提交 28cdde78 编写于 作者: K kingfo

update example code in pynative

上级 e03e8447
......@@ -240,7 +240,7 @@ print(z.asnumpy())
## Debugging Network Train Model
In PyNative mode, the gradient can be calculated separately. As shown in the following example, `grad_all` is used to calculate all input gradients of the function or the network.
In PyNative mode, the gradient can be calculated separately. As shown in the following example, `GradOperation` is used to calculate all input gradients of the function or the network.
**Example Code**
......@@ -254,7 +254,7 @@ def mul(x, y):
return x * y
def mainf(x, y):
return C.grad_all(mul)(x, y)
return C.GradOperation('get_all', get_all=True)(mul)(x, y)
print(mainf(1,2))
```
......@@ -349,7 +349,7 @@ class GradWrap(nn.Cell):
def construct(self, x, label):
weights = self.weights
return C.grad_by_list(self.network, weights)(x, label)
return C.GradOperation('get_by_list', get_by_list=True)(self.network, weights)(x, label)
net = LeNet5()
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9)
......
......@@ -240,7 +240,7 @@ print(z.asnumpy())
## 调试网络训练模型
PyNative模式下,还可以支持单独求梯度的操作。如下例所示,可通过`grad_all`求该函数或者网络所有的输入梯度。
PyNative模式下,还可以支持单独求梯度的操作。如下例所示,可通过`GradOperation`求该函数或者网络所有的输入梯度。
**示例代码**
......@@ -254,7 +254,7 @@ def mul(x, y):
return x * y
def mainf(x, y):
return C.grad_all(mul)(x, y)
return C.GradOperation('get_all', get_all=True)(mul)(x, y)
print(mainf(1,2))
```
......@@ -349,7 +349,7 @@ class GradWrap(nn.Cell):
def construct(self, x, label):
weights = self.weights
return C.grad_by_list(self.network, weights)(x, label)
return C.GradOperation('get_by_list', get_by_list=True)(self.network, weights)(x, label)
net = LeNet5()
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册