Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
docs
提交
437aa67c
D
docs
项目概览
MindSpore
/
docs
通知
5
Star
3
Fork
2
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
docs
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
437aa67c
编写于
9月 07, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
9月 07, 2020
浏览文件
操作
浏览文件
下载
差异文件
!952 modify code formats in quantization_aware.md
Merge pull request !952 from lvmingfu/master
上级
3f8792d0
554a185d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
30 addition
and
88 deletion
+30
-88
tutorials/source_en/advanced_use/quantization_aware.md
tutorials/source_en/advanced_use/quantization_aware.md
+15
-44
tutorials/source_zh_cn/advanced_use/quantization_aware.md
tutorials/source_zh_cn/advanced_use/quantization_aware.md
+15
-44
未找到文件。
tutorials/source_en/advanced_use/quantization_aware.md
浏览文件 @
437aa67c
...
...
@@ -90,63 +90,36 @@ Define a fusion network and replace the specified operators.
The definition of the original network model LeNet5 is as follows:
```
python
def
conv
(
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
padding
=
0
):
"""weight initial for conv layer"""
weight
=
weight_variable
()
return
nn
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
padding
,
weight_init
=
weight
,
has_bias
=
False
,
pad_mode
=
"valid"
)
def
fc_with_initialize
(
input_channels
,
out_channels
):
"""weight initial for fc layer"""
weight
=
weight_variable
()
bias
=
weight_variable
()
return
nn
.
Dense
(
input_channels
,
out_channels
,
weight
,
bias
)
def
weight_variable
():
"""weight initial"""
return
TruncatedNormal
(
0.02
)
class
LeNet5
(
nn
.
Cell
):
"""
Lenet network
Args:
num_class (int): Num classes. Default: 10.
num_channel (int): Num channel. Default: 1.
Returns:
Tensor, output tensor
Examples:
>>> LeNet(num_class=10)
>>> LeNet(num_class=10
, num_channel=1
)
"""
def
__init__
(
self
,
num_class
=
10
,
channel
=
1
):
def
__init__
(
self
,
num_class
=
10
,
num_
channel
=
1
):
super
(
LeNet5
,
self
).
__init__
()
self
.
num_class
=
num_class
self
.
conv1
=
conv
(
channel
,
6
,
5
)
self
.
conv2
=
conv
(
6
,
16
,
5
)
self
.
fc1
=
fc_with_initialize
(
16
*
5
*
5
,
120
)
self
.
fc2
=
fc_with_initialize
(
120
,
84
)
self
.
fc3
=
fc_with_initialize
(
84
,
self
.
num_class
)
self
.
conv1
=
nn
.
Conv2d
(
num_channel
,
6
,
5
,
pad_mode
=
'valid'
)
self
.
conv2
=
nn
.
Conv2d
(
6
,
16
,
5
,
pad_mode
=
'valid'
)
self
.
fc1
=
nn
.
Dense
(
16
*
5
*
5
,
120
,
weight_init
=
Normal
(
0.02
))
self
.
fc2
=
nn
.
Dense
(
120
,
84
,
weight_init
=
Normal
(
0.02
))
self
.
fc3
=
nn
.
Dense
(
84
,
num_class
,
weight_init
=
Normal
(
0.02
))
self
.
relu
=
nn
.
ReLU
()
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
flatten
=
nn
.
Flatten
()
def
construct
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
conv2
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
max_pool2d
(
self
.
relu
(
self
.
conv1
(
x
)))
x
=
self
.
max_pool2d
(
self
.
relu
(
self
.
conv2
(
x
)))
x
=
self
.
flatten
(
x
)
x
=
self
.
fc1
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
fc2
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
relu
(
self
.
fc1
(
x
))
x
=
self
.
relu
(
self
.
fc2
(
x
))
x
=
self
.
fc3
(
x
)
return
x
```
...
...
@@ -168,10 +141,8 @@ class LeNet5(nn.Cell):
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
def
construct
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
conv2
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
max_pool2d
(
self
.
conv1
(
x
))
x
=
self
.
max_pool2d
(
self
.
conv2
(
x
))
x
=
self
.
flattern
(
x
)
x
=
self
.
fc1
(
x
)
x
=
self
.
fc2
(
x
)
...
...
tutorials/source_zh_cn/advanced_use/quantization_aware.md
浏览文件 @
437aa67c
...
...
@@ -90,63 +90,36 @@ MindSpore的感知量化训练是在训练基础上,使用低精度数据替
原网络模型LeNet5的定义如下所示:
```
python
def
conv
(
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
padding
=
0
):
"""weight initial for conv layer"""
weight
=
weight_variable
()
return
nn
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
padding
,
weight_init
=
weight
,
has_bias
=
False
,
pad_mode
=
"valid"
)
def
fc_with_initialize
(
input_channels
,
out_channels
):
"""weight initial for fc layer"""
weight
=
weight_variable
()
bias
=
weight_variable
()
return
nn
.
Dense
(
input_channels
,
out_channels
,
weight
,
bias
)
def
weight_variable
():
"""weight initial"""
return
TruncatedNormal
(
0.02
)
class
LeNet5
(
nn
.
Cell
):
"""
Lenet network
Args:
num_class (int): Num classes. Default: 10.
num_channel (int): Num channel. Default: 1.
Returns:
Tensor, output tensor
Examples:
>>> LeNet(num_class=10)
>>> LeNet(num_class=10
, num_channel=1
)
"""
def
__init__
(
self
,
num_class
=
10
,
channel
=
1
):
def
__init__
(
self
,
num_class
=
10
,
num_
channel
=
1
):
super
(
LeNet5
,
self
).
__init__
()
self
.
num_class
=
num_class
self
.
conv1
=
conv
(
channel
,
6
,
5
)
self
.
conv2
=
conv
(
6
,
16
,
5
)
self
.
fc1
=
fc_with_initialize
(
16
*
5
*
5
,
120
)
self
.
fc2
=
fc_with_initialize
(
120
,
84
)
self
.
fc3
=
fc_with_initialize
(
84
,
self
.
num_class
)
self
.
conv1
=
nn
.
Conv2d
(
num_channel
,
6
,
5
,
pad_mode
=
'valid'
)
self
.
conv2
=
nn
.
Conv2d
(
6
,
16
,
5
,
pad_mode
=
'valid'
)
self
.
fc1
=
nn
.
Dense
(
16
*
5
*
5
,
120
,
weight_init
=
Normal
(
0.02
))
self
.
fc2
=
nn
.
Dense
(
120
,
84
,
weight_init
=
Normal
(
0.02
))
self
.
fc3
=
nn
.
Dense
(
84
,
num_class
,
weight_init
=
Normal
(
0.02
))
self
.
relu
=
nn
.
ReLU
()
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
flatten
=
nn
.
Flatten
()
def
construct
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
conv2
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
max_pool2d
(
self
.
relu
(
self
.
conv1
(
x
)))
x
=
self
.
max_pool2d
(
self
.
relu
(
self
.
conv2
(
x
)))
x
=
self
.
flatten
(
x
)
x
=
self
.
fc1
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
fc2
(
x
)
x
=
self
.
relu
(
x
)
x
=
self
.
relu
(
self
.
fc1
(
x
))
x
=
self
.
relu
(
self
.
fc2
(
x
))
x
=
self
.
fc3
(
x
)
return
x
```
...
...
@@ -168,10 +141,8 @@ class LeNet5(nn.Cell):
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
def
construct
(
self
,
x
):
x
=
self
.
conv1
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
conv2
(
x
)
x
=
self
.
max_pool2d
(
x
)
x
=
self
.
max_pool2d
(
self
.
conv1
(
x
))
x
=
self
.
max_pool2d
(
self
.
conv2
(
x
))
x
=
self
.
flattern
(
x
)
x
=
self
.
fc1
(
x
)
x
=
self
.
fc2
(
x
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录