提交 05133ef1 编写于 作者: C caojian05

The SentimentNet sample code needs to be updated

上级 757ef6ec
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
network config
"""
from easydict import EasyDict as edict
# LSTM CONFIG
lstm_cfg = edict({
'num_classes': 2,
'learning_rate': 0.1,
'momentum': 0.9,
'num_epochs': 1,
'batch_size': 64,
'embed_size': 300,
'num_hiddens': 100,
'num_layers': 2,
'bidirectional': True,
'save_checkpoint_steps': 390,
'keep_checkpoint_max': 10
})
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
LSTM Tutorial
The sample can be run on GPU.
"""
import os
import shutil
import math
import argparse
import json
from itertools import chain
import numpy as np
from config import lstm_cfg as cfg
import mindspore.nn as nn
import mindspore.context as context
import mindspore.dataset as ds
from mindspore.ops import operations as P
from mindspore import Tensor
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.mindrecord import FileWriter
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
# Install gensim with 'pip install gensim'
import gensim
def encode_samples(tokenized_samples, word_to_idx):
""" encode word to index """
features = []
for sample in tokenized_samples:
feature = []
for token in sample:
if token in word_to_idx:
feature.append(word_to_idx[token])
else:
feature.append(0)
features.append(feature)
return features
def pad_samples(features, maxlen=500, pad=0):
""" pad all features to the same length """
padded_features = []
for feature in features:
if len(feature) >= maxlen:
padded_feature = feature[:maxlen]
else:
padded_feature = feature
while len(padded_feature) < maxlen:
padded_feature.append(pad)
padded_features.append(padded_feature)
return padded_features
def read_imdb(path, seg='train'):
""" read imdb dataset """
pos_or_neg = ['pos', 'neg']
data = []
for label in pos_or_neg:
files = os.listdir(os.path.join(path, seg, label))
for file in files:
with open(os.path.join(path, seg, label, file), 'r', encoding='utf8') as rf:
review = rf.read().replace('\n', '')
if label == 'pos':
data.append([review, 1])
elif label == 'neg':
data.append([review, 0])
return data
def tokenizer(text):
return [tok.lower() for tok in text.split(' ')]
def collect_weight(glove_path, vocab, word_to_idx, embed_size):
""" collect weight """
vocab_size = len(vocab)
wvmodel = gensim.models.KeyedVectors.load_word2vec_format(os.path.join(glove_path, 'glove.6B.300d.txt'),
binary=False, encoding='utf-8')
weight_np = np.zeros((vocab_size+1, embed_size)).astype(np.float32)
idx_to_word = {i+1: word for i, word in enumerate(vocab)}
idx_to_word[0] = '<unk>'
for i in range(len(wvmodel.index2word)):
try:
index = word_to_idx[wvmodel.index2word[i]]
except KeyError:
continue
weight_np[index, :] = wvmodel.get_vector(
idx_to_word[word_to_idx[wvmodel.index2word[i]]])
return weight_np
def preprocess(aclimdb_path, glove_path, embed_size):
""" preprocess the train and test data """
train_data = read_imdb(aclimdb_path, 'train')
test_data = read_imdb(aclimdb_path, 'test')
train_tokenized = []
test_tokenized = []
for review, _ in train_data:
train_tokenized.append(tokenizer(review))
for review, _ in test_data:
test_tokenized.append(tokenizer(review))
vocab = set(chain(*train_tokenized))
vocab_size = len(vocab)
print("vocab_size: ", vocab_size)
word_to_idx = {word: i+1 for i, word in enumerate(vocab)}
word_to_idx['<unk>'] = 0
train_features = np.array(pad_samples(encode_samples(train_tokenized, word_to_idx))).astype(np.int32)
train_labels = np.array([score for _, score in train_data]).astype(np.int32)
test_features = np.array(pad_samples(encode_samples(test_tokenized, word_to_idx))).astype(np.int32)
test_labels = np.array([score for _, score in test_data]).astype(np.int32)
weight_np = collect_weight(glove_path, vocab, word_to_idx, embed_size)
return train_features, train_labels, test_features, test_labels, weight_np, vocab_size
def get_imdb_data(labels_data, features_data):
data_list = []
for i, (label, feature) in enumerate(zip(labels_data, features_data)):
data_json = {"id": i,
"label": int(label),
"feature": feature.reshape(-1)}
data_list.append(data_json)
return data_list
def convert_to_mindrecord(embed_size, aclimdb_path, proprocess_path, glove_path):
""" convert imdb dataset to mindrecord """
num_shard = 4
train_features, train_labels, test_features, test_labels, weight_np, _ = \
preprocess(aclimdb_path, glove_path, embed_size)
np.savetxt(os.path.join(proprocess_path, 'weight.txt'), weight_np)
# write mindrecord
schema_json = {"id": {"type": "int32"},
"label": {"type": "int32"},
"feature": {"type": "int32", "shape":[-1]}}
writer = FileWriter(os.path.join(proprocess_path, 'aclImdb_train.mindrecord'), num_shard)
data = get_imdb_data(train_labels, train_features)
writer.add_schema(schema_json, "nlp_schema")
writer.add_index(["id", "label"])
writer.write_raw_data(data)
writer.commit()
writer = FileWriter(os.path.join(proprocess_path, 'aclImdb_test.mindrecord'), num_shard)
data = get_imdb_data(test_labels, test_features)
writer.add_schema(schema_json, "nlp_schema")
writer.add_index(["id", "label"])
writer.write_raw_data(data)
writer.commit()
def init_lstm_weight(
input_size,
hidden_size,
num_layers,
bidirectional,
has_bias=True):
"""Initialize lstm weight."""
num_directions = 1
if bidirectional:
num_directions = 2
weight_size = 0
gate_size = 4 * hidden_size
for layer in range(num_layers):
for _ in range(num_directions):
input_layer_size = input_size if layer == 0 else hidden_size * num_directions
weight_size += gate_size * input_layer_size
weight_size += gate_size * hidden_size
if has_bias:
weight_size += 2 * gate_size
stdv = 1 / math.sqrt(hidden_size)
w_np = np.random.uniform(-stdv, stdv, (weight_size,
1, 1)).astype(np.float32)
w = Parameter(
initializer(
Tensor(w_np), [
weight_size, 1, 1]), name='weight')
return w
def lstm_default_state(batch_size, hidden_size, num_layers, bidirectional):
"""init default input."""
num_directions = 1
if bidirectional:
num_directions = 2
h = Tensor(
np.zeros((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32))
c = Tensor(
np.zeros((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32))
return h, c
class SentimentNet(nn.Cell):
"""Sentiment network structure."""
def __init__(self,
vocab_size,
embed_size,
num_hiddens,
num_layers,
bidirectional,
num_classes,
weight,
batch_size):
super(SentimentNet, self).__init__()
self.embedding = nn.Embedding(vocab_size,
embed_size,
embedding_table=weight)
self.embedding.embedding_table.requires_grad = False
self.trans = P.Transpose()
self.perm = (1, 0, 2)
self.encoder = nn.LSTM(input_size=embed_size,
hidden_size=num_hiddens,
num_layers=num_layers,
has_bias=True,
bidirectional=bidirectional,
dropout=0.0)
w_init = init_lstm_weight(
embed_size,
num_hiddens,
num_layers,
bidirectional)
self.encoder.weight = w_init
self.h, self.c = lstm_default_state(batch_size, num_hiddens, num_layers, bidirectional)
self.concat = P.Concat(1)
if bidirectional:
self.decoder = nn.Dense(num_hiddens * 4, num_classes)
else:
self.decoder = nn.Dense(num_hiddens * 2, num_classes)
def construct(self, inputs):
# (64,500,300)
embeddings = self.embedding(inputs)
embeddings = self.trans(embeddings, self.perm)
output, _ = self.encoder(embeddings, (self.h, self.c))
# states[i] size(64,200) -> encoding.size(64,400)
encoding = self.concat((output[0], output[1]))
outputs = self.decoder(encoding)
return outputs
def create_dataset(base_path, batch_size, num_epochs, is_train):
"""Create dataset for training."""
columns_list = ["feature", "label"]
num_consumer = 4
if is_train:
path = os.path.join(base_path, 'aclImdb_train.mindrecord0')
else:
path = os.path.join(base_path, 'aclImdb_test.mindrecord0')
dtrain = ds.MindDataset(path, columns_list, num_consumer)
dtrain = dtrain.shuffle(buffer_size=dtrain.get_dataset_size())
dtrain = dtrain.batch(batch_size, drop_remainder=True)
dtrain = dtrain.repeat(count=num_epochs)
return dtrain
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='MindSpore LSTM Example')
parser.add_argument('--preprocess', type=str, default='false', choices=['true', 'false'],
help='whether to preprocess data.')
parser.add_argument('--mode', type=str, default="train", choices=['train', 'test'],
help='implement phase, set to train or test')
parser.add_argument('--aclimdb_path', type=str, default="./aclImdb",
help='path where the dataset is stored.')
parser.add_argument('--glove_path', type=str, default="./glove",
help='path where the GloVe is stored.')
parser.add_argument('--preprocess_path', type=str, default="./preprocess",
help='path where the pre-process data is stored.')
parser.add_argument('--ckpt_path', type=str, default="./",
help='if mode is test, must provide path where the trained ckpt file.')
parser.add_argument('--device_target', type=str, default="GPU", choices=['GPU', 'CPU'],
help='the target device to run, support "GPU", "CPU". Default: "GPU".')
args = parser.parse_args()
context.set_context(
mode=context.GRAPH_MODE,
save_graphs=False,
device_target=args.device_target)
if args.preprocess == 'true':
print("============== Starting Data Pre-processing ==============")
shutil.rmtree(args.preprocess_path)
os.mkdir(args.preprocess_path)
convert_to_mindrecord(cfg.embed_size, args.aclimdb_path, args.preprocess_path, args.glove_path)
embedding_table = np.loadtxt(os.path.join(args.preprocess_path, "weight.txt")).astype(np.float32)
network = SentimentNet(vocab_size=embedding_table.shape[0],
embed_size=cfg.embed_size,
num_hiddens=cfg.num_hiddens,
num_layers=cfg.num_layers,
bidirectional=cfg.bidirectional,
num_classes=cfg.num_classes,
weight=Tensor(embedding_table),
batch_size=cfg.batch_size)
loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum)
loss_cb = LossMonitor()
model = Model(network, loss, opt, {'acc': Accuracy()})
if args.mode == 'train':
print("============== Starting Training ==============")
ds_train = create_dataset(args.preprocess_path, cfg.batch_size, cfg.num_epochs, True)
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix="lstm", directory=args.ckpt_path, config=config_ck)
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
if args.device_target == "CPU":
model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb], dataset_sink_mode=False)
else:
model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb])
elif args.mode == 'test':
print("============== Starting Testing ==============")
ds_eval = create_dataset(args.preprocess_path, cfg.batch_size, 1, False)
param_dict = load_checkpoint(args.ckpt_path)
load_param_into_net(network, param_dict)
if args.device_target == "CPU":
acc = model.eval(ds_eval, dataset_sink_mode=False)
else:
acc = model.eval(ds_eval)
print("============== Accuracy:{} ==============".format(acc))
else:
raise RuntimeError('mode should be train or test, rather than {}'.format(args.mode))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册