提交 1e3f0495 编写于 作者: W wukesong

modify quick_start

上级 f0064d50
...@@ -316,8 +316,8 @@ if __name__ == "__main__": ...@@ -316,8 +316,8 @@ if __name__ == "__main__":
### Saving the Configured Model ### Saving the Configured Model
MindSpore provides the callback mechanism to execute customized logic during training. `ModelCheckpoint` and `LossMonitor` provided by the framework are used in this example. MindSpore provides the callback mechanism to execute customized logic during training. `ModelCheckpoint` provided by the framework is used in this example.
`ModelCheckpoint` can save network models and parameters for subsequent fine-tuning. `LossMonitor` can monitor the changes of the `loss` value during training. `ModelCheckpoint` can save network models and parameters for subsequent fine-tuning.
```python ```python
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
...@@ -333,7 +333,7 @@ if __name__ == "__main__": ...@@ -333,7 +333,7 @@ if __name__ == "__main__":
### Configuring the Network Training ### Configuring the Network Training
Use the `model.train` API provided by MindSpore to easily train the network. Use the `model.train` API provided by MindSpore to easily train the network. `LossMonitor` can monitor the changes of the `loss` value during training.
In this example, set `epoch_size` to 1 to train the dataset for five iterations. In this example, set `epoch_size` to 1 to train the dataset for five iterations.
```python ```python
......
...@@ -317,8 +317,8 @@ if __name__ == "__main__": ...@@ -317,8 +317,8 @@ if __name__ == "__main__":
### 配置模型保存 ### 配置模型保存
MindSpore提供了callback机制,可以在训练过程中执行自定义逻辑,这里使用框架提供的`ModelCheckpoint``LossMonitor`为例。 MindSpore提供了callback机制,可以在训练过程中执行自定义逻辑,这里使用框架提供的`ModelCheckpoint`为例。
`ModelCheckpoint`可以保存网络模型和参数,以便进行后续的fine-tuning(微调)操作`LossMonitor`可以监控训练过程中`loss`值的变化 `ModelCheckpoint`可以保存网络模型和参数,以便进行后续的fine-tuning(微调)操作。
```python ```python
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
...@@ -334,7 +334,7 @@ if __name__ == "__main__": ...@@ -334,7 +334,7 @@ if __name__ == "__main__":
### 配置训练网络 ### 配置训练网络
通过MindSpore提供的`model.train`接口可以方便地进行网络的训练。 通过MindSpore提供的`model.train`接口可以方便地进行网络的训练。`LossMonitor`可以监控训练过程中`loss`值的变化。
这里把`epoch_size`设置为1,对数据集进行1个迭代的训练。 这里把`epoch_size`设置为1,对数据集进行1个迭代的训练。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册