Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
MindSpore
docs
提交
05133ef1
D
docs
项目概览
MindSpore
/
docs
通知
4
Star
2
Fork
2
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
D
docs
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
05133ef1
编写于
7月 07, 2020
作者:
C
caojian05
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
The SentimentNet sample code needs to be updated
上级
757ef6ec
变更
4
展开全部
隐藏空白更改
内联
并排
Showing
4 changed file
with
146 addition
and
1038 deletion
+146
-1038
tutorials/source_en/advanced_use/nlp_application.md
tutorials/source_en/advanced_use/nlp_application.md
+73
-329
tutorials/source_zh_cn/advanced_use/nlp_application.md
tutorials/source_zh_cn/advanced_use/nlp_application.md
+73
-329
tutorials/tutorial_code/lstm/config.py
tutorials/tutorial_code/lstm/config.py
+0
-33
tutorials/tutorial_code/lstm/main.py
tutorials/tutorial_code/lstm/main.py
+0
-347
未找到文件。
tutorials/source_en/advanced_use/nlp_application.md
浏览文件 @
05133ef1
此差异已折叠。
点击以展开。
tutorials/source_zh_cn/advanced_use/nlp_application.md
浏览文件 @
05133ef1
此差异已折叠。
点击以展开。
tutorials/tutorial_code/lstm/config.py
已删除
100644 → 0
浏览文件 @
757ef6ec
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
network config
"""
from
easydict
import
EasyDict
as
edict
# LSTM CONFIG
lstm_cfg
=
edict
({
'num_classes'
:
2
,
'learning_rate'
:
0.1
,
'momentum'
:
0.9
,
'num_epochs'
:
1
,
'batch_size'
:
64
,
'embed_size'
:
300
,
'num_hiddens'
:
100
,
'num_layers'
:
2
,
'bidirectional'
:
True
,
'save_checkpoint_steps'
:
390
,
'keep_checkpoint_max'
:
10
})
tutorials/tutorial_code/lstm/main.py
已删除
100644 → 0
浏览文件 @
757ef6ec
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
LSTM Tutorial
The sample can be run on GPU.
"""
import
os
import
shutil
import
math
import
argparse
import
json
from
itertools
import
chain
import
numpy
as
np
from
config
import
lstm_cfg
as
cfg
import
mindspore.nn
as
nn
import
mindspore.context
as
context
import
mindspore.dataset
as
ds
from
mindspore.ops
import
operations
as
P
from
mindspore
import
Tensor
from
mindspore.common.initializer
import
initializer
from
mindspore.common.parameter
import
Parameter
from
mindspore.mindrecord
import
FileWriter
from
mindspore.train
import
Model
from
mindspore.nn.metrics
import
Accuracy
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.train.callback
import
ModelCheckpoint
,
CheckpointConfig
,
LossMonitor
,
TimeMonitor
# Install gensim with 'pip install gensim'
import
gensim
def
encode_samples
(
tokenized_samples
,
word_to_idx
):
""" encode word to index """
features
=
[]
for
sample
in
tokenized_samples
:
feature
=
[]
for
token
in
sample
:
if
token
in
word_to_idx
:
feature
.
append
(
word_to_idx
[
token
])
else
:
feature
.
append
(
0
)
features
.
append
(
feature
)
return
features
def
pad_samples
(
features
,
maxlen
=
500
,
pad
=
0
):
""" pad all features to the same length """
padded_features
=
[]
for
feature
in
features
:
if
len
(
feature
)
>=
maxlen
:
padded_feature
=
feature
[:
maxlen
]
else
:
padded_feature
=
feature
while
len
(
padded_feature
)
<
maxlen
:
padded_feature
.
append
(
pad
)
padded_features
.
append
(
padded_feature
)
return
padded_features
def
read_imdb
(
path
,
seg
=
'train'
):
""" read imdb dataset """
pos_or_neg
=
[
'pos'
,
'neg'
]
data
=
[]
for
label
in
pos_or_neg
:
files
=
os
.
listdir
(
os
.
path
.
join
(
path
,
seg
,
label
))
for
file
in
files
:
with
open
(
os
.
path
.
join
(
path
,
seg
,
label
,
file
),
'r'
,
encoding
=
'utf8'
)
as
rf
:
review
=
rf
.
read
().
replace
(
'
\n
'
,
''
)
if
label
==
'pos'
:
data
.
append
([
review
,
1
])
elif
label
==
'neg'
:
data
.
append
([
review
,
0
])
return
data
def
tokenizer
(
text
):
return
[
tok
.
lower
()
for
tok
in
text
.
split
(
' '
)]
def
collect_weight
(
glove_path
,
vocab
,
word_to_idx
,
embed_size
):
""" collect weight """
vocab_size
=
len
(
vocab
)
wvmodel
=
gensim
.
models
.
KeyedVectors
.
load_word2vec_format
(
os
.
path
.
join
(
glove_path
,
'glove.6B.300d.txt'
),
binary
=
False
,
encoding
=
'utf-8'
)
weight_np
=
np
.
zeros
((
vocab_size
+
1
,
embed_size
)).
astype
(
np
.
float32
)
idx_to_word
=
{
i
+
1
:
word
for
i
,
word
in
enumerate
(
vocab
)}
idx_to_word
[
0
]
=
'<unk>'
for
i
in
range
(
len
(
wvmodel
.
index2word
)):
try
:
index
=
word_to_idx
[
wvmodel
.
index2word
[
i
]]
except
KeyError
:
continue
weight_np
[
index
,
:]
=
wvmodel
.
get_vector
(
idx_to_word
[
word_to_idx
[
wvmodel
.
index2word
[
i
]]])
return
weight_np
def
preprocess
(
aclimdb_path
,
glove_path
,
embed_size
):
""" preprocess the train and test data """
train_data
=
read_imdb
(
aclimdb_path
,
'train'
)
test_data
=
read_imdb
(
aclimdb_path
,
'test'
)
train_tokenized
=
[]
test_tokenized
=
[]
for
review
,
_
in
train_data
:
train_tokenized
.
append
(
tokenizer
(
review
))
for
review
,
_
in
test_data
:
test_tokenized
.
append
(
tokenizer
(
review
))
vocab
=
set
(
chain
(
*
train_tokenized
))
vocab_size
=
len
(
vocab
)
print
(
"vocab_size: "
,
vocab_size
)
word_to_idx
=
{
word
:
i
+
1
for
i
,
word
in
enumerate
(
vocab
)}
word_to_idx
[
'<unk>'
]
=
0
train_features
=
np
.
array
(
pad_samples
(
encode_samples
(
train_tokenized
,
word_to_idx
))).
astype
(
np
.
int32
)
train_labels
=
np
.
array
([
score
for
_
,
score
in
train_data
]).
astype
(
np
.
int32
)
test_features
=
np
.
array
(
pad_samples
(
encode_samples
(
test_tokenized
,
word_to_idx
))).
astype
(
np
.
int32
)
test_labels
=
np
.
array
([
score
for
_
,
score
in
test_data
]).
astype
(
np
.
int32
)
weight_np
=
collect_weight
(
glove_path
,
vocab
,
word_to_idx
,
embed_size
)
return
train_features
,
train_labels
,
test_features
,
test_labels
,
weight_np
,
vocab_size
def
get_imdb_data
(
labels_data
,
features_data
):
data_list
=
[]
for
i
,
(
label
,
feature
)
in
enumerate
(
zip
(
labels_data
,
features_data
)):
data_json
=
{
"id"
:
i
,
"label"
:
int
(
label
),
"feature"
:
feature
.
reshape
(
-
1
)}
data_list
.
append
(
data_json
)
return
data_list
def
convert_to_mindrecord
(
embed_size
,
aclimdb_path
,
proprocess_path
,
glove_path
):
""" convert imdb dataset to mindrecord """
num_shard
=
4
train_features
,
train_labels
,
test_features
,
test_labels
,
weight_np
,
_
=
\
preprocess
(
aclimdb_path
,
glove_path
,
embed_size
)
np
.
savetxt
(
os
.
path
.
join
(
proprocess_path
,
'weight.txt'
),
weight_np
)
# write mindrecord
schema_json
=
{
"id"
:
{
"type"
:
"int32"
},
"label"
:
{
"type"
:
"int32"
},
"feature"
:
{
"type"
:
"int32"
,
"shape"
:[
-
1
]}}
writer
=
FileWriter
(
os
.
path
.
join
(
proprocess_path
,
'aclImdb_train.mindrecord'
),
num_shard
)
data
=
get_imdb_data
(
train_labels
,
train_features
)
writer
.
add_schema
(
schema_json
,
"nlp_schema"
)
writer
.
add_index
([
"id"
,
"label"
])
writer
.
write_raw_data
(
data
)
writer
.
commit
()
writer
=
FileWriter
(
os
.
path
.
join
(
proprocess_path
,
'aclImdb_test.mindrecord'
),
num_shard
)
data
=
get_imdb_data
(
test_labels
,
test_features
)
writer
.
add_schema
(
schema_json
,
"nlp_schema"
)
writer
.
add_index
([
"id"
,
"label"
])
writer
.
write_raw_data
(
data
)
writer
.
commit
()
def
init_lstm_weight
(
input_size
,
hidden_size
,
num_layers
,
bidirectional
,
has_bias
=
True
):
"""Initialize lstm weight."""
num_directions
=
1
if
bidirectional
:
num_directions
=
2
weight_size
=
0
gate_size
=
4
*
hidden_size
for
layer
in
range
(
num_layers
):
for
_
in
range
(
num_directions
):
input_layer_size
=
input_size
if
layer
==
0
else
hidden_size
*
num_directions
weight_size
+=
gate_size
*
input_layer_size
weight_size
+=
gate_size
*
hidden_size
if
has_bias
:
weight_size
+=
2
*
gate_size
stdv
=
1
/
math
.
sqrt
(
hidden_size
)
w_np
=
np
.
random
.
uniform
(
-
stdv
,
stdv
,
(
weight_size
,
1
,
1
)).
astype
(
np
.
float32
)
w
=
Parameter
(
initializer
(
Tensor
(
w_np
),
[
weight_size
,
1
,
1
]),
name
=
'weight'
)
return
w
def
lstm_default_state
(
batch_size
,
hidden_size
,
num_layers
,
bidirectional
):
"""init default input."""
num_directions
=
1
if
bidirectional
:
num_directions
=
2
h
=
Tensor
(
np
.
zeros
((
num_layers
*
num_directions
,
batch_size
,
hidden_size
)).
astype
(
np
.
float32
))
c
=
Tensor
(
np
.
zeros
((
num_layers
*
num_directions
,
batch_size
,
hidden_size
)).
astype
(
np
.
float32
))
return
h
,
c
class
SentimentNet
(
nn
.
Cell
):
"""Sentiment network structure."""
def
__init__
(
self
,
vocab_size
,
embed_size
,
num_hiddens
,
num_layers
,
bidirectional
,
num_classes
,
weight
,
batch_size
):
super
(
SentimentNet
,
self
).
__init__
()
self
.
embedding
=
nn
.
Embedding
(
vocab_size
,
embed_size
,
embedding_table
=
weight
)
self
.
embedding
.
embedding_table
.
requires_grad
=
False
self
.
trans
=
P
.
Transpose
()
self
.
perm
=
(
1
,
0
,
2
)
self
.
encoder
=
nn
.
LSTM
(
input_size
=
embed_size
,
hidden_size
=
num_hiddens
,
num_layers
=
num_layers
,
has_bias
=
True
,
bidirectional
=
bidirectional
,
dropout
=
0.0
)
w_init
=
init_lstm_weight
(
embed_size
,
num_hiddens
,
num_layers
,
bidirectional
)
self
.
encoder
.
weight
=
w_init
self
.
h
,
self
.
c
=
lstm_default_state
(
batch_size
,
num_hiddens
,
num_layers
,
bidirectional
)
self
.
concat
=
P
.
Concat
(
1
)
if
bidirectional
:
self
.
decoder
=
nn
.
Dense
(
num_hiddens
*
4
,
num_classes
)
else
:
self
.
decoder
=
nn
.
Dense
(
num_hiddens
*
2
,
num_classes
)
def
construct
(
self
,
inputs
):
# (64,500,300)
embeddings
=
self
.
embedding
(
inputs
)
embeddings
=
self
.
trans
(
embeddings
,
self
.
perm
)
output
,
_
=
self
.
encoder
(
embeddings
,
(
self
.
h
,
self
.
c
))
# states[i] size(64,200) -> encoding.size(64,400)
encoding
=
self
.
concat
((
output
[
0
],
output
[
1
]))
outputs
=
self
.
decoder
(
encoding
)
return
outputs
def
create_dataset
(
base_path
,
batch_size
,
num_epochs
,
is_train
):
"""Create dataset for training."""
columns_list
=
[
"feature"
,
"label"
]
num_consumer
=
4
if
is_train
:
path
=
os
.
path
.
join
(
base_path
,
'aclImdb_train.mindrecord0'
)
else
:
path
=
os
.
path
.
join
(
base_path
,
'aclImdb_test.mindrecord0'
)
dtrain
=
ds
.
MindDataset
(
path
,
columns_list
,
num_consumer
)
dtrain
=
dtrain
.
shuffle
(
buffer_size
=
dtrain
.
get_dataset_size
())
dtrain
=
dtrain
.
batch
(
batch_size
,
drop_remainder
=
True
)
dtrain
=
dtrain
.
repeat
(
count
=
num_epochs
)
return
dtrain
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
(
description
=
'MindSpore LSTM Example'
)
parser
.
add_argument
(
'--preprocess'
,
type
=
str
,
default
=
'false'
,
choices
=
[
'true'
,
'false'
],
help
=
'whether to preprocess data.'
)
parser
.
add_argument
(
'--mode'
,
type
=
str
,
default
=
"train"
,
choices
=
[
'train'
,
'test'
],
help
=
'implement phase, set to train or test'
)
parser
.
add_argument
(
'--aclimdb_path'
,
type
=
str
,
default
=
"./aclImdb"
,
help
=
'path where the dataset is stored.'
)
parser
.
add_argument
(
'--glove_path'
,
type
=
str
,
default
=
"./glove"
,
help
=
'path where the GloVe is stored.'
)
parser
.
add_argument
(
'--preprocess_path'
,
type
=
str
,
default
=
"./preprocess"
,
help
=
'path where the pre-process data is stored.'
)
parser
.
add_argument
(
'--ckpt_path'
,
type
=
str
,
default
=
"./"
,
help
=
'if mode is test, must provide path where the trained ckpt file.'
)
parser
.
add_argument
(
'--device_target'
,
type
=
str
,
default
=
"GPU"
,
choices
=
[
'GPU'
,
'CPU'
],
help
=
'the target device to run, support "GPU", "CPU". Default: "GPU".'
)
args
=
parser
.
parse_args
()
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
save_graphs
=
False
,
device_target
=
args
.
device_target
)
if
args
.
preprocess
==
'true'
:
print
(
"============== Starting Data Pre-processing =============="
)
shutil
.
rmtree
(
args
.
preprocess_path
)
os
.
mkdir
(
args
.
preprocess_path
)
convert_to_mindrecord
(
cfg
.
embed_size
,
args
.
aclimdb_path
,
args
.
preprocess_path
,
args
.
glove_path
)
embedding_table
=
np
.
loadtxt
(
os
.
path
.
join
(
args
.
preprocess_path
,
"weight.txt"
)).
astype
(
np
.
float32
)
network
=
SentimentNet
(
vocab_size
=
embedding_table
.
shape
[
0
],
embed_size
=
cfg
.
embed_size
,
num_hiddens
=
cfg
.
num_hiddens
,
num_layers
=
cfg
.
num_layers
,
bidirectional
=
cfg
.
bidirectional
,
num_classes
=
cfg
.
num_classes
,
weight
=
Tensor
(
embedding_table
),
batch_size
=
cfg
.
batch_size
)
loss
=
nn
.
SoftmaxCrossEntropyWithLogits
(
is_grad
=
False
,
sparse
=
True
)
opt
=
nn
.
Momentum
(
network
.
trainable_params
(),
cfg
.
learning_rate
,
cfg
.
momentum
)
loss_cb
=
LossMonitor
()
model
=
Model
(
network
,
loss
,
opt
,
{
'acc'
:
Accuracy
()})
if
args
.
mode
==
'train'
:
print
(
"============== Starting Training =============="
)
ds_train
=
create_dataset
(
args
.
preprocess_path
,
cfg
.
batch_size
,
cfg
.
num_epochs
,
True
)
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
cfg
.
save_checkpoint_steps
,
keep_checkpoint_max
=
cfg
.
keep_checkpoint_max
)
ckpoint_cb
=
ModelCheckpoint
(
prefix
=
"lstm"
,
directory
=
args
.
ckpt_path
,
config
=
config_ck
)
time_cb
=
TimeMonitor
(
data_size
=
ds_train
.
get_dataset_size
())
if
args
.
device_target
==
"CPU"
:
model
.
train
(
cfg
.
num_epochs
,
ds_train
,
callbacks
=
[
time_cb
,
ckpoint_cb
,
loss_cb
],
dataset_sink_mode
=
False
)
else
:
model
.
train
(
cfg
.
num_epochs
,
ds_train
,
callbacks
=
[
time_cb
,
ckpoint_cb
,
loss_cb
])
elif
args
.
mode
==
'test'
:
print
(
"============== Starting Testing =============="
)
ds_eval
=
create_dataset
(
args
.
preprocess_path
,
cfg
.
batch_size
,
1
,
False
)
param_dict
=
load_checkpoint
(
args
.
ckpt_path
)
load_param_into_net
(
network
,
param_dict
)
if
args
.
device_target
==
"CPU"
:
acc
=
model
.
eval
(
ds_eval
,
dataset_sink_mode
=
False
)
else
:
acc
=
model
.
eval
(
ds_eval
)
print
(
"============== Accuracy:{} =============="
.
format
(
acc
))
else
:
raise
RuntimeError
(
'mode should be train or test, rather than {}'
.
format
(
args
.
mode
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录