示Serving gRPC服务已加载推理模型完毕。
当服务端打印日志`MS Serving RESTful start, listening on 0.0.0.0:5501`时,表示Serving REST服务已加载推理模型完毕。
### gRPC客户端示例
#### <span name="python客户端示例">Python客户端示例</span>
> 执行客户端前,需将`/{your python path}/lib/python3.7/site-packages/mindspore`对应的路径加入到环境变量PYTHONPATH中。
> 执行客户端前,需将`/{your python path}/lib/python3.7/site-packages/mindspore`对应的路径添加到环境变量PYTHONPATH中。
获取[ms_client.py](https://gitee.com/mindspore/mindspore/blob/master/serving/example/python_client/ms_client.py),启动Python客户端。
```bash
......@@ -73,7 +76,7 @@ python ms_client.py
```
显示如下返回值说明Serving服务已正确执行Add网络的推理。
```
```bash
ms client received:
[[2. 2.]
[2. 2.]]
......@@ -104,8 +107,7 @@ ms client received:
./ms_client --target=localhost:5500
```
显示如下返回值说明Serving服务已正确执行Add网络的推理。
```
Compute [[1, 2], [3, 4]] + [[1, 2], [3, 4]]
```Compute [[1, 2], [3, 4]] + [[1, 2], [3, 4]]
Add result is 2 4 6 8
client received: RPC OK
```
......@@ -119,7 +121,7 @@ ms client received:
explicit MSClient(std::shared_ptr<Channel> channel) : stub_(MSService::NewStub(channel)) {}
private:
std::unique_ptr<MSService::Stub> stub_;
};MSClient client(grpc::CreateChannel(target_str, grpc::InsecureChannelCredentials()));
};
MSClient client(grpc::CreateChannel(target_str, grpc::InsecureChannelCredentials()));
......@@ -151,36 +153,36 @@ ms client received:
*request.add_data() = data;
```
3. 调用gRPC接口和已经启动的Serving服务通信,并取回返回值。
```
Status status = stub_->Predict(&context, request, &reply);
```
```Status status = stub_->Predict(&context, request, &reply);```
完整代码参考[ms_client](https://gitee.com/mindspore/mindspore/blob/master/serving/example/cpp_client/ms_client.cc)。
### REST API客户端示例
1. `data`形式发送数据:
data字段:由网络模型每个输入/输出数据展平后组合而成。
data字段:将网络模型每个输入数据展平成一维数据,假设网络模型有n个输入,最后data数据结构为1*n的二维list。
如本例中,将模型输入数据`[[1.0, 2.0], [3.0, 4.0]]`和`[[1.0, 2.0], [3.0, 4.0]]`展平后组合成data形式的数据`[[1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0]]`
如本例中,将模型输入数据`[[1, 2], [3, 4]]`和`[[1, 2], [3, 4]]`展平组合成data形式的数据`[[1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0]]`
```
curl -X POST -d '{"data": [[1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0]]}' http://127.0.0.1:5501
```
显示如下返回值,说明Serving服务已正确执行Add网络的推理:
显示如下返回值,说明Serving服务已正确执行Add网络的推理,输出数据结构同输入类似:
```
{"data":[[2.0,4.0,6.0,8.0]]}
```
2. `tensor`形式发送数据:
tensor字段:由网络模型每个输入/输出组合而成
tensor字段:由网络模型每个输入组合而成,保持输入的原始shape
如本例中,将模型输入数据`[[1, 2], [3, 4]]`和`[[1, 2], [3, 4]]`组合成tensor形式的数据`[[[1.0, 2.0], [3.0, 4.0]], [[1.0, 2.0], [3.0, 4.0]]]`
如本例中,将模型输入数据`[[1.0, 2.0], [3.0, 4.0]]`和`[[1.0, 2.0], [3.0, 4.0]]`组合成tensor形式的数据`[[[1.0, 2.0], [3.0, 4.0]], [[1.0, 2.0], [3.0, 4.0]]]`
```
curl -X POST -d '{"tensor": [[[1.0, 2.0], [3.0, 4.0]], [[1.0, 2.0], [3.0, 4.0]]]}' http://127.0.0.1:5501
```
显示如下返回值,说明Serving服务已正确执行Add网络的推理:
显示如下返回值,说明Serving服务已正确执行Add网络的推理,输出数据结构同输入类似
```
{"tensor":[[2.0,4.0], [6.0,8.0]]}
```
> REST API当前只支持int32和fp32数据输入。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册