loading_dataset.ipynb 35.0 KB
Notebook
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 加载数据集\n",
    "\n",
    "## 概述\n",
    "\n",
    "MindSpore可以帮助你加载常见的数据集、特定数据格式的数据集或自定义的数据集。加载数据集时,需先导入所需要依赖的库`mindspore.dataset`。\n",
    "\n",
    "接下来,以加载数常用数据集(CIFAR-10数据集)、特定格式数据集以及自定义数据集为例来体验MindSpore加载数据集操作。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 整体流程\n",
    "\n",
    "1. 准备环节。下载本次体验流程所需的数据集。\n",
    "2. 加载常用数据集并输出结果,以CIFAR-10二进制数据集为例。\n",
    "3. 加载特定格式数据集并输出结果,以MindRecord格式数据集为例。\n",
    "4. 加载自定义数据集并输出结果。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 准备环节\n",
    "\n",
    "### 导入`mindspore.dataset`模块"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import mindspore.dataset as ds"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 下载所需数据集\n",
    "\n",
    "1. 在当前`notebook`工作目录创建`./datasets/cifar-10`目录,用于存放数据集。\n",
    "2. 在当前`notebook`工作目录创建`./datasets/mindrecord`目录,用于后续存放转换后的MindRecord格式数据集文件。\n",
    "3. 下载[CIFAR-10二进制格式数据集](https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz),并将数据集文件解压到`./datasets/cifar-10/cifar-10-batches-bin`目录下。\n",
    "4. 下载数据集[CIFAR-10 Python文件格式数据集](http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz),并将数据集文件解压到`./datasets/cifar-10/cifar-10-batches-py`目录下。\n",
    "\n",
    "    此时当前`notebook`工作目录下`datasets`目录结构为:\n",
    "\n",
    "    ```shell\n",
    "    $ tree datasets\n",
    "    datasets\n",
    "    ├── cifar-10\n",
    "    │   ├── cifar-10-batches-bin\n",
    "    │   │   ├── batches.meta.txt\n",
    "    │   │   ├── data_batch_1.bin\n",
    "    │   │   ├── data_batch_2.bin\n",
    "    │   │   ├── data_batch_3.bin\n",
    "    │   │   ├── data_batch_4.bin\n",
    "    │   │   ├── data_batch_5.bin\n",
    "    │   │   ├── readme.html\n",
    "    │   │   └── test_batch.bin\n",
    "    │   └── cifar-10-batches-py\n",
    "    │       ├── batches.meta\n",
    "    │       ├── data_batch_1\n",
    "    │       ├── data_batch_2\n",
    "    │       ├── data_batch_3\n",
    "    │       ├── data_batch_4\n",
    "    │       ├── data_batch_5\n",
    "    │       ├── readme.html\n",
    "    │       └── test_batch\n",
    "    └── mindrecord\n",
    "    ```\n",
    "\n",
    "    其中:\n",
    "    - `cifar-10-batches-bin`目录为CIFAR-10二进制格式数据集目录。\n",
    "    - `cifar-10-batches-py`目录为CIFAR-10 Python文件格式数据集目录。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 加载常见的数据集\n",
    "\n",
    "MindSpore可以加载常见的标准数据集。支持的数据集如下表:\n",
    "\n",
    "| 数据集:    | 简要说明 |\n",
    "| :---------: | :-------------:|\n",
    "| ImageNet  | ImageNet是根据WordNet层次结构组织的图像数据库,其中层次结构的每个节点都由成百上千个图像表示。 |\n",
    "| MNIST     | 是一个手写数字图像的大型数据库,通常用于训练各种图像处理系统。  |\n",
    "| CIFAR-10  | 常用于训练图像的采集机器学习和计算机视觉算法。CIFAR-10数据集包含10种不同类别的60,000张32x32彩色图像。 |\n",
    "| CIFAR-100 | 该数据集类似于CIFAR-10,不同之处在于它有100个类别,每个类别包含600张图像:500张训练图像和100张测试图像。|\n",
    "| PASCAL-VOC | 数据内容多样,可用于训练计算机视觉模型(分类、定位、检测、分割、动作识别等)。|\n",
    "| CelebA    | CelebA人脸数据集包含上万个名人身份的人脸图片,每张图片有40个特征标记,常用于人脸相关的训练任务。 |\n",
    "\n",
    "加载常见数据集的详细步骤如下,以创建`CIFAR-10`对象为例,用于加载支持的数据集。\n",
    "\n",
    "1. 使用二进制格式的数据集(CIFAR-10 binary version),配置数据集目录,定义需要加载的数据集实例。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "DATA_DIR = \"./datasets/cifar-10/cifar-10-batches-bin\"\n",
    "cifar10_dataset = ds.Cifar10Dataset(DATA_DIR)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "2. 创建迭代器,通过迭代器读取数据。此处读取前2个图像及其标签。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The data of image 1 is below:\n",
      "[[[179 147 140]\n",
      "  [173 148 138]\n",
      "  [131 108  98]\n",
      "  ...\n",
      "  [129  90  77]\n",
      "  [167 140 124]\n",
      "  [188 172 154]]\n",
      "\n",
      " [[177 156 131]\n",
      "  [182 167 142]\n",
      "  [120 108  85]\n",
      "  ...\n",
      "  [156 142 130]\n",
      "  [199 171 159]\n",
      "  [174 126 106]]\n",
      "\n",
      " [[145 129 103]\n",
      "  [128 107  81]\n",
      "  [166 144 118]\n",
      "  ...\n",
      "  [145 129 115]\n",
      "  [138  94  72]\n",
      "  [179 108  84]]\n",
      "\n",
      " ...\n",
      "\n",
      " [[123 135  91]\n",
      "  [134 146 101]\n",
      "  [113 123  86]\n",
      "  ...\n",
      "  [117 106  79]\n",
      "  [ 87  81  67]\n",
      "  [ 80  80  56]]\n",
      "\n",
      " [[148 159 114]\n",
      "  [135 146 103]\n",
      "  [125 135  97]\n",
      "  ...\n",
      "  [150 137  93]\n",
      "  [123 116  88]\n",
      "  [124 120  93]]\n",
      "\n",
      " [[150 162 102]\n",
      "  [160 171 115]\n",
      "  [132 141  97]\n",
      "  ...\n",
      "  [139 126  79]\n",
      "  [113 100  84]\n",
      "  [ 98  83  72]]]\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAAD3CAYAAADmIkO7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZEklEQVR4nO2dW2yc6V3Gn3eOnvOMPWN7bCexE8fZxMlumu0hadm2KqUUUQRtpQoQQqpEVXGDRC9A3HC6QCCBQIgLEBdc0AtECypdoAeWtkv3mD002Rw2J8dnO7bH9njGcz58XMQrrOp9PgRtN+9Wz++m6fvPO/PNN98z7+Z93v//bzzPgxDCPQKP+gKEEHYkTiEcReIUwlEkTiEcReIUwlEkTiEcReJ8RBhjbhhjPvyor0O4i8T5iPA8b9bzvO886ut4C2NMxBjzZWPMgjHG0w/Ho0fiFId5DsCvAHjwqC9ESJyPjIMV6qPGmN83xnzJGPNFY0zVGHPNGDNjjPkdY8ymMWbZGPOxQ/M+a4x58+Dv3jfGfP77Xve3jDHrxpg1Y8yvHayC0wexqDHmT40xS8aYDWPMXxtjYgDgeV7b87y/8DzvOQC9t/VmCCsSpxv8HIC/B5AD8D0A38DD72YcwB8C+JtDf3cTwCcApAF8FsCfG2MuAIAx5uMAvgDgowCmAXzo+97nTwDMADh/EB8H8Ls/ig8kfnAkTjf4rud53/A8rwvgSwAKAP7Y87wOgH8AMGmMyQKA53n/5nnenPeQZwF8E8BTB6/zGQB/53neDc/z6gD+4K03MMYYAJ8D8Jue5+14nlcF8EcAfvFt+ozi/0joUV+AAABsHPpzA0DJ87zeof8PAEkAZWPMzwD4PTxcAQMA4gCuHfydMQCvHnqt5UN/Lhz83dce6hQAYAAEf0ifQfyQkTjfQRhjogD+CcCvAvgXz/M6xpiv4KHIAGAdwMShKUcO/bmEh0Kf9Txv9W24XPEDov+sfWcRARAFsAWge7CKfuxQ/B8BfNYYc9oYE8ehf096ntcH8Ld4+G/UYQAwxowbY376rb9zsGE08NZ7GWMGzKFlVry9SJzvIA7+nfgbeCjCXQC/DOCrh+JfA/CXAL4N4B6AFw9CrYP//e2D8ZeMMRUAzwA4degtbuPh6jqOh5tSDQDHfkQfR/wvGCVb//hijDkN4DqA6MFmk3gHoZXzxwxjzCcPTvvk8NA6eVrCfGcicf748Xk8/DfpHB4eJvj1R3s54v+L/rNWCEfRyimEo/j6nP/6V39Gl9W26dN5N2/dso6nB/lvQTYSobF6o0Nju60mjd24edseMNx3v/jeMzQWRJvGKrt7PLZXp7F6xX6LO42GdRwAMqkajY3GkjQWSmRprByx3+PBbIHOGQjw76xV5dfY68Vo7F0f/4R1/M7NK3TO2hy3bXeX79DY6ZkZGkN/gIaWVu3vN3PhCTqnMHmUxn7y05+z2lVaOYVwFIlTCEeROIVwFIlTCEeROIVwFIlTCEfxtVL6Mb6dH0skaKyGqnX8qZ/9/sT8/yEei9LY17/4LRrrdXjSxKmzs9bxWqlC53T3uV3S6Nk/FwBkBjM01mpxK6jft7/mqZkj1nEA2Jov0dj63BaNjZ7h1xgdsNsbjRL/zLHcGI3V9/ZpLBDh9ldu0P4cGMPvYaPKTydGk3kai01M0Fizz9et8aL9c08e4d/Z+huv0Bg+bR/WyimEo0icQjiKxCmEo0icQjiKxCmEo0icQjiKr5WysLpCY7ubmzT2+MmT1vFkj5/0/+Yzr9LY1//rNRr7yIV301i+YLcHSkvL1nEA2OpwCyAU47mv7TC3dNo+d3n05Ih1PBjmWT+5kRSNZQL8GqN5ng2SSaWt4+km/85eu36PxkyA/+6/9+JZGouE7J87TGcAsRjPMhqbOEFj4Sy3llKpURq7d/WKdfy7T79A55xO82whhlZOIRxF4hTCUSROIRxF4hTCUSROIRzFd7e21+HhyeJjNPbyc9es4y9cfp3OmV/dpbF0yL6TCAAeeH2eWCpnHb/0U++jc7IxvkuXzNpfDwC8ID98HQ7xHc9I0r7z2u7wz7Ux9yaNlebs9ZsAoN7jO9ER8n7lfT5nZDTLXy/O6wvt1HzqC3lx63gyN0znmMg6ja084K7CR951icYWbvCd6P49+25/fYc/w3f3eQIBQyunEI4icQrhKBKnEI4icQrhKBKnEI4icQrhKL5WSnGEl+K/+tINHrt90zo+MckPbBcHuU1x5uw5GpuZtR8cB4BE1l7nKBji9Y+uvzZHY63bd2ksn+XWwf4er+sTHxq0jg8VjtM5wwluYx25dIHGtnYWaGxz3v597jTX6JxcbojGPJ+f/UaH1wMKhuxH3EfHinTOrWvcWpqe5PcqNsCfg3u3uSU1f93+jAzwRwCNPq9bxdDKKYSjSJxCOIrEKYSjSJxCOIrEKYSjSJxCOIqvlbK9ycv+v/IqzzAZnbRnFgzl+dZ1KsFtlqlpbpesLi/R2O4Vuw2QG+KvN/fmPI0N8EQRlPo9Gmv6ZM4MFu33xKvwbs3Xb3FrJjl4isaKx6do7PRZe6ZO/wley2i7skNj6yu8o3Snye9Hh3QPL4zzVgejxyZpbPYcvx8bW7xGVjfK7Z7cmWPW8U6dZ9uEu7y1CUMrpxCOInEK4SgSpxCOInEK4SgSpxCOInEK4Si+VsrcnUUaGynygkuZnL08fqfNt6eLMzwr5dWXX6Sx7QVu94zn7ZbOTpu3YxjM8A7b9fVtGssWeJfnzDRvCdDt27ffo31uO42keOuHRoVfY2WR2yKXl+wW0vkPfZjOmZ7ln2tsgneUvvHmFRpr9uzXmBsdp3Mefx8v2Gaa/H5EB/Zo7PT7+PfZatmvsVrjFtEIKTbnh1ZOIRxF4hTCUSROIRxF4hTCUSROIRxF4hTCUXytlPIWL0o0PGIvTAUAraC9v0YunaVzokHeuzgd4vZGNM4LP0XI1najx7e8x07w18tdnKCxWJJbBzWPW0hDKbsdEfLpU5PI8A7Vt32ydLo+3aYHPfv7BUr8Xl2+8S0amzrGu0ZPZHjhuHrJnumyFeD9UCaO8u9s+RbPjql0eebP3AN7kToASAXsvW+OTvGsn063SWMMrZxCOIrEKYSjSJxCOIrEKYSjSJxCOIrvbm2sz3cZExG+u2rC9kO+tTLf+Vu89YDGZqftNVsA4PxTF2lsecVepn9t+z6d88R7eM2ZW0s+RYS6vAZSa5XX/Fkv2Tsv58d5h+2BJO+UHQ7Zkw4AIJ3P0li3Zt9N/M+v/jOdU6ryrtFbp/h3Fkzxa8wcse/Wno3zR7U+wHdd37h9hcbuLi7QWNe0aCw9RJ7vfa6XzT1+rxhaOYVwFIlTCEeROIVwFIlTCEeROIVwFIlTCEfxtVI8fr4aL16+QmNNMnGIdJoGgOMnec2WZ7/HDyHvtjwae/yc/VD5xAg/SL+8VaWxnU0ei6Z4l+dz73k3jc0t2VsCLO7wpIOAx2sIpeq7NIYGbxmRmbIf6o8ucNtme8GnHcPr/DqCGf6aHyjYawU1G9ymeObpb9DYKy9fo7FQNE1j+TH+rLaa9hpC9SZ/Fls+956hlVMIR5E4hXAUiVMIR5E4hXAUiVMIR5E4hXAUXytly/DsgUqIl/aPhOxbyv0In3N/lde+KVe5rZAeidDYBUza5+zzj92s8WybWJdvld9fuUdjuw1uwVx87yXreMun5szNV75LY8Ynm2Isxi2M6n37/Z+dfZzOiRd4h3D0ujT0+hyv6xMI2+2N55+/Tue88B88ZgL2TtkAkMrx72V/gXepHi3an5FMjK91Zp8/OwytnEI4isQphKNInEI4isQphKNInEI4isQphKP4WimNPt9qLh7hWRiJYNI6XqvxLIZ4yqflgk/Gx4kTvLR/eXPN/noN+/UBwPo6z6bo9+xtJgDgxMkZGtva4bbC9cvPWccvXuIWxnvef4HGrnz7eRrb2eCFsKJB+6Owt8MLU03keRGyqemzNJYgmScAsN+z2xQLPlZV3ecpjsf4Nc6v8e86kea2X6W9YR1f3+Bd1s+cOkpjDK2cQjiKxCmEo0icQjiKxCmEo0icQjiKxCmEo/haKZ/8ed43ZHOLZz8MDtp7SXR7vMiR6fPfif0uzywIxHx6aOyUrePBPt8mz6S5bbNR5p85HOJFt548z22RN77zHev4s1/7Op3zxAd4f5jx49M0VtrhVlAsEbeOdzZ5tlC1wq2xvuHfdTLKK8ddfuOqdTyb59lHJ05O0tjONs9oOnOGz2s2uY24vWvvmVOvNeicqQ5/PhhaOYVwFIlTCEeROIVwFIlTCEeROIVwFIlTCEfxtVJCYW4dpJJ86rHj9j4ThtfOwuYq35bvNXlWR7/PryMRt2ckZONFOifq8d+rwhGeAbNZXqax/Rb/bDOXPmgdX7zN+8N873VeICtk7JYIAFxdsGfpAMDZ82es49PHH6Nz0lVeBGuvzC2MRmmbxqZG8tbxOnjGR23PniUCAGNjWRorjvN7tV/nBbniW/Z5Xps/O8vL6zTG0MophKNInEI4isQphKNInEI4isQphKP47tZ2+vywbrfJd3Iru/a6M90wPwzd7vAd2WaDv1e7zg8bd6PHrOOtQIrO6ff561W2ec2ZdIzv7gUD9oPSALDXH7SOHzvH6wRt3+f1dEorfJe0uc8P/G/v2A96jyf5jmY8MUxjwSBv5TFZ4Pcq0itbx+/u8PpHQ4P8+8zmeL2oSmOPX0eCWwtJkjixt8G7b+dyWRpjaOUUwlEkTiEcReIUwlEkTiEcReIUwlEkTiEcxddKabd8rJQ2txwCnn1ru9PgnZVTcb4d3u7yg9L9NrdZdjZWSMR+MB8Ajs6epjEscXsg2OBb/c/++1dp7NiTn7KOT80coXMGjvIWA+0+b2vxiTO8ZURh2F73KR7nj8jWHn8Gjg7xJIHK/Vs0dvO2vUt1PMevwwtnaazR4tfYD3JLZyjJXzOesVtjIzl7V24AQJvbLAytnEI4isQphKNInEI4isQphKNInEI4isQphKP41xAK8W354Qm+nb9XtWveC/KS+q0G3/Ju+bRPSMb59nUmb68VNDV5nM6ZX1qksUC9TGPY4fV0vDa3iWYmTtrn+LQzuLXAbZtTs+/n1wGe+dML2t+vCn7vUwVul7T4W2GrxdtrDBTslk5yxCe7pMazSxpN3vohmuDWmE+yEyID9musevwZgE+WDkMrpxCOInEK4SgSpxCOInEK4SgSpxCOInEK4Si+Vorn8SySjRLv/AvYs1nyw9yaCXg8Aybo8xvSqPI9+5ZnL9K0WuLtEa49+yKNhXu8UFdqiG/Zf/wzv0RjiYLdCnrh8kt0TjbPbaxmh9sU9xZ4NkitbS9eVhzmnb77PkXZdtZ5i4THTtvtIwCIt+0Fzyo+WT+9Fn9OaxWetdTs8U7f8XSWxsKhjHW8UufZU+k0t9MYWjmFcBSJUwhHkTiFcBSJUwhHkTiFcBSJUwhH8bVStnb51rDX56fsp6bsp/bXH9h7qABAIpalsdgAt2A2d3n/ktigfV42ym0PpHnxr9ffnKexT138BRpLJrgd8ZWvfNk6fmf+Lp0zlOH9S7ZK/H7UfIqyDcTtxa7OzHLbo1wu01gmwa2Dco/Hql379QfDfB1p7fPP7PV4Ya14gj8HPo8cjGfP4MmmeIZU3+M2HEMrpxCOInEK4SgSpxCOInEK4SgSpxCO4rtbmxzku4KFQV4/JkG2ujauztE58Sg/RH1q9iiNpQv8I+zsNe3XsXWTztno8QP9kVFexyaZ5Dt/psYP9ZfW7Dvit27xneGJIt9RDvl02E7l+PdZHLHvsHd7/OB4x+OxsWMnaGy3zg/FN2Hf1Sz4dNjOHuW74V1etgrdKH92DPh2bYkkfSSTvBs2jI9DQNDKKYSjSJxCOIrEKYSjSJxCOIrEKYSjSJxCOIqvlRII8S37RosfKF6Zt9foGStO0jm1/TKNtVq8NUEgyre8V7sl63h+eJjOeWKEWwB7S/wz97fXaOzqA94uIJ+zWxhel9svxuNfW6Fgr28DAD1wmwWe/Xd6Z7dMp1Tr3Epp+LRcQJ/Pq3XtNkXCcJsiA25TrK1y26YT4ckbE+P2WkYAEInYP1upxD9XIsnrHDG0cgrhKBKnEI4icQrhKBKnEI4icQrhKBKnEI7ia6U0anzrPRrhU+MpewbBUMZuGwAAhvnW9bWrvI1Ay6cD8WjRbpkkBvm1JyI88yRa59vhd+Zu8NfM807aP3H+vHW8uc3rN/UNbyNQ73ELJhT128632wPxJLeqeuCvt73Ls3sGh/n9T5O6Pq02X0e2fdpoLyxVaGxkcoTGqlX+YMXidgumXuNWW7XKbRaGVk4hHEXiFMJRJE4hHEXiFMJRJE4hHEXiFMJRfK2U3ZK9QBYARH225XstuwXz3Lcv0zmjI3kaa9R4VkoowjMSNkv2rJRQm1d9yg7xYlGtOs+0MHH+mks7yzR2sjdjHf/gpafonCv379OY1+PX2OqX+byQ3Z7hxgwwNsILr/UNt1I2NngGzweeumAdX1nklsj113kxtNknJ2nMxLm9sb3F7ap80G7RZTM8c2avUqYxhlZOIRxF4hTCUSROIRxF4hTCUSROIRxF4hTCUXytlNde5T1FRlfHaOyJ2WPW8USK2x77tTKN5Qs8YyU3OEpjlao9s6NKxgFgbPAIjUXr/DOvbS/R2N25FRrr1J+xjh+b5NfhxbnBsXj3No2FY30aG07araB0MstfL8Dto2qTZ4pMjE/SWLdpXy92N3mRtME8L0SXH+QFz7phbpdkszyD6sGaPWNlY3Odzhk/wq1ChlZOIRxF4hTCUSROIRxF4hTCUSROIRzFd7d2dLRIYxurNRqrT9p3s45N853VgOGH2ytl/l4P1hZobPyI/f1aMb7bOb/Mu28HVnmNmLs3+LxULk1jQxP23cT1Bj8c3vf4LumZs3xHudriO54myO4Jf6+VZb5DPTjCO1HXa3wn9+qr9t3mkOE7shMTvBbQKy/y3etQnK9NJ87w1wyG7M/jufN8Ts2ndQVDK6cQjiJxCuEoEqcQjiJxCuEoEqcQjiJxCuEovlbK9DQ/fJ2J2+vzAEA6bi/hHzR8W75U4h2Ik3FemyWY5bZIJGKP9Zu8o3GzxA9Dh/s+3aYj3DpoN3lbC1anKZziv5t7FX5wf5tfPpJZ3moCffs11qJ1OmW/UaaxqQw/6D3i03376spd63inwe99p8nrJnldbn/FwzwRo13h1kd5035PukNcTsanizZDK6cQjiJxCuEoEqcQjiJxCuEoEqcQjiJxCuEovlbK9q6PXZLlmRYPth5YxxMJbjdsrXMPoBHjFsxjZ8ZpzITs2+hLG2U652jxJL+OPX6N2zneCXl/n2/LL92315157PwEnTNzgnfK3ihv0ljap9XEyvKudbzV5C05xsZ4BszeLrc3bl2/QmPHp+yvGY3wdeTyi4s0ls5maezocZ5F0u/yLKkEsQpLGzzrJxL3sbEIWjmFcBSJUwhHkTiFcBSJUwhHkTiFcBSJUwhH8bVSEOLZFH4zw1H7af96m2cW3LnjY9tEuQUTCfEO29m8PRMgk7N3JgaA0naZx9Z55sx+l9slYz6tFZbX7DZArcGLmg207Fv5ABDo8lhjj7dj8Dz7dxMM8WJc0SjP+Niv+nQj9/nOEil7G4SJozzLZX6RX0elwu/jis/3GYvxBzydtNsiG2vcdlpc4QXb8AX7sFZOIRxF4hTCUSROIRxF4hTCUSROIRxF4hTCUXytlOMnecZHu8mtg0TMblUsL5bpnHiOF31q1fh2+Oo6t2A6xp45UxzO0jkrmz4ZDmmeWeAFuYURyfHbXByw36tEhs95/vJlGosHeRfwZJb3GylM2a2KdotbKc06t0uiPgXPjszyHjzXr71pHV9Y4rbH+AmeHZNv8WwhnyQpLM2v0tj+nv3Z73e5RVTZ49fB0MophKNInEI4isQphKNInEI4isQphKNInEI4iq+VUtqyF30C/It1zd1fsI6Xd3lWRDrPt6ELM9weCHg8I6HeqVjHx48/Sec0G9we2NngPUoCAX4rYwPcJrp77751PLjuYwEYXqiL9akBgFCY9+votOwZFbEEt19qe/zeez0fC6a1w19z3/6MNNu8Z0s3zJ/T4kSBxjpdfo83ScEzABjJ2+2v3RKfMzTIvxeGVk4hHEXiFMJRJE4hHEXiFMJRJE4hHMV3t7Y4ysvVV6v8MHoyad/hW1nih4nPneNtECIhvss7d9u+2wkAU8ftLQ0ebPOWBe0g34EcKPBOyLeu8+vIjPD6N8dP2lsrdGplOqdV5bWY6g17ewcA6LT4TnSkYf+dDid9ujV7vMbUyy9dpbFgkO8aT588Zh3P5VJ0zvwcr8+zu12lsUSY38ezM9M0liSXEonz58OE+OF8hlZOIRxF4hTCUSROIRxF4hTCUSROIRxF4hTCUXytlECQd3IuFvnW9sqS/WBzs85fr13nh5AH4vxQfKTHD2Y/uGPvNPygx+sORRP8vcanuLV04d3vorFChtceWrxutz7iXR+74RSv7bS0xq2g+wv2juMAEB2wf5/7PV4rKhriyQ9jRW4fhXwsjGIxax2vVMt0znCGd1mvVfn96Ef4dWTG+bpVITZXvRymc/Z27XP80MophKNInEI4isQphKNInEI4isQphKNInEI4ivF8MguEEI8OrZxCOIrEKYSjSJxCOIrEKYSjSJxCOIrEKYSj/DcMRJ1bAu63tAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "The label of image 1 is : 6\n",
      "The data of image 2 is below:\n",
      "[[[ 91  93 133]\n",
      "  [ 94  97 127]\n",
      "  [ 75  86 127]\n",
      "  ...\n",
      "  [ 86  89 117]\n",
      "  [ 84  86 113]\n",
      "  [ 80  80 110]]\n",
      "\n",
      " [[ 96 104 130]\n",
      "  [ 98 106 124]\n",
      "  [ 83  99 124]\n",
      "  ...\n",
      "  [102 102 111]\n",
      "  [ 99 101 110]\n",
      "  [ 75  88 106]]\n",
      "\n",
      " [[ 76  92 126]\n",
      "  [ 91 101 126]\n",
      "  [ 89 104 132]\n",
      "  ...\n",
      "  [100 104 114]\n",
      "  [102 106 115]\n",
      "  [ 88  95 116]]\n",
      "\n",
      " ...\n",
      "\n",
      " [[127 113 132]\n",
      "  [139 125 138]\n",
      "  [147 131 142]\n",
      "  ...\n",
      "  [159 127 111]\n",
      "  [133 127 137]\n",
      "  [133 124 139]]\n",
      "\n",
      " [[132 120 135]\n",
      "  [140 129 136]\n",
      "  [142 130 138]\n",
      "  ...\n",
      "  [166 133 115]\n",
      "  [139 130 136]\n",
      "  [141 133 142]]\n",
      "\n",
      " [[118 115 143]\n",
      "  [126 121 143]\n",
      "  [115 111 134]\n",
      "  ...\n",
      "  [148 130 146]\n",
      "  [139 130 156]\n",
      "  [129 121 146]]]\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAAD3CAYAAADmIkO7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYZklEQVR4nO2dW4xk11WG/11V51SdunVVV19mumemZzzj8TU2ASVKMEpAmBAkIuAVQUikSBEvIPEAygtBICEhIaEgkAJI8BAEEhaEBKQQxRBHAQWFBAePHdvxTObqvkx3dVfX5dT11OZh2tIQ7X+LIcG9Pfk/yfJ4r9l1dp1z/t7utfZay1hrIYQIj9xxL0AI4UbiFCJQJE4hAkXiFCJQJE4hAkXiFCJQJM5jwhjzkjHmR497HSJcJM5jwlr7mLX2ueNexxsYY95ljPmCMWbfGLNrjHnGGHPyuNf1/YzEKd6gCeBPAZwFsAGgB+AvjnNB3+9InMeEMeaaMeZpY8xvHe1Sf2mM6RljLhljLhpjPmaMuW2MuWmMed9d8z5sjHn56O9+2xjz0e/43F83xmwZYzaNMR8xxlhjzIUjW9EY8/vGmBvGmB1jzCeNMQkAWGs/Z619xlrbtdamAP4IwFNv5j0R/xOJMww+AOBTuLN7PQ/g87jzbNYB/DaAP7nr794G8NMA6gA+DOAPjDE/CADGmPcD+DUATwO4AOC933Gd3wNwEcAPHNnXAfwmWdN7ALz03X0t8d1gdLb2eDDGXAPwEQA/AuApa+1PHI1/AMBfA1iw1mbGmBqALoCmtbbj+Jy/B/BFa+0njDF/DmDHWvuxI9sFAK8BeBDAFQB9AE9Ya68c2d8N4K+stee+4zOfAPAcgJ+x1n75e/zVxf+SwnEvQAAAdu768xDAnrU2u+u/AaAKoGOM+SkAH8edHTAHoAzg0tHfWQPwtbs+6+Zdf14++rtfN8a8MWYA5O9eyJGgPwfgVyXM40XifAthjCkC+FsAHwTwGWvt9GjnfENtWwBO3TXl9F1/3sMdoT9mrX2dfP4GgGcB/I619lPf4+WLe0S/c761iAEUAewCmB3tou+7y/43AD5sjHnEGFPGXb9PWmvnAP4Md35HXQEAY8y6MeYn3/gzgH8B8MfW2k++Kd9GeJE430JYa3sAfgV3RHgA4OcBfPYu++cA/CGALwK4DOArR6bx0b9/42j8340xXdzZJR86sn0EwAMAPm6M6b/xz//vNxI+5BC6jzHGPALgRQBFa+3suNcj7g3tnPcZxpifM8bExpgm7oRO/kHCfGsicd5/fBR3fie9AiAD8MvHuxzxf0X/WytEoGjnFCJQvHHOX/jg79JtNV+Y0HntgXs8V8jcBgCLRf5z4rBHPhDAIOW2pFx1jseRexwA6gk1AYb/X8Z8PKW2U/kDarvVdc8bdvfpnOWsR2025Q7W+olT1JZfWHGO77Vv0zm34wVqm5fXqG25yN+D3tT9XlmTd44DQOx5LpjzeYXcnNqGGbfN5+7rzTP+q/1swr/zpz/9CeMa184pRKBInEIEisQpRKBInEIEisQpRKBInEIEijeUElW4+zeX47YSkfxC4vQYAwCyMQ+J9LM9ajMxNWGh4Q6ZVBMe9gD3vCPq71DbxYiv8XyVu/qv3H7FOW4KfI31InfZ2xJ/LmceP01thbp7/Bv//A065/qsRW3dFo9JmYQ/tFW4QxhDMg4A8ym/H+W4TG2zOb9X6YjbGnm3LfMc6Nnu3fsJSu2cQgSKxClEoEicQgSKxClEoEicQgSKxClEoHhDKXt97v5dSLiu48jtKi8Ynsmy002pLW/5tRaqNWoziJzjw0N+rVlvi9oejjrU9mCNZ57k+jyEdLZaco63zvCwR1Lj33nS5Vkp1RM89JHPu9fxtjPLdM6pTofavtV5kdqm8TlqKzdWneM7Ex5+uTn0vDuR+x0AgLEnbpZlY2qbk4/M5/hzrhU9MT+Cdk4hAkXiFCJQJE4hAkXiFCJQJE4hAsXrrY2L3JvVanIvWI84z0bpiC/E41WLcvxAcZLweZ3DtnN8uvVtOue05bV78p7aNzt9/t2qEb/NJ066a/ecefRxOicq8+88n/E1zpIGtcWRux5Q2eNh72y5D+0DQO7yJrXVquSUPYC07D4wb22FzhnXuCe0l3lqCOX53rTW5PM6Q/ezzpHaQgBwsnrv+6B2TiECReIUIlAkTiECReIUIlAkTiECReIUIlC8oZTlBj9gHcW8pktu7D40nBl+uUKe2yKPy3tCrgUA6a6zuzoezbbpnLMNHqYYpfxaA9JWAQAmGT+YvXHefcC9XOOtDmbg7RhKFU8/iSY/xJ7LuedFhTN0TnmRt7UYH/wbtaXdLrWtNtztH3rg9wMl3vrh5ZGnVYPh71W1wsMz/Zn73c88e1064yEphnZOIQJF4hQiUCROIQJF4hQiUCROIQJF4hQiULyhFOupibLXH1Jb3rpdzTMyDgALJR7CsFMewmjf5mGR2tSdlXKCRwAQ57nL2+cOn3rK92887K6LAwCrD204xyd93lEaEQ8PzKY8bGNHnjYUU/f6o5i/IskJHmaJm/wm3/jPq9RWtO5nnSwX6RzjadVQSng2S87TLRuW3ysTu8MsOcP1MlUoRYj7B4lTiECROIUIFIlTiECROIUIFIlTiEDxhlJQ4O7rEnjooDx3t3GYeDJZpjMemrm9eYvaRru8WNejdbc7PCnxjIPDMV9He59ngzTWebjkXR/6RWoze+72D7ee/xqds/jwWWrL53mYpXvjVWpbWD3hHB8NeBjLeAp1VU+7Pw8A0q9fpraDG+4QUjHfoHPyrVPUVvOEUmyO702VPP/e8cjd8mLsyZAqxe52Fz60cwoRKBKnEIEicQoRKBKnEIEicQoRKBKnEIHiDaUslMvUNpnyrtf5qVvz8xE/mT8ccttkzPuQPLTIC1q9veW21Q0P6bzW4Z2hp55eGGvneJGp/3rpJrV9/tlvOMefrPGsiHdveLoug68x9WTOVAru6/U3edZPN+VZHWvv+WFqa77IP3Prm+5wTzTi78Di9JDa5mV3LxoA2DU8vLHX4yG1RtH9fmcF/i7O5v6opQvtnEIEisQpRKBInEIEisQpRKBInEIEit+FZLnnL8576q9kbq9gOuUe2Szlh8qTjHsn85Z/Zjxxr2PsqQ/jq/VSSvjtmh7sUds/fuZZanuud945fmqFe/4GmzvU1nzgEWpLzrnrFQFAuv2Cc/yFywM655lXXqa2D6FJbQXSvRoADofuZ10acC96M+P1lmZj3lIkzfPD+W3uHMactAdJEp4okvY99ZsI2jmFCBSJU4hAkTiFCBSJU4hAkTiFCBSJU4hA8YZSmnVef2VxgXca7vTcYZEbhwd0zmTKQyntvU2+jgo/gJ/m3aGUWo23Clhf5welb9ziB7annpYRP3ThJLX1r7rbJ5z0rLG+4Q6/AEDx/JPUVqktUZt9xX3Qu3+Z12i65Al/femz/0ptTyzxxIP6Yss5Ph3zUETW4wffo4SHYEyRt09IEn7/pzP3e5XleHhxnuPvKUM7pxCBInEKESgSpxCBInEKESgSpxCBInEKESjeUMrKEncnz+c8dDCcuLNZTtYadM5+kZ/of23I3dAzPg3lxN0tezzh9WHGntpImcedP5zw8MAHfuyd1HZm2R2eqVf4o4lXzlFbIeHhEhzw0Icpu8NmJ5r8Br+/wTNxLrZ4y4uk4KmBRFplxJ73o+RpQbGzv0ttnUXemXupyt/93sgdgjlMeUZTzhNmoXPueYYQ4k1B4hQiUCROIQJF4hQiUCROIQJF4hQiULyhlK12h9rKZe6+Xmq6iypF4OGGW5e4mz/vOdG/7U7qAADszt3u98H2Pp1TrPBuzestXixqeZVn6eSqvOx/c8n9CEzKMy1efo1n6Vz9Ku8CXpnwe/zYujuEsdbia/+ln30btfW7vOjW3tXr1La44L7HacrDWLOUZ55kxQa1jeEOtQHAzPJ9K59zr8Vb826uAl9C3DdInEIEisQpRKBInEIEisQpRKBInEIEijeUMp/yAkjNKi/+VSUn8AdjnqkQ13kII5fjHZkHGf/58uquO87y+ArP3HjwPC+e1d3lBb5aCzxrYueFV6itPyDhjYxnzvzdV69Q26tdnk3R4FERDB90P7OnnuT9RKJ8l9o6PW7L84gaGg13H5WtnQ6d0xt4rnXhNLUVEk/PFtJnBwCWim7ZdD3ZU8UC/zyGdk4hAkXiFCJQJE4hAkXiFCJQJE4hAkXiFCJQvKGUxgJ3Nbc7vB15So7nF0jxJgBYPfsAtV1/5RK12X6H2po1d4bDwxfX6JykyH9eRUu8lfqep3jWQZuHPpokm2We43GP5ZOnqO1FTzbIgBSmAoDRyO3qt5mn4NmI2w73OtQ2GfACX/22O2OoXOLPpdfmGVIJeNpSzrM3FWJ+r1jfk5zhmSfWk+XC0M4pRKBInEIEisQpRKBInEIEisQpRKB4vbU3dtrUNp1xj9vKovtQvM34nLhQprZatUFtnUPeEmBKDli/vsu/13w0oraFMq8htNPh81Zb3Ou9mpA6Rz1+UPqxDe6tneR4LSPj6URdmW45x/de36Fzys0GtY1ynnYM/Gw+pqn7wH8y56/qdJGv46DIPfNRju9NZV5eCO2e2yubFPl3HrGX0YN2TiECReIUIlAkTiECReIUIlAkTiECReIUIlC8oZT+gHfqTar8YHAtYgffed2hm9d5iX5fjZiZ5evYTt3u6/Mzfqi8ZvjnDTxlYAaZx1Ve4qGUatUd+jhs83pF+TlvJ/GOB9aprX2Nh5Bm2wfO8bjEExL4sXfgm1v8mb33oRVqy43crRX2dvjnxcu8TtBg+SFqiwq8f8Joxr8da2LeqvNwYDThYUSGdk4hAkXiFCJQJE4hAkXiFCJQJE4hAkXiFCJQvKGUaoWHPhqLfGpCMi26Q15jZa/H2w+UEu6irlieKbLbddc5+tJLvGv002+/QG2tNd7G4bDH6wR12zwbBA+7MxmWLvK2EJWL76K26spZatv6Ok8Huf2C+9nUWot0zmDMn2c64yGpy9s8LHIuccer4jp/zlmeX8t6wl/5hKeeDEh2DAAUyfXyMW/JwS0c7ZxCBIrEKUSgSJxCBIrEKUSgSJxCBIrEKUSgeEMpxRI3V2N+oj8zbs3vtN2ZDwBQX+TZFLWT7uJTAJBe4QWohjO3q3805xkC+Sp3eq+d52sc7GzydWzzImSvXHrNOb7+OM+maJR4CIDcegBA2dNeo7rsbjUxM/w539q6RW0PrvPQx6ttHvowJGy2lrizVQBgFPP3NMt5wiyee1XyhFnqpJDX7T7P4pp7QksM7ZxCBIrEKUSgSJxCBIrEKUSgSJxCBIrEKUSgeEMpdU9337TLOwZvpu5CUp0Bz2JoGp4+ME15t+aFEp9XIr1NhhkPKfiyB4rgYYUn3vEktbVv8JDDYM9drGva42Gnwfa3qK1/+UVqO7j6ErUNB+4Mns513sF8bnlH6ccff4zaDm/wvjLPT9wFzw6aPKOmudSiNluoU1t3wNeRFLk0otgdSslmXBOTiSc9hqCdU4hAkTiFCBSJU4hAkTiFCBSJU4hA8Xprszn3Th5M+CFfRG4v3ukab4Nw/Uv/RG2NAfd2turci9equL2yr+3xGkIH+7y+TWHGvZOnzvAOyhunT/DrbbsP7vc89XlKVe6BjBu8u3Ih4595cN19AH9g+XNurfNEgLVHLlJbmnS47bb74Hu6zNtClDxRhdKIr39G2oYAQNHwZ52O3PWF4ojLKc7xazG0cwoRKBKnEIEicQoRKBKnEIEicQoRKBKnEIHiDaV0x7y7b63Cj4jXyIHom19+ls6Ju9+mtmKJu7WNp96+se4WxIs13t5hPOfhhkKR15WJPHVs5hkv7X/itLvLc63DWzj0tnnrh4Hl6xiP+TrKdXcIprnMQ0SVUzxE5IkqwOQ97TVWNpzjQ89znnoO4CcVHlrqtHktqdNVXgOpD/cB95HnbPt8eu/7oHZOIQJF4hQiUCROIQJF4hQiUCROIQJF4hQiULyhlDjjNVFaRR5KufofzzvHd1/+Cp3zwJq7HQAAlPJ8mQW4wyUAMEzd4Yiyx89vDHe9Dw54W4jDiN+rcsKzccZTd42efIH/3Fxc4J/X87S8yE861GZL7uvVWst0TrnqrvcDAJ4EHszmPFNkSjI+cgX+nfMJv1cZCacBQFTgocK9CX+eBTLPeDJ4hlO1YxDivkHiFCJQJE4hAkXiFCJQJE4hAkXiFCJQvKGU9pVL1Dbe5gWL2tfcWRPlEg9TWOMpf5/3FGKKPF2eSYLJfsqzM9aWeBZGc/kktUVVjzt/yt3yo0N36GPiKUy1sHaW2oqLPCSVT/j9z5GCVpHn/k77PHNmOOFF1Oqe8Fd17m5PMc7zez8e8bYKacrvY+zper3b5utPyLxyiYd7ZkPe1oKhnVOIQJE4hQgUiVOIQJE4hQgUiVOIQJE4hQgUbyhlf2+P2mbci45p5naV+9qr1FJebKm54sl+mPIPzaYkeyDiLu9ylRefKpR5X5ZckVd3Oty+QW2j1B0GiBLefXvs6ZLc3OA9RVDkRasGt646xyfdbTrnYI93HN+6yTN4shLPdJlH7jBFu8sLr41GPFSVTfm9KhpP+MsTyupm7tBe6gn5DQe8Bw9DO6cQgSJxChEoEqcQgSJxChEoEqcQgeL11tbL3KtZ9dRtieMzzvF9Ty2g3e7r/PM6fWprlXgto1zefWh7MuaeuHLE68qMBu5D2QDQvd6mtv4m91yOSI2bqMLXYW9xz1+9y7/bmXf8OLXNim5P9MyTkLC/yw+Hb27zw+jG8mdda7jX36lyL/Q0x73Q8HTzHnm6h+c9ntdSyW2zlj+zWVHtGIS4b5A4hQgUiVOIQJE4hQgUiVOIQJE4hQgUbygl8RwQn894HR6Tc3/s8jp3h49r/HD7ZnuT2kZd7s4vGfeh54mnS3LF0wk555m3u8nXaHv8XnUH7gP//ZQfKp9MeQ2e7EX3AXYAuHmNh4IWl9whqVrEQyIHhzzE1U35GssxD2Ekkx3n+IblCQlt8LDHIQkRAcA44rY44uvPFdzXG4958kaS54kM9Dr3PEMI8aYgcQoRKBKnEIEicQoRKBKnEIEicQoRKN5QSqOxSG1RgbuN2Wl/m/FQRNXT6iC36s5yAYDhgGeD3Lj+knP8VJGvvejJRsgmvHx/vcXv1aGnzhFIjZu4wEMHkx6vmROTMBYA7F1x3w8AmO645+3n+c/v6Zy3r256um+Pxzw8E5P9onBwi87JDblteYE/l73Wo9Q2KK9SWwHu7z0e+bJcvFJzop1TiECROIUIFIlTiECROIUIFIlTiECROIUIFK9/t1ypUNt4xMMR87n7RH8p4e71VpO7vOeGhzBmdoXaJiQqkm27O28DwMEuz7SIcu4u1ABQXeBZNdOMh1J6Q9LugLS0AID6Mu9ePfd0ebaeglbzmft6gy7PqEk8GTyLdV54bWeLP8/FonvezFOoyxR4iC6X8mJiFcNDUteyJ6htXD3nHF+otegc63mHGdo5hQgUiVOIQJE4hQgUiVOIQJE4hQgUiVOIQPGGUkaeDsrVKnfnl2LWrZm73qvNBrXNPIWTMk/I4dzp887xcZNnHNxKeaGu3e0BtVV6fB2NIg8hpak7zDLmCR9YXeH3PtvnWTrdQ96OvJ+6n/XJFl97XOKvTxTz7J5T60vUVpy77/GI3CcAKJc8xbPyPKRTXnD30gEAA14o7ZsDd4ixUFuncyaed5ihnVOIQJE4hQgUiVOIQJE4hQgUiVOIQJE4hQgUbyhl7ingNPf0p0iq7gyNyZhnOHQOeZgi7znRXy5yN3q14naVLzSW6ZzhkNvGc09bcU9IZ2S4G3246g6L7Ny6TOfYNs/QWLKe7AfSOwbg/W2qDd7SPVfkoYix5SGM2hIPpezduOYcT4ee4moFbqvW+frznhDXepOHq/b77vu/OefhHpPjemFo5xQiUCROIQJF4hQiUCROIQJF4hQiULze2qjIPUymwL2TU+v2auY8pf2zGfd05WJ+YN7jNKY1i3LGs/Yp9/xFEff8ZaRuEgBMLO+gXF+/4ByvPvJOOqd75RK1RQVPa4IG9052B27PfLLq6Qwdc49s7Dm5P146RW2W1DLKJ7zT98BzAP/k6dPUZuaeOlgRf7GKsft6cca/c86TCEDn3PMMIcSbgsQpRKBInEIEisQpRKBInEIEisQpRKB4QyndKXe9e5o8Y5C6D7j7ar0Mh/xQfCnmLupSzA+jR+RAdN7wn0mjET/MHceen2WGu8r7qafFQ9vd4mFpmbeZsItPUtvl/hq1zc0WtZmS+z4eDvn32vYcwF/xHEafgx8qn43d1xvmeN2n2+0OtbUNf4eXKvx97A/5s+4vbBAL70be7/PWDwztnEIEisQpRKBInEIEisQpRKBInEIEisQpRKAYaz11/4UQx4Z2TiECReIUIlAkTiECReIUIlAkTiECReIUIlD+G3JDoBlkE8HyAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "The label of image 2 is : 5\n"
     ]
    }
   ],
   "source": [
    "from matplotlib import pyplot as plt\n",
    "\n",
    "count = 0\n",
    "for data in cifar10_dataset.create_dict_iterator():\n",
    "# In CIFAR-10 dataset, each dictionary of data has keys \"image\" and \"label\".\n",
    "    image = data[\"image\"]\n",
    "    print(f\"The data of image {count+1} is below:\")\n",
    "    print(image)\n",
    "    plt.figure(count)\n",
    "    plt.imshow(image)\n",
    "    plt.title(f\"image{count+1}\")\n",
    "    plt.axis('off')\n",
    "    plt.show()\n",
    "    print(f\"\\nThe label of image {count+1} is :\", data[\"label\"])\n",
    "    count += 1\n",
    "    if count == 2:\n",
    "        break\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 加载特定数据格式的数据集\n",
    "\n",
    "\n",
    "### MindSpore数据格式\n",
    "\n",
    "MindSpore天然支持读取MindSpore数据格式——`MindRecord`存储的数据集,在性能和特性上有更好的支持。  \n",
    "\n",
    "> 阅读[将数据集转换为MindSpore数据格式](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/converting_datasets.html),了解如何将数据集转换为MindSpore数据格式。\n",
    "\n",
    "可以通过`MindDataset`对象对数据集进行读取。详细方法如下所示:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "1. 将CIFAR-10数据集转换为`MindRecord`数据格式。此处使用的数据集为CIFAR-10 Python文件格式数据集(`cifar-10-batches-py`)。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "MSRStatus.SUCCESS"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from mindspore.mindrecord import Cifar10ToMR\n",
    "\n",
    "\n",
    "CIFAR10_DIR = \"./datasets/cifar-10/cifar-10-batches-py\"\n",
    "MINDRECORD_FILE = \"./datasets/mindrecord/cifar10.mindrecord\"\n",
    "cifar10_transformer = Cifar10ToMR(CIFAR10_DIR, MINDRECORD_FILE)\n",
    "cifar10_transformer.transform(['label'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "2. 使用`MindDataset`类创建数据集`data_set`,用于读取数据。其中`dataset_file`为指定MindRecord的文件或文件列表。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "\n",
    "data_set = ds.MindDataset(dataset_file=\"./datasets/mindrecord/cifar10.mindrecord\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "3. 创建字典迭代器,通过迭代器读取数据记录。此处读取前5个数据的标签数据。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2\n",
      "6\n",
      "0\n",
      "6\n",
      "9\n"
     ]
    }
   ],
   "source": [
    "num_iter = 0\n",
    "for data in data_set.create_dict_iterator():\n",
    "    print(data[\"label\"])\n",
    "    num_iter += 1\n",
    "    if num_iter == 5:\n",
    "        break"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 加载自定义数据集\n",
    "\n",
    "现实场景中,数据集的种类多种多样,对于自定义数据集或者目前不支持直接加载的数据集,有两种方法可以处理。\n",
    "一种方法是将数据集转成MindRecord格式(请参考[将数据集转换为MindSpore数据格式](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/converting_datasets.html)章节),另一种方法是通过`GeneratorDataset`对象加载,以下将展示如何使用`GeneratorDataset`。\n",
    "\n",
    "1. 定义一个可迭代的对象,用于生成数据集。以下展示了两种示例,一种是含有`yield`返回值的自定义函数,另一种是含有`__getitem__`的自定义类。两种示例都将产生一个含有从0到9数字的数据集。\n",
    "   \n",
    "> 自定义的可迭代对象,每次返回`numpy array`的元组,作为一行数据。 "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "&nbsp;&nbsp;&nbsp;&nbsp;以下一段代码创建含有`yield`返回值的自定义函数`generator_func`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np  # Import numpy lib.\n",
    "\n",
    "\n",
    "def generator_func(num):\n",
    "   for i in range(num):\n",
    "       yield (np.array([i]),)  # Notice, tuple of only one element needs following a comma at the end.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "&nbsp;&nbsp;&nbsp;&nbsp;创建含有`__getitem__`的自定义类:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np  # Import numpy lib.\n",
    "\n",
    "\n",
    "class Generator():\n",
    "\n",
    "   def __init__(self, num):\n",
    "       self.num = num\n",
    "\n",
    "   def __getitem__(self, item):\n",
    "       return (np.array([item]),)  # Notice, tuple of only one element needs following a comma at the end.\n",
    "\n",
    "   def __len__(self):\n",
    "       return self.num\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "2. 使用`GeneratorDataset`创建数据集,并通过给数据创建迭代器的方式,获取相应的数据。\n",
    "\n",
    "    - 将`generator_func`传入`GeneratorDataset`创建数据集`dataset1`,并设定`column`名为“data” 。\n",
    "    - 将定义的`Generator`对象传入`GeneratorDataset`创建数据集`dataset2`,并设定`column`名为“data” 。\n",
    "   "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "&nbsp;&nbsp;&nbsp;&nbsp;以下一段代码分别对`dataset1`和`dataset2`创建返回值为序列类型的迭代器,并打印输出数据。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "dataset1:\n",
      "[array([0], dtype=int32)]\n",
      "[array([1], dtype=int32)]\n",
      "[array([2], dtype=int32)]\n",
      "[array([3], dtype=int32)]\n",
      "[array([4], dtype=int32)]\n",
      "[array([5], dtype=int32)]\n",
      "[array([6], dtype=int32)]\n",
      "[array([7], dtype=int32)]\n",
      "[array([8], dtype=int32)]\n",
      "[array([9], dtype=int32)]\n",
      "dataset2:\n",
      "[array([0], dtype=int64)]\n",
      "[array([1], dtype=int64)]\n",
      "[array([2], dtype=int64)]\n",
      "[array([3], dtype=int64)]\n",
      "[array([4], dtype=int64)]\n",
      "[array([5], dtype=int64)]\n",
      "[array([6], dtype=int64)]\n",
      "[array([7], dtype=int64)]\n",
      "[array([8], dtype=int64)]\n",
      "[array([9], dtype=int64)]\n"
     ]
    }
   ],
   "source": [
    "dataset1 = ds.GeneratorDataset(source=generator_func(10), column_names=[\"data\"], shuffle=False)\n",
    "dataset2 = ds.GeneratorDataset(source=Generator(10), column_names=[\"data\"], shuffle=False)\n",
    "\n",
    "print(\"dataset1:\") \n",
    "for data in dataset1.create_tuple_iterator():  # each data is a sequence\n",
    "    print(data)\n",
    "\n",
    "print(\"dataset2:\")\n",
    "for data in dataset2.create_tuple_iterator():  # each data is a sequence\n",
    "    print(data)\n",
    "      "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "&nbsp;&nbsp;&nbsp;&nbsp;以下一段代码分别对`dataset1`和`dataset2`创建迭代器,并打印输出数据果。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "dataset1:\n",
      "[0]\n",
      "[1]\n",
      "[2]\n",
      "[3]\n",
      "[4]\n",
      "[5]\n",
      "[6]\n",
      "[7]\n",
      "[8]\n",
      "[9]\n",
      "dataset2:\n",
      "[0]\n",
      "[1]\n",
      "[2]\n",
      "[3]\n",
      "[4]\n",
      "[5]\n",
      "[6]\n",
      "[7]\n",
      "[8]\n",
      "[9]\n"
     ]
    }
   ],
   "source": [
    "dataset1 = ds.GeneratorDataset(source=generator_func(10), column_names=[\"data\"], shuffle=False)\n",
    "dataset2 = ds.GeneratorDataset(source=Generator(10), column_names=[\"data\"], shuffle=False)\n",
    "\n",
    "\n",
    "print(\"dataset1:\")\n",
    "for data in dataset1.create_dict_iterator():  # each data is a dictionary\n",
    "    print(data[\"data\"])\n",
    "\n",
    "print(\"dataset2:\")\n",
    "for data in dataset2.create_dict_iterator():  # each data is a dictionary\n",
    "    print(data[\"data\"])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 总结\n",
    "\n",
    "以上便完成了MindSpore加载数据集的体验,我们通过本次体验全面了解了MindSpore加载数据集的几种方式和支持的数据集类型、如何创建自定义数据集,以及输出展示加载后的数据集结果。"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}