computer_vision_application.ipynb 82.2 KB
Notebook
Newer Older
Z
zhangchengmin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#                                计算机视觉的应用"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 概述\n",
    "\n",
    "计算机视觉是当前深度学习研究最广泛、落地最成熟的技术领域,在手机拍照、智能安防、自动驾驶等场景有广泛应用。从2012年AlexNet在ImageNet比赛夺冠以来,深度学习深刻推动了计算机视觉领域的发展,当前最先进的计算机视觉算法几乎都是深度学习相关的。深度神经网络可以逐层提取图像特征,并保持局部不变性,被广泛应用于分类、检测、分割、跟踪、检索、识别、提升、重建等视觉任务中。\n",
    "本次体验结合图像分类任务,介绍MindSpore如何应用于计算机视觉场景,如何训练模型,得出一个性能较优的模型。\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 图像分类\n",
    "\n",
    "图像分类是最基础的计算机视觉应用,属于有监督学习类别。给定一张数字图像,判断图像所属的类别,如猫、狗、飞机、汽车等等。用函数来表示这个过程如下:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "```python\n",
    "def classify(image):\n",
    "   label = model(image)\n",
    "   return label\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "定义的分类函数,以图片数据`image`为输入,通过`model`方法对`image`进行分类,最后返回分类结果。选择合适的`model`是关键。这里的`model`一般指的是深度卷积神经网络,如AlexNet、VGG、GoogLeNet、ResNet等等。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "下面按照MindSpore的训练数据模型的正常步骤进行,当使用到MindSpore或者图像分类操作时,会增加相应的说明,本次体验的整体流程如下:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "1. 数据集的准备,这里使用的是CIFAR-10数据集。\n",
    "\n",
    "2. 构建一个卷积神经网络,这里使用ResNet-50网络。\n",
    "\n",
    "3. 定义损失函数和优化器。\n",
    "\n",
    "4. 调用Model高阶API进行训练和保存模型文件。\n",
    "\n",
    "5. 加载保存的模型进行验证。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "本次面向Ascend 910 AI处理器硬件平台,将卷积神经网络ResNet加入到案例中,你可以在这里下载完整的样例代码案例作为基础用例:\n",
昇思MindSpore's avatar
昇思MindSpore 已提交
74
    "https://gitee.com/mindspore/docs/blob/r0.6/tutorials/tutorial_code/resnet"
Z
zhangchengmin 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 训练数据集下载\n",
    "\n",
    "### 数据集准备"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 方法一:\n",
    "\n",
    "数据集可以从CIFAR-10数据集的官网进行下载:https://www.cs.toronto.edu/~kriz/cifar.html\n",
    "将数据集的解压缩文件夹`cifar-10-binary`放在Jupyter工作目录下。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 方法二:\n",
    "\n",
    "linux环境下用如下的命令 `wget https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz`。\n",
    "接下来需要解压数据集,解压命令如下:`tar -zvxf cifar-10-binary.tar.gz`。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 数据处理\n",
    "\n",
    "数据集处理对于训练非常重要,好的数据集可以有效提高训练精度和效率。在加载数据集前,我们通常会对数据集进行一些处理。这里我们用到了数据增强,数据混洗和批处理。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "导入`argparse`模块,将9个参数传入`args_opt`变量包括:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "- `run_distribute`:控制是否进行初始化。\n",
    "- `device_num`:设置使用device的个数。\n",
    "- `do_train`:设置是否进行训练。\n",
    "- `do_eval`:设置是否计算最后的误差结果。\n",
    "- `epoch_size`:设置迭代次数。\n",
    "- `batch_size`:设置批次大小。\n",
    "- `num_classes`:设置分成多少个类。\n",
    "- `checkpoint_path`:设置CheckPoint文件路径。\n",
    "- `dataset_path`:数据集的路径。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import random\n",
    "import argparse\n",
    "from mindspore import Tensor\n",
    "from mindspore.ops import operations as P\n",
    "\n",
    "# Set Training Parameters \n",
    "random.seed(1)\n",
    "parser = argparse.ArgumentParser(description='Image classification')\n",
    "parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute.')\n",
    "# Set device number\n",
    "parser.add_argument('--device_num', type=int, default=1, help='Device num.')\n",
    "# Set whether do train\n",
    "parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')\n",
    "# Set whether do eval\n",
    "parser.add_argument('--do_eval', type=bool, default=True, help='Do eval or not.')\n",
    "# Set epoch size which is used to adjust model performance.\n",
    "parser.add_argument('--epoch_size', type=int, default=10, help='Epoch size.')\n",
    "parser.add_argument('--batch_size' type=int, default=32, help='Batch size.')\n",
    "# Set class number\n",
    "parser.add_argument('--num_classes', type=int, default=10, help='Num classes.')\n",
    "parser.add_argument('--checkpoint_path', type=str, default=None, help='CheckPoint file path.')\n",
    "parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path.')\n",
    "args_opt = parser.parse_known_args()[0]\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "设置设备ID和数据集的路径,并设置处理器为Ascend。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from mindspore import context\n",
    "\n",
    "# Set the device for run code\n",
    "device_id = 0\n",
    "# Set the data set path\n",
    "data_home = './cifar-10-batches-bin'\n",
    "context.set_context(mode=context.GRAPH_MODE, device_target=\"Ascend\")\n",
    "context.set_context(device_id=device_id)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "数据增强主要是对数据进行归一化和丰富数据样本数量。常见的数据增强方式包括裁剪、翻转、色彩变化等等。MindSpore通过调用`map`方法在图片上执行增强操作。数据混洗和批处理主要是通过数据混洗`shuffle`随机打乱数据的顺序,并按`batch`读取数据,进行模型训练。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "构建`create_dataset`函数,来创建数据集。通过设置` resize_height`、`resize_width`、`rescale`、`shift`参数,定义`map`以及在图片上运用`map`实现数据增强。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import mindspore.nn as nn\n",
    "import mindspore.common.dtype as mstype\n",
    "import mindspore.ops.functional as F\n",
    "import mindspore.dataset as ds\n",
    "import mindspore.dataset.transforms.vision.c_transforms as C\n",
    "import mindspore.dataset.transforms.c_transforms as C2\n",
    "\n",
    "\n",
    "def create_dataset(repeat_num=1, training=True):\n",
    "    \"\"\"\n",
    "    create data for next use such as training or infering\n",
    "    \"\"\"\n",
    "    cifar_ds = ds.Cifar10Dataset(data_home)\n",
    "\n",
    "    if args_opt.run_distribute:\n",
    "        rank_id = int(os.getenv('RANK_ID'))\n",
    "        rank_size = int(os.getenv('RANK_SIZE'))\n",
    "        cifar_ds = ds.Cifar10Dataset(data_home, num_shards=rank_size, shard_id=rank_id)\n",
    "\n",
    "    # Data enhancement \n",
    "    resize_height = 224\n",
    "    resize_width = 224\n",
    "    rescale = 1.0 / 255.0\n",
    "    shift = 0.0\n",
    " \n",
    "    # Define map operations\n",
    "    # Padding_mode default CONSTANT\n",
    "    random_crop_op = C.RandomCrop((32, 32), (4, 4, 4, 4)) \n",
    "    random_horizontal_op = C.RandomHorizontalFlip()\n",
    "    # Interpolation default BILINEAR\n",
    "    resize_op = C.Resize((resize_height, resize_width))\n",
    "    rescale_op = C.Rescale(rescale, shift)\n",
    "    normalize_op = C.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))\n",
    "    changeswap_op = C.HWC2CHW()\n",
    "    type_cast_op = C2.TypeCast(mstype.int32)\n",
    "\n",
    "    c_trans = []\n",
    "    if training:\n",
    "        c_trans = [random_crop_op, random_horizontal_op]\n",
    "    c_trans += [resize_op, rescale_op, normalize_op,\n",
    "                changeswap_op]\n",
    "\n",
    "    # Apply map operations on images\n",
    "    cifar_ds = cifar_ds.map(input_columns=\"label\", operations=type_cast_op)\n",
    "    cifar_ds = cifar_ds.map(input_columns=\"image\", operations=c_trans)\n",
    "\n",
    "    # Apply shuffle operations\n",
    "    cifar_ds = cifar_ds.shuffle(buffer_size=10)\n",
    "\n",
    "    # Apply batch operations\n",
    "    cifar_ds = cifar_ds.batch(batch_size=args_opt.batch_size, drop_remainder=True)\n",
    "\n",
    "    # Apply repeat operations\n",
    "    cifar_ds = cifar_ds.repeat(repeat_num)\n",
    "\n",
    "    return cifar_ds"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "数据集生成后,我们可以通过`imshow`方法对数据集`cifar_ds`进行可视化。这里可以得到CIFAR-10数据集中的一张图片。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x7f8299206e90>"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQEAAAD8CAYAAAB3lxGOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9S4wc2Zrf9zuviMzIysxiPVis4qPYJPveZt/bd+5IA81CXtgYyLAFw2NtBpqFNJYFXy08gA1o4bEWtgFtBEOyYMCAgBEseATYkgXYggbCwJYwsGF4YWNGAwG2JMvTzb6374P9IJv1YEZmxomI48U5JzMyKqtYfDXJrPoTwciMiIyMiozv/z3Pd4Rzjktc4hIXF/JNX8AlLnGJN4tLErjEJS44LkngEpe44LgkgUtc4oLjkgQucYkLjksSuMQlLjheGwkIIf4NIcS/FEJ8LIT4jdf1PZe4xCVeDuJ11AkIIRTw/wF/AvgJ8HvArzrn/vkr/7JLXOISL4XXZQn8MeBj59wD51wB/F3gl1/Td13iEpd4CejXdN7rwI8b738C/OJpBwshXlvZYsKc6Vxj3f7C0y7AneMYAPGMz55n+1l4c3Wd7b9MtF6esX/h9Xn/gmV38kU/JubbXfjPzd6Ac2G3wy19KlYOj5xz2+2Nr4sEngkhxA+AH7zu77kBZEANlPifuQTskmPP2hY/twyCkzeyCt/ZRryG50Xz2qoX+PyLo/2XmYVV4wWLd6J9V866gxGKFzJOzVn7wk7noPTfr2oHVYmoHboqqamxTHEUz//d7xZ+tGzj63IHfgrcbLy/EbbN4Jz7TefcLzjnfuE1XcNSnPYYLiOAl8Fp+kzjn9kX1HdvD555w5pCfx4CAE9vr1IbiyXXed5ruTh4XSTwe8D7Qoj3hBAJ8KeB335N33UuiLBEpdFWHmcpk/j5ZWbTadslr+/mqtd03pM4464s3dW8E22rwHD2lSteiB5PvUQBRs/3CwFaoxaua+XN/3PhtbgDzrlSCPHrwP+C/3X/lnPun72O73oWouZ1+Mcr/uyWxedn2XvCttOU3mkEEBEf+WVuwbuB9l151q6SRQGL7x3+LiwT8DNcAA0IfcrnlsCcfr0qugPOQWWhLnFVjaWipsZ9w07W24TXFhNwzv0O8Duv6/znhQa6+MexSQLnJYT4uvlIV5z/xqmwtGMEmhePD7x+RKE746887w1weC2MxN8BFdYtW0kBchkhnEICp3DT6bZGuNuuhNpBVeOw1LNf5pIEVhYpPkMQtXYkg9M0fJsA4mcinqX9T8MyMngZIojnej1QPFP7lpztQzm81q0tKAEiCvcy4ReN7aK5A6kDhwBNQvBfbVvXkDC/myWUzp+m9J91zlJWDrCBACwXWfgjVp4EoqfZJABYTBdGnEYA7fVpiI/wWY9V20U4LxGIcxzzbJzX334eW6eJkGZzYvFGVQ6044SelrS0vxdyL/gaESI5syvRGiHmv+DCFZr4/WVgdw063FnjcLWltBbtLLYqqSm5JACPlSeBtjsQ0XYFmqSwTPCb6/ajI1h8vKPh244FxO9QLNYqxB/hrIC7XrL/+ayBprZ9BTjtyXEllEvspRiUiZCAahKAQiqBkAKBQiG9gaA0WohZSYJGI7QAscz/D9uM1/ZYjcP67GDVvIcXoibg3Fh5Emi6AzDPEtSN1+GRmbkIcX0aAZxHny4Tt6Yr0LZITttGa3973/mI4BUTACw3Fly8GHFyewwHzBAJwLsKUiqkxIu/kCjl1wiFRiIUCOmj+4L5d89dBRd+J4ezgfK1w1XBc1FgBcwrRi6tgIiVJ4FmXj7qp6gRmkInGutIEJEIKhYtgBfNMjctgCgPTVfgWRbBMmuged7lWYjXQADxYtrCLvD+fyVb7CZASh8jAB8fEEBdg5QIHNQ1opY4BeCoyxKhNELUXrxrkFrMdXhVA25WC+TFHxQlZe1w1KE4yMcGRCgRq53l0gpYxIUggZTlwh+xTPgj2kLXtmpPw/No8+c55rR90SWZk0G8ytdZsbDk8REOVAWVbvhYDsrWnbQQD/CC7ahxzJ2pZpBwjhO5g4Z14V96iq5mVF2G7yipquodTte+Pqw0CSh8PCADCk4X3mcJf/P1soTVMqFsxwSa8QBYdAvanz9N48d9zTq8NjwZnK39T7cangU5/5Jn7Z9F5eM3tq86+g7Rvqob206nyfZ1F5dW/UtjpUlAA52wRHdgmVjYxvbzEEE7wFi13sOiCLYf7bZbsEwgZeOYNuKP1nQl5scL5JnaX+CiX9347vMZyKpxAcvO34r+zxgunj0KfZMALnXzm8ZKk0ACpAISNyeAKIBtNB/FNim0CaKtfOJNPE37n6axmwLcvoYoTmeJSRT8eLxDUCNRSwV0ToM1c986Hvn8CrUh8EKe/COjNVA5cFHgLfPCnEvhf1uw0iSggY6GtAbZsIGX5eWbwg6LAt183Q4oNh/lpqURPxMFLXq6UdiWBQnj55o4q/S4/Vkvd9GXbtvscx972TU+Xx1Ci2S0Wu6/zNyCqPkvCeBtxEqTgAFSBZmCaXRLfSD6mYikIDlJEM3sQFMbR1JoaljXWGRjP5wUvNME/jSSWDS+oxtwvmxA+xqXfe9SUpDenhIL7znJoAvniXfmkgDeRqw8CXQ0dESwSAXUQRVHIhCNJT6icWlva/vRsBgTmFnALBd6wrZl1gCNbe3vOGt7c7+cSeKzswHNa6T1unnMSYiQngOUnL+vG0fH/bO/PqTqLgngrcRKk4AGUg2JgroAJ32QEMCcUt/bJAHCIar1volmwVFEO6jXdB+WEcPzoK1wm7r/edC+7njNbfemCQczYZ9df8jXU0d/v3mWS6F/F7DSJGCATHtrAJg5vwsBvGdExOJxTQ3eRiSJKPhNATuthDhi2XmbFsWy72oed44Y/VLSka198b0IZ6iWnLtauKKqof2b9tIl3jWsPAmkCjqxqsxBLeaBwQUhq5g9+O2ledxpGrcZZY9C1bYGmlq3WvK5Zd9xFke1r0Wdsr353U1CaFsVczKYBxbb11UvpPaaOf5LvKt44VIyIcRNIcT/KoT450KIfyaE+A/D9v9cCPFTIcQ/DcuffHWX+3xQeHegYyA1YGRjMd5NMMbHtqTy41nikN9nLcvQHgfQrtlrvj8xlmbJ+eL2Z/XjUbMhN8t/0GaosD1IuEl2YvZtYuH4+EVigUpWQ/vHUvLzjq9cRbyMJVACf9E59wdCiD7wT4QQ/zjs++vOub/68pf3ckgIKULTiNI7qEPZXSnng4dqFsekVYCsllsFp+XWT/Ozm24BjX1tLbtM6z+Lpef7xez/ZrCvLaLt4KWHQiIQQcxPWCWh4UdVrZ6/r4RXCuDDG69hGo63Hi9MAs65h8DD8PpYCPEv8K3G3xrMsgPJ3PyPceoKP+LUOU8WMyioqnlTLFf5x72dBo/afKnQMM8mNAWunTkQLKYbmwVCbZxOBvOBzFHLLxsY1Q74zccZKFzLCZj/XcEqCON4qxXUl0pBtwO6Blv7MuS6WUBxAfBKYgJCiNvAzwP/F/DHgV8XQvxZ4Pfx1sKTV/E9z4sEXyPQi12nmbcbN4ApwQm/UM5TgpqQUpR+HLqkQQqN85wUGo82ETRHKDaJYJnlAGfHAU7Ci7JYUie4jAAi5oHMRZO+aSFUFLjAiv6oZgbg3YcWsNnvsLm9Rl5MGdmKfFpQFCWFhXrKqhg8Z+Klh5cJIdaA/xH4j5xzR8DfAO4C38dbCn/tlM/9QAjx+0KI33/ZazgNKT47kJkQF0igK6Er/GI0JDqYhHregcjIk0OPDfP9cXvU3M2S5Ih2DKCtpSNevnPw6QnC0zrnxdaabmbj+KUKLbdKLJYJJRNKcko3oXYT5rn+d58EBNDvKG5e3+TW7Vvs3bjOzs4225tD+v0OSUd8k22d3yheyhIQQhg8Afx3zrn/CcA590Vj/98E/uGyzzrnfhP4zXDca3mqNNANJFACdQlO+yrW0kE32PhOgwtdQwx+GLoO25z275sDkJoDeJpWQFuTN9N8cahyc3u0Bl4c0bY4/1m8Rm/WNnr4MF9FFaihOnPkw7uPjoIbGz1uv3eH7b1dHh19TfbkiCdPOjgMRf2EYjKlfnu7wb4yvDAJCN/s7b8B/oVz7r9sbN8N8QKAPwX8Py93iS+OhLklUFZzAujiCcHq4JOXUAZhN/jtLjjrpWgQAovuQLNvYTvw1yaCZkwgbn81U2CchwDmJr9r/E8QetfYfiJ1uoJQwGYnZf/mde6+d5ut69fIHvXoJI8QKGxVM5lOGauSYuXvxstZAn8c+DPA/y2E+Kdh218CflUI8X38c/VD4C+81BW+IAS+OjBTkEroKrDGE4ANBJA4cKF9kCnnwm9CLYEIvSpdtP9bUhsb7jZjBHBywFBb+JvWgVty6mc1NF088rw46f17t2ARq//I+7Txje2UG7dvsH/nNls7eyjTwTlFYWvy6ZTD42OkPKtEbHXwMtmB/4PlauiNzzUA/g9L8L5+1/iIb4kngK4G6/xcFdHcNxqyEvJICISgYUMim8HA2LIsEkAU7qaQN0txz+oF2OaY8xn3y/p9xzOdRDs+0B7KE63eFbd80cBOknB97wa3btzi9nvvsb2zB8pbAHkx5WB0THbQQSXy7FLRFcHKVgwmeK2vNKTdRmag9ATQLaEw3hIwQfCjRWB0aFgLM7t/IU7AojuwTHM3NT8sEkFzfZrgn98aiDidAKA9NuDdL/J5URgJu1dSrl+/zv7+bW7fvsvV3V1sXZNPJhznOQeHR3z16DFaaQTTC0GMK4nYWkwpEMa7BqWbk4ALa2CWM8zDXBZGhAFGAc3JtJpoE0GsJXhWqk+01hHPZw00p/zy3rydDXpWs601JVWwA5rWQKyZWPUHvAkFbCaG3b1ddm/tc/3WPttXb9AdXGX72oRHT47pf/E1HdVBVQo3CaniFcfKkkAK9AHdATIQY6/9rQsJsdLHBGY1A5EAzPx1E6cJS5sAIs6b828K/nk1/7x3folZ2vfbr5cRQLPY9yIRAPi6gN1Bwt7+LW7t73Nj/y7rWzugMq5cucbGxpf0+306aQftHOI8jSdWACtLArFQSHXCmxJUF7rRGjDBImh9ztp5TUATzfftGbhit6FoLbQF/yyXoP0dZ01AcnJf1P5NV8AhqJDIkO6rlg73uWgEIIChUezuXmV3b5/dW/tc2dlDqAwEdLtdNjausJb1SWV6Sou21cTKkkAKZCmoDN9umJAxsFAaTwKF9V2Io9AbMzvUC5ydv26TwDIhanYgOmuMQbyWV4dmlIKZ6HtLYHG4z0UT/ggFbBvD7q1b7N7cZ/f6e1zZ2ibOXpIkPQZr2/SzNdJOinTqwoRNVpYEEqCvQM8k3C/C+GyBNZAbyBpS0bQCMgt52J4JnzWIcmbLUzR2LBhYIvVndQZ6lgXAkv1R7Jtf3fwxm4J/0QkAINWS3Zub7F6/xd7+La7uXPdWQIAQ0Ekz1vpDUt1pdGlafawsCcwsgR7Qa+ywoKwngszMR41Z662AWYzANKa7jzGC4EqcSM4FCVxIsTX6E5xWv78slnAeQoCT8QMfGFwMFl4SgIcEtrRi9/ouuzdvsbt3iytX51aAhyBNU/pZn45JMUjkpSXwbiMBBnoeGJyVyGcgQslwJAEbXtt4aBD6jLk1YADCGIOmBDrhi4wizurTp1rbm4J5XuE/G3O3IBLARcj9nwUBDCXsbmdcu3mLvb1b7OxeR6RrJ45N0pTB2pA100VfIEtgZf9ShZ+EUhoduogwX0K1T5TdOJ9d1PCz6cmX1eMEOPwEl+U5aLQ59+5pWEYA5pTXZyN2SChPtUAuGhIhyXpDst6Q7iBDddKlxymj6WQZWVi0XlkduYCVJYEUSFIQmYLE+GGDCQtEYMy8HsAskbjZpubQQYK+Pbs2ZwFnlea0iaf9+ryIoh+XC5DePhcEYKQkGw7JBgN62ZC1zkkrIB5tjCHLemRZRqLUKw7gvp1YWRJQ+PECKgkv0iDxUXijoOuGIJoGGTTXi64jlfHVg89CLNtpt/2atwFZxDLhfxFCgNPjEBcRvVQwGGRkWY9u1iNNl1sCgCeBfkZ/LWNN6wsxmnilScBoEB0NiQxlgHqBCEzTImh9/oQGaAh9OzLf/sxpPQNPG/i7TNssswyWEcLc+L/EMgjAJCm93pBeb0hnrQ+9zqnHG2PoZxlrWZ++Tl6YhN8lrDQJ6FlMIKj4ZmxABIMgmvqNX9vEeEFL+twpLkBTuJe1BF/W4JPG++Ypn9cteA6v5GJCCJKsR2+4zmA4oNPLOOuOmcSQ9TKyXkav00HLlRWRGVb2L9SA1PiWwolpEEFwC4LwNw2EBYsgvBBxQwwCniJ1Te3fFP42muMG2oSxDMu8kybaVkmsWLx0BTyEgF6WMugNyLI1uqfGAzyMSciyPv3+GoNhn54xqyskASv79xlAJvgWMh3tUwVG+QLyhjBr5Y/VUSJbAh4bcsbPuKblYECok23FTrupy6yFiLY18Cztfqn9zwchBGnHWwLZYEDWyc48XkqJ1nq2dIRY+bjAypJATRgBVlZQWj9m2Fko64XB82UcGtwYxdPuINQsE14Yd+/8dzRz/rXzs3HDyfx8s4LvWbn7ZnS/YYwsrNu4DAaeRCokg+E6/cGAjulQnSXRtePw0WM+/cOP+fgPP+aTzz7j4WTyCuo33m68tEIRQvwQOCaMTnXO/YIQYgP4H4Db+O5Cv/JGOg47fDWQc4EMytAQwM2lmzBzdgNl2Haa8MeW5c0ufFV8EfKBLztif1k1YdwW181OxZcEcBICGChFb32T3nAd3e1yVtKvnBR8+dPPefDxxzz45BN+cnzM9Ju73DeGV2UJ/GvOue87534hvP8N4Hedc+8Dvxvef6NwEGgpWAJ1mFkiSnFTegIZxN0w39YmgiYZnNDoSyQxksF5/PTzZA2aWHUz9WUhgF6nw/r6OoPBBkmny6l3zTkODg745MEDPv74AQ9+/GOeTibf5OW+Mbwud+CXgd8Kr38L+Hde0/ecipmA1tFmL70l0FT7DQKog2tQNnZFtFtvVaJBBPF1ww04L9qHt82yGH7gjHX79SXmEEIwWF/37sBwQGq6hJlUTqCcljx++CUPHnzCJ59+zMPDQ4pv+HrfFF4FCTjgHwkh/okQ4gdh206j4/DnwE77Q9/EvAMzS6CovZQ3Z85uEUDVCLHXzbBBUN/RCqgF1CqQjAAnG/77OUhggUxa+04bZNRexwTFifkCL7EAIQRrwyG99SG9wTqm0/GTTi7B0dEhn37ygAd/+IAHP/6M40m+9LhVxKsIMv8rzrmfCiGuAv9YCPH/Nnc659yyeQW+iXkHvKquvIouy7Bm3lsroEkAhI8QDinDNGSxw2jl5gRwQvM3nfRT0J4VuCn47pRTiNa+2JswTol+GQtYDiUkg/UN1ocbDIZXSJMEpKSuHbJhEVhb8ujLxzz45AGffvKHfHHw5MJYAfAKLAHn3E/D+kvg7wN/DPhCCLELfh4C4MuX/Z7nRY0Xbmedn2kySktrqRvruCychODP11A3Zvp0USLjcoY0nsYLy2IA7enC4ymbLcgsvhnKlPk4gYs8UvA0DNMu65tXubJ1lfWNTTq9HkJp6laAZnT0lB9+8imffvoxn/7kM47y0Ru75jeBlyIBIUQvzEiMEKIH/Ov4yUZ+G/i1cNivAf/gZb7nRWDxk0u6aQnTEqYOJiyMsqmtHzZcV8FgsMEKiGTQ6MpZhWWWFmw36ztDHZ/GD8tSiM0WYPH9JCwj4Ck+FTPCD3OecvEahp4HUgj2dnbZvb7H1u4uG9ubrA3W0ErjSoedVkzHBfnTCY++esynnzzg008e8MWTxxQX7G6+rDuwA/x9PxkRGvjvnXP/sxDi94C/J4T488CPgF95ye95bli87Ne2RkYpai6BAKz1s9HWtSeDuFA1BLchwVUIL0Qpfd5elO3pylun998xPz0w1/qNrOYlnoFUaPZu7HNt9wbb167R6SQ+eFs57KRmMs4Zj3PG+YQfPfiMTx98yg9//GMORhfLCoCXJAHn3APg55Zsfwz80suc+2Vh8S3EqwnoKV6SLF6aJv69LQIJFHMroLKLbbnbM3bUwbOgDgZA/UxD4EwsI4J2a7B42RdLP70ctq5ssnPzBjs3b7C9fRXwJcRSgC0rjo+PeXLwhIPHT0Is4BMePvqSaX3xaHZlq08tMLVQN7V/wQIZlBaKwjccrer5EluDLWj6Zp+uuG4QxHlJ4FmtvtruQPReLgng/BBCsru/z97Nm+zeuMHGxvpsnwNKa3l6/JRHX3zFw5895NNP/pBPP/uUr48O39xFv0GsNAlMSqiiFRAtgCBVtrHU1m+euQINVVxFQlgSMKyDZC6bkPR50AwQNmMBNry/eLrp5TBY32Bvf5/dm/tcvbZHpzMfduVwlHXJ0+NjvvrqK378ox/y4JMHfP7F50yqi5QTmGNlSaACxlUggWgFNNyCaeUtgDpYAXUVrIC6JfR1Q7gbZYKuWhT6s0igafLH3H4zot/OEjQTGJeR/+fHzZv73NzfZ+fGPtvXrp3YX1U1x0/HPPryET/57DM+/eEDHh1+/Qau9O3AypKAwo8glj18x9ASTwCVX5vCDx1Wzs8/qGo/yFDVYCp/YzR+dKGuwpRlDYkUbl6kU7GY3msG/mqWV/c1pyw/C5c1AM+HzWs3eO/997m1f4fdG3tcGXRbRwgcCluVjCcTjp+OODo+YlJeTCsAVpgEEmDQB72TwkY5l2wD1F7wM+s7BZc2zFRc+s9NABPIwEi/tgKUBFUtn5cwzioEc8GPy7KpCJpDii/7Ab4a9Ld3uf/d73Pvww/Zv3OP3b1rmGUFgkqAcDgqalfiLsKEg2dgZUmgCwwHYK4OYAswI1Bj78hbkNa3HbcCrPRLIqEjgqsQmxBVoRVBBYmYt/KK2r9p0rer/2Be1Rd7DTZrBppWQWwTdokXQcq1m3vsf/gdPvy573Pv/n1uvbfPztbgxJFC+JYSCoJbV1HXlySwksiAtQGonQ3YNOAOoTyE+qnvKTDxnBA9hegt2BJSDZPgJhjh1xoQ5WLTkEgE8XV7zsHTXi+LCcTxAJdE8JxQPW7evcO37n+Hb390n/sf3ufbH37ArfdukS0xAwQCoX0zGOccVX1pCawsCXQAMwRxdQM2ur5FcC39sL/Jka8gzP3MxHFukjF+1iETCQCvOQQ+v6yFjxGoIPGiWnQLmrGBmEmMr5uPWRT49kCiSyJ4TugOt97/gO/8/Hf54KOP+OCj73Lv9j3u3b3BdpouH10pQGnhWQBH7Wrq+mKHXleWBLoGTL8Dm1dhay3MQipg7GA6gfF0NhuRwccCuvj5CU0Z+g466JTeQojhBCFAujkBLNMhywjgLHegKfiXRHBeaPbf/zbf+d73uP/9j/juz/883/3oI25dGbCRnJywPSKSuu8V56htSVle7PDrypJAmoHaHEB6DdazMPKmhHEJ4zFkjyHz5X6GQAClJ4/cBotA+GalxoX3hIyBAKfmow1PQ5MAYO4OxFGATf1zSQTPh5337nD3w/t8+Ee/x3f/yM/z83/0j/DBoIeWz55KVAlAO2rl526+6KHZlSQBDXRTUL0O6DWQfcjGsDaG4RhGQxjlMBqB9h2F41yEMUBnw4mcnaf8LNBtzEws8PUCyxAzBOfNALT3X+zH8ix0uPGtu3zro4/46Hvf49633uf2nTvcHK6RiKUOwAlUAEKEpqICreSMmC8iVpIEFLCmwHQ1qC7Qg14GgwxGAxhNPQnkFnThuwYLGBC8BgIJhBelBVfMtXcV3AVrl2vr6ApEvz9aA7E2oA772l3OIpplwpfWgIdkje3dHa7dvsGd+x9w9/597r1/j3v3P+DurT2G5zzPggsnJNIYjFKXJLBqSIA0BdlPQGd4538A/akX/FEOxdBLsR5BMgbhkNoTgbU+SCgskC82GI1rG2cBXzKGoFkhGC0By8lMQZsILnESCR22t3a5dvsOt+7ts3tvn/39fW7du8ut/X32b+2xKyXinFaAt+gclagQWqKkQRmDkirUjF88rCQJKKCXgOmloGLJYAadHgxzyId+6GBuwcX5yHLAYspABOCZAP+mzINhUDamLLcs5gsbOC0zcBri1ORNzX/RrYDt9Do3b91i7+5dbt2/x617Xvj3ru+xe2uP7V7KUAiEEOfus+icw9V+DAECpJEYY1BKXpLAKiFaAiJLQfWBIVB41d4Pwl+E9cItyBFYXztQMovQ2dxPU14QKgxLILyPqYBmsY/0u09o+GYIyrX2X1RTdBnWGHB9Y5/99+5x64N73Lp/j7vv32X//m32P9hnW6nZlJI8BwGAF/7KlYBESoNJU0yng1TKm4AXEC9MAkKIb+PnFoi4A/ynwDrw7wNfhe1/yTn3Oy98hS+ABOgrMJ0UZLAC4qIyGAzmY4jbzrjNwVpfUsxc+1ugyMEmngRU43lx0u83LbfgrKBgdAVm52jtj6e/SLqpQ59ttcPezh43v/U+dz98n/3797h7/x53P/yA/asJSuIDOLx4l+UaqCRghI8JpAaVKF8vfgHxwiTgnPuXwPcBhBAK+Cm+x+CfA/66c+6vvpIrfAEkQJaC6qVe6MmYGfmigLXGOGLApwHipy3CWrRlFmxyzg8gKoy3CMrGhIAupBjLMNowegjREmimCJt6Jmam22RwESGAK2yzu/4eN2/uc2N/n/e+/S3ufvQt7n3nA+59d4t+Kn1l5Tl9/9PgnKMKnWWF9K6AMSlKJfimbRcPr8od+CXgE+fcj172R3oVqAA7BXd0BOWjsPUIOARyqAqwY5//s0Hfi4aIGp821GH+0iSkEJskEM35JHzEuTAcmXlRUOSVZrAwfotjkQAMJ2MAF8E4TTBsq6vsbu2zt++X3dv77N29wcaNbXrbayRaPpfffxacc5SlRYgSYyRJmtLNOqRGnadZ9EriVZHAnwb+TuP9rwsh/izw+8Bf/KanIKvwcb86z6H6Gv9nfg0cACMf5aPwub9o9GvmFUGNJQuCXzRJINQPRDjCGAM17zMQ03wxLdi2AgTzKcVo7F9GBquKHhlX+3tc2/MNQPZu77N3/YMnfzgAACAASURBVAa7t25y9fp1Nveusn6lQyJfEQEArnaUtkRWklRo1tKEfpaRJQkJXIhpx9p4FXMRJsC/DfwnYdPfAP4y/p7/ZeCvAf/eks/9APhBe/urQLQEPAkc4kXxKT7fdxT8/twn/wnlgS1LoGkNdBMfPrAC8sY05tEKwC3OJWCr2eYFKyAiliHDYpXgRSKAYbrOrZ077N28wc7eTd8P8MZNru15EtjY2WJ9q0dvTSFe0TxZDsc0zEspBJhUkq6lZIOMTtZBGjX/8S4QXoUl8G8Cf+Cc+wIgrgGEEH8T+IfLPvS6Jx+pCnD5COrHeBE7AkZQ5eB8OtDnAGPTwYYVAAvWQHQHbBeyYu4OQLAC6rkRsazyb9kzHFtYNMngorS1WOtd4b33PuTunTts7e1x7foNrt68wbUb17m6u8u1vasM+gmZ8tGcVzVNlnMO64rgDlQkJmUtXaOf9ck6KYmSjC9J4IXwqzRcASHEbmMKsj+Fn4fgG0UF1FPgKAf7OGwNmr8czy0BGwkg4qQ7EK2BxPhNWSMmMMsLSqhDpWEUel3N6/+XafeLWhGYDtbZ/fZ97n74wZwE9va4urPH9rUb7GwP2E7k3Mp6Blzj/+WIjoSjcDXjyZi6LDFAqgRZlpJlPbKshzEJTC7aL/KSJBAmHPkTwF9obP4vhBDfx/8yP2zt+8ZQTaHOj6E6wEf/C6gCAYxDenDWIsSCtvOB/UuIoCt8PGAWGHQhrhjIIXXQqf22WoZ2ZGcMTmvXCMSvXmWowZDND+5z76P73Pvufe68f4fta3vsXN3l6vZVtjod+jx7bsW5FeYo8drdOoslx4QfzYiw9h0EkDjGVUE5zqGcIKUkNQlZmtLrZGRJhlHmjG9dXbzsvAMjYLO17c+81BW9AswDg0B95KsCKwtjC9OxJwQXSCBKM8wbC0YC0ItLx/hRhtaEBkWlH33oJ7Xw3YiiReCqk/qpOWtZU9+o1levJBn01+jff5+73/k29753n2//3He5c/cOW5tX2e6usY56pvb3985ROkfuXBD8Q2yek+d+bYzBJBlGGxBZSAFmKCkZHR6Sj3Ks9b+7Mpo069AbdEh7Ccq8rkm6326sZMXgrNPwBCgnPg4wtn4igrH1lYJjG6J9sSqoUTvQNBLi5H80ioeYR/8dXutXzzEkvT1wqGyt48zDy2IM7yTSDtneDW7u3eTG3h47ezts7WyxtXmFjW7G4BwEAFC6mlFdkdtj7HhEMcqx+RHjPA9EEEjAGLTpIuJrkYBKKUZH5HlOPsrJj54yzo+xeY4d5VSTCe5ZY8NXFCtJAgV+CjJXAOU0VAdOYFyHkuHSC3selqbgN6U7LE3tPeMH4VOFpeXkTKJnoNlWrDmt2GyEYni/Mv0ElCG5cpWdG7e4eesmezf32Lu2y87mDlvdIVcw5yIA52ry6YjHjx5SjEYUec44H3khzvPwfow2BmGMX4uw1galUorxmMl4jC0KpuOcSTHBjqfhHFNqezGbi6wkCVTApA6WwDQ0EcmD5i9s6C5UtrR/MSeHphUQpLSRQ1jgCGCeC3wOuFNe6/BdsbHIO11RKA16uMnG/h32b+6zf/0Wt/ZusLd7ja3BOuvnJABw2OmIo5885PAnnzEdPWU89hrc5mOKYuStgfEYdBctQg7XGIzuggSlNWVRYkuLLS2ltVhbUpWW6nhMPSmoLi2B1cFs9p4S30ZsLKGoQ1ehMhBBPRf6aelfl26u8ptWQOkbj87CiGKRJ6pm95DnuMb2EOWIZmehd5YEhMEMrrJ5+zbfvrvPnf2b3Lp5nZt7e+xtXWMr7ZGe91x1zeTLr8l/+mMOP/khT0cj7DQQQF54QsjHFEXuo7jGgNZIYVCJCWxqoHSUogqlwzWIGudqJuMxVZH7uNE7hXb06MUy7StLAhN8rQD5FKbSBwmm1pNBFP4xgRDwjr0rFxIGUTqt89OcR24o1aJZ3x4ReNZ1NcuJo/kfiSCiSQDv2mPpoej0Nti5fZvbd+9xd/8Od27tc/PGLfau32CnP2DtecKf4yPs468Y/fghB588YDSeeBdgbL0FUIwpxgXjfOy7vWjfJUbH11LilEJI4TtJSQlSI7QfhmzzMTa31G9LjcCpt0Y0HrSoeeYp0PkT9nxYSRKIyry2eIEfT2Ba+8kJizK4AzEOUHopt+WC4FPOrYATAUEBtfAWgFPP7w005zM9rd9AJADDvK3BuwFBp9vn+v4+t/fv8t7tu7x3e5/9/dvs37jB9fUrDKV5vgKgo2MmX37B8c9+xuMf/ojp8ST49BY7nmDzgtzm2Ny3iHYYX8OtJU5onNZUUmASg0wUOjFIo9GpQpkEm+eU0ynueeeZf9WQYt7TXrSTxtK/r5ibnq5NABHP93esJAlAUO4T4HgKeSCACb4YpCBkB/DLpCHpJbiJHy5cWW8B5CWMKsgryF04Hd6omARLwbp5sVB7iR2GW/FG4KQV0Zy5yOB/+oR3p5pQCEm/t8X2xlV2NnfY3d5je+Mam+tX2Vi7QqbT53voqgoORlSPD7Fffk3x+WOmT8fkhdfeRVFgc8ukGGPHhe//gC/eqFGgwEqNMALTTTFJB5MZdJrgOimu46imBe5NdxwWYfDJbNoq5ae8EmJOCLPJcqUvRqnDNiw4yXwMq+V5iGBlSeAAGI2h/rpCZlWQWLwlMMUL/pTAFn4prRf8agKHFiahG1k+nmcVc+trjexknmGclL7kPHJKjY8bRK8ikkF8P5v0OP6GQS2K2nc2jpuitpyGz74TsWsHxVPN9ECQH8DTx46DzJJ1x3STCUpmyKGir84ZRhmPYTRFFI5MCIZJh7RbkzjB1BRMgGkI0ljt75GRen6PqxpBCVZgtMGoElVJVA2qdkgcCkGqJB0kivrNpGWd88+mJEyTRvhjNGgNyPnwVIUnASd8msqJeTzLxafk/ESwsiRwCHw1huKwpNNzPl1Q4FV7FPyJLy8uQ3IgZgxzC8fWT08waWUS89Jvi0mFqvT8UoalcoEEpC8oquq5AM/IQIR5UAw4IUBLpHCYCpwNbdDr2bSJdCp/jvzN3MrngkNgrWR8qBkfSJ4+hqNORddMSRiB6+KqjGooWUvm1s5S1A6OcxiNMUVNJg3DbpekhMQYciMwSFQyRZaCaSmx1F77U4fRnDWy8rJhqioIP+gapHOoqkI7SapTMqUxVfHmajNmVr3zFykUSIVSBqEkdQUzjyW6rVJ6K0CF4atVKFmFJe3SloeYV5oEfjqCyZOSTsdB4YIFAISq4XLqBT23XvPnSxZbwSQQhK1hUoXPWijDDMdl6V+78CNVzOMGtfRE4PCuXCUFtZFURuCMBGVAGWRwGuqq8mOYKoep/YOcHRRY/OW/JaGrMyCxtcQewORAcvzY0dUVRhZIkVPXI8oiYbJr2BgIhgYy7Wd2OtGKIp/CwTGMJuiypIvmStJDdwRpNSWpIGeKMpAYSW6m2NrPJaCwlNSoWlJRU4oaVTtUWWMs6MShapA1KCFItKGjNUlVvPkGQzHIJARaS0yqEVJRVf4ZrB3ziTDj2uA1jxHzkZC2ZWvVF5EEcpg8qSEFCq/1i8Jr8KMp5BM4Luaavyn8Y+sF3tb+nuYhjliEOIGz4ccog/C7ud9fN1Sbc0HbO0GpJDbRWGOojKIOuWyMj2ZLqgUTWVb+jHb6mOl4ypR3wRpQVE4xySWjA8HTviAxFaiC2o2x9inTqWaUr3G8rtnoCTYzQb8LHQ0qFkfYKXz1NTw5oh6N0ZUjQzHspMhKYGuBriWqFigjUWY6swBsbVGAddYLjqsQVAhbY0yNqSpkVXurANAIUqNZMynZdEJO/WbTsoEEFBIjFYnWCKUptZ/5qqq9QqmbDSsQYVqsEFysJchW8vmUCPNKk8DPRjD52g/4mQZf/tjC0ykcT8LrpvAXIegX3k8DCVT4bVM8IZSV1yAxiyDw938huCx9MEc4iZT+yS51IIDUUCWGyiS41EAnRQnh3UHpGUQCSvn1tBSkD7/EWPsOdL+ROCSTSpI/gVEmkaLEVVPKYsR0LMlHjqPjksNhynEmyDPJZs9PGbnWBd0FRkfw6Gs4OKAejTFFRSYkpBmqkEwMkEjkbM54//BbaX3pRw2KGov/YYSrEXWNqRyyrlGVQ9YOWYGM7oDpMpA5o3rKU97gfXZ+ejwlwEhJqg1SG0oHpfRup5XBKoBghoY4glPBKqi8VdDERSOBMfDlFL4+8J2Hj4PJP5p4K2BUnHQBJpUngWmTBAi+fCQB/I8Qx5vJQAgq/HASgUAh0KAUUkgkBkFCpQ1VmlJ1Ekhjo4IUEt/tViEwxo8cMEoiJRilGE8Fvbxk/OgROdVbXjvgp1kpnGIykoy+xrf0spbxZEz+FI6Oa7qHBcO+4WnPkWeOcQZFD7aymkHXoaZjOD6G42Pc0wm6qMikJu1kJBaOrfSeVKIQBh9NN14wpjVQ10gkMvjZwtWIyqHrGlGFmEDlXW8lJIlO6KZd+mnGaFJRuPKNdhkSgJaCRCvSVCON8e5L5RVODDJZB04LXOVCwJDgJoQ2V+fAypJADTxx8PnEjyZ8GrT+TPuX8LSEUekLBnPn031TF9KALgwJJgT4tApJBBUMADUb/Sdrn8NVKBxR6A1SaITQCKlRQiO0QXY6iDTFpQbRMbg0RXYStDLIwPzg11IJjJTo7BiRrSH4mrc/KlDgKBhT8JWdcvw4x+Q12aimN6roPbX0npZ0j6ZcGWqerlXkWc20V2MzR5WV1L2Kjp1CPkZN/HRxajJFVAXalSSyRssS7RzSObR0SOWQSiLrmFmpGq/dLCAohUBrhTYanSaobheEI5t06U3W6FeWUVWSFyPKN5UpAFzlsHnBqD6irApUmlDWisoJaiEpUdRO+VIB4bzfKaPtIvHtmM5XjbGyJAC+l9AXISSf176X7FhCrrxv7ReFDV2lprXCVlAb5QuNFIBGoqi8gY5CUoe1QaERSDQGgUahhETJBIFBYZAYUBolDU4b6k5ClSbUxlCmBtfxay28cxd/NllVvr02gDRY1KyW6e2GBY4pOeDYfc3xdA1RdDGTCXrUwYy7ZGNLfzJla6x4ulYxyUrKtZp6rUL0SlRekNUWlY9RxQQ1HaOnBbrIUXaKLSbU1RRbW+raYusci8VWFoulwlI7v6+ugtoUIJVAJwbTTUh6HdJehh4MMBI/OrGqGbmSrCzJqoq8GlO9IafAOYedWuzUMsnHSOndLAe+AtJo0AmYJERU1ayeSCjfkk21+iOcZkGeiwSEEH8L+LeAL51z3w3bNvDzDtzGNw/5FefcE+HbDf9XwJ/Ey9m/65z7g+e7Ba8GR8CXtUFWktzBVEqKWngicDA1MMX4bGGtsEisDQLvFJWIE4obEKCVwSEoMRgUCRqNQAk/jZVBYoRGygQlDRLlaUIZtDTUylCnCVXHUCeS0hhIDbZjEHVoPVqFigJbI/EBiEoZ6nCdb3c8ALwNdoSv1HgCrOFch2KSUZRdmE55OrY8mRYcTBXjUUmZWdyoROaWZM3SzSzWWUwxRlVTOrbA2Al1PSWpCuq6oLIFtrJUlcVW/rWtbRggVFBRU7mKypWhxqZCKIExiiRN6HS7pP0+3cEAqyWjumJUVWRVyVpZMapKjp9aitq+8XvurKOaJZgDpgXIiScBrX2WySik8pkEpRXGvEISAP5b4L8G/nZj228Av+uc+ytCiN8I7/9jfM/B98Pyi/jGo794zu95pTgCvqhTVG1CUE8zcYKpVEwFWKexWmDRFKVf28SEEgsveN4aMD4IKw1CaRK01/NCY5RGozFCYaTX+AqDViYQgfYkoQy1VjijKdME1xG4RFMaQ50aqjK0JSrHVKXF2QoqS2UstTFUyLc8FhDh8E1dj/Ek0MO3Xpn6nOyxpbKWalpgc03ZL6jXLORTdD6lm1t6PYuVlqQs6LgxrrZU5RScRbsg+DMrwGcDbO2tAOv8UlNTUzXWzsdolMYkHdJul+5gjWx9jUorerX1BFCV9MuSp6Uls5bx5Ah7Tt/6G0XtQo/7CWjp40t0EGFyVWMMHWMWCo9Pm1XhXCTgnPvfhRC3W5t/GfhXw+vfAv43PAn8MvC3nXMO+D+FEOutvoPfGI6AL0uDKbtewKWk0F7j12hs0K41htIoLIY6JOoqAsMKX8ArtUIgw7yF3t83yrex8mQgMCQY6QVeSU8EBoMkQSmDM5raSEqjcamk6mjqRILRlGVJOZ2AzbChHLG0Y8TUQjJ3B94NWObzPPSYh1StJ7qJL82sJoqD0RTRn6LXCtJ8wtqkYDCe4GRJ15XUFKAszlkUBQaLtY66spSlpSihKC01FlvWBCqAihBCDWky4QcOaZ2QdDt0exlZr8PaoIdLDU8ry6iyjGrLU2vJKktWFhyUOfZtGVi0DKF7ss8p+go0YxxGSFJzvj5VLxMT2GkI9ufATnh9Hfhx47ifhG3fOAlMgEcuIXEZJQm1EFihqdFUePO8FBqHwGnja87RuLAPGSwB4RsNCq39Whm0MBgtPQlog5EGIzsk0qBVEiwDTwZKJWjpB7LURuCMpjKCOtFUicAZQVmWfiCLHcM4pzRj9FhQijGIhFrJdyAeEFHjCSDDF2lMWBiC5WwYuq2pxzkH+YSf5VPW1nI2plPWx2MwlkLUOG1DLbVFa0/TdV1R1nXQ+r4eoCwd1pVYnE8MOsLa+eyABK39IKKkk9DJUtZ6PfrDIXXXsFZW9MqKzFqywpLZgmxaoI6e+JqFtxkOXzZclmBqP+5Ee2vgZAXWSbySwKBzzj1v2/DXOe9AhAMOqg7G9XDCC3iJwSnj3xuDm2l8g9WhuaButBkWfjiqJjSqEL5zjVEGIzVGpRjZIVWGVCYkKu5rWgQJifSln1WiQsUg1EZQGgWJwE4m2OQIO069nzdOKONoEt2lkrMqmtd5y14hCjwRpMzr2G3YHrRzLaEYUZVjnkwnPByP2ZyO2RrnmLTE6QplauhWKF3TqUtq47zAlyW2dLO+g9aVFDhcCZ4KoMT5snpZIlEIqZFGkiQJ3bWMbNhnbb0PnQ5Pi4qntuK4LDisCjJb0CssyVcpo/GItz4a4wBrUd0SraErFN1vgAS+iGa+EGIX+DJs/ylws3HcjbBt8Zpf87wDEaq3jl6/6rW6TjDCB/cqHYigIfBpbEiB8YUWcT8GITTKGNACIRKMMSQYEmHoau8GJDPhT1B4MtBSoYTy+QPty4Vro0LZMMjEF3lUaoJUjrq2VLagKnIm+QibH/H06WPy4wPevRkzmx1bm0NjS+b9k6ZQT9CTnEzmrKmcdZVzpa4YJiXrtWXgHENTsl46emXJmgVjHV0LR6UfZZn4AcSUSmNRlGGId2n9aEKnNGv9LoONNdY3+gw2h6xvr7NxbYu602UkHE9dzaGzrFlLllvS8RSTpEghqN1bTgIA1mEPjhnVEu0UOu28dhL4beDXgL8S1v+gsf3XhRB/Fx8QPHwT8QAAFGRXNhlu780EuhQSR5hGCB2EPgn7aVgA87VGgPY960g0Wgmk8P6+EYZEm1k8wCgv9D6BqFDKuwUGiVO+0stp4duWJ8zaCJUCbGlxtsDlR9j8kGL0mPHhIaPDr8gPH/HWa6MFJMxng044SQSxm4J3EbrOsj4t2DQF18YFu3XBsLQMTcGwLBkahzYlwljWSkfXao6doGc1WQkJmkTHs/kgb6kFDs0EELrD+tY6G1e2uLK9xeb2Nleu7TLcuUbZ7ZADT6k4qAt6kwmdUU6Sp5isgzhQvkLsHYCrauzhISOl6XS75/rMeVOEfwcfBNwSQvwE+M/wwv/3hBB/HvgR8Cvh8N/Bpwc/xqcI/9zz/BGvEqY7JLt6nd7V68SH0M2CfeGhbGr+GSnM6/nRBoOevdbCN64UaJ8SlAatTagVkCF5qJAhQajwVYMaRa0cytRU0nsZToDWFaVwTCjBWUo3pixGjPND8sMDjg4fkR98RTn9RqdzfEkIFgmgg7cI4siIOKZyTgIpBVdKy46dsGtzdsWUTWdZ9yFdhLUI48A4hAXpCtZLyJwhc75XYWa0P5sx5Bis8ERQoLHdLuvrQ65s9dncusKV7S3Wr26jd69iuhlb1ByXloOxZS2fkOU53eNjut0MpRRV+a64YUBdMz46Is+655rF+bzZgV89ZdcvLTnWAf/Bec77upEMBvS3dhls7QIatG/QUM60Ej6CEmYY0brhAghAa0zIDnhLQKONQMwqBCIV6JnY67COJDAvMZJUGpysKJVDyZIKh9UaI0oMDlGWMM6xNqcYHZKPHjE6ePQOWgEpfir4DJ8eTJi7BrECKrZaqdBY1rBsMGF7OuWaKbgpxnSrAllaRBxX3WzKaB3SQYplG0g0ZKVmrKFIYKwNBYaxMRTGYLt9hlfWGW5vzglg7yriyiZoRWdni/XplP4kpz8+Zu3okDRLSbIEqc5XefdWoZhic/vNBQbfVqSDKwy2dxlu71Ghcdp38XCz1myNDv8GRLAANASLwG/z7atBa2/WeuH3n40EIDChcNjrO1mDqH2xkf9fhOHiJUI7nBCUODQlpdYYEdqj2gI7zrH5IfbwgPzwK/JHj9p/2luMphUQl9AUY+Fxi4FCn6jt47X+1XLM7nhMry7AFIjazfusxYyXa36bQ2BZF5rElBTGC35uIDeGzGSMu4Yi6zHc7LG+vk5/ex197Qpi/QroDghIsgHDrZzhaMTa8THZ1wekWUYn66JUih+N8i4RMeT50bk6Oa42CWQDsqs36O3uAco73mHoZTTutA7CLwjmPgjdeI93C4TWaCE8KWgd6ne9CxG1PnUY3IEXejmvWPU9H2qwSqClpUTjaSDaJN40tnaMLY6w+Yg8PyQ/fETp3g1/1CPBa/+UuSVw2qPoiSDB0mfCBlO2sKTlGCHtvBWTYZEImjAQ712GITPQM5BnhtwY8iwhSTKKfsbwypDB9jrp9hZicwuywUxTCt0lHW7Q3zgme9wn7Wd01lLSXheVdf2oxhNNOt5uVPn5mtKtNgkMNoIlME9WlGWJa0V6tTahJsg/YfNyS4MJsYKZ/o/DM1stgkV0c2Hm8sYRhlR+fxnO5OcedI3/rQ9BlCGFNh5hAwHkB++iFTBk7g5kLG+EGesGajpUDIM7sEWBqWq/K2p9f+NOEkGDHER47wyYzDDMEjKTMcoyTG9AMRgwXB/S2xoittZhOFw0lQWk3Q6DK0PW1odka2ukvYxOlpFlPUZKUb1jJHDedPIKk4BCaYM0YZAFQAm6kyz2Czd+2krvCSySwGx7OM5bCd4hWCCB5uv4fEcrID43VRgHjiPYF9hAAja0y+pqQ6ZD8REGozXmnfqJYntU0XjftN/bTGnRTNgh5w5T7lCwzRhNtXhv2110IhkswAI5wgqwCc4mmKRkKCyGilwI+qHFuG/eGa+vce3CoDodOsMO/Y0eG1t9tnY22LmxydPjr3n69ZNW04jVwLv0hD0nVDDzTRjjhw9SV9Cc9maRAMys0c9M+BG++ioc3wgpnnwQo8KrG+tACGUV+waK8Aw7TKlxzjcayUziZ8ZNzGw+vfjv3UGzLiCul2HecXEDy10sd5lwmzFZKJGa4TQygJOugrVgfOsob1V5TZgJi9Kx8DouJ7W6RNIxHbJ+Rn+4xnBjyNVrm4yPr1FMx/ywKBgfvdF2I8+J9rOz3DJYYRIAlEKFuekA/9cm0bT38AIXXwcC0GL2OBvmDVqaj/hpqHWDB2og9a6ksfNmJAZwlaA0Ljy/mizrYjJDFoJZkQhmF/dOoHnXIuLEahFzZkywXJuRgOUqBfo0AWuTwWmwY7CJ9wtsFigXOpiZUsAY34SkBQHI1NAZZPQ3+2xMhozHGxSTEXUxJa0dP/v4Mx4fHvpy5LccqvXsVPbCkUDQRmoe8RezIqFGXsCAMcKv9XKhby5n3rDwuZkhIEOLeO07C8eGo2VoW2YQdEuwzjWEP/PjEd45OyC6AkttJhZdAf/+CjXfoub9YAmsta2AZWiTQdsayB1kOZRZ2FgiNCCsZ2IdLAGxzL8XKKHodDP6G302igHT8Zi6LEhcRVcp+h3N55/9jK9++hWH1ZvqNnA+mBjgDjhtlrUVJgE/Aw1SzQJ/PscfEOqDjA6L8M9Qxkl99lxEQCPsJRoTkCioVHhWzTztbctABkmXzDRcgYZL8G6gfZdiQVYT84BgB8tewxXYZHq6FbAMy0ZTNd2Cpukv7LmfdIkh7WRkgz79YsN39VGWjq7pdzQb/Q7XhgMe72zy8OFDfvazJxzV7q0kg26mF4qFJqd0qV1hEgClNMZIhBHoUKWnY0woCr7y63ZJS5sMopd7Xmh8kqxmPqNx7Awd44gOP2EGQNLVmBgbMN4tMGGMwqyh7FuNZfGASAQnVdAG8AEV71NwB8vgZaZWaZ/eugYRPB8Mij4d7FqfmgmpsmRGsN7pcDQYcG1zwNG1TUaPrvGTh9tc2/2Khz97yGcPnzB+y8jAGPPqKgbfTShfBGCkLwCU8/YAscd9HJfXxT+2cd0mgBfRxbFoCOZi0IwXxnU898B0OcwyHxw0yYwAjEgwvO0kIJhTaNMtiHdg0f/uUXErCP8dLBuhw8MrwUz28zkRNC9J47vCOrc0tqCAFEOfNVgrSBNBv5sy7vcphgPGGxsU147ID0bs7W7x2bVHPNzdYuurr3j48CGfPTzAFu6Nxw47gDHJRScBgFAc5Gt3Q9WOX7c9Vlh0L5tYduzzoFkxLxvrZozLdAXdbEA2HDJc3yXfytnKc2xuefzocz4fvc1jB9ZZLBN2ePsn2p+Nud4oSJiyzoQhOX2m6BlFviLMbmroB6+D3eXsfLqpagp6eZTREwFU+MlLbdYlcz6IO9aaotvFDsbINIEsozs0ZMOM4XqP4dYjHn7+iC9+dvzmsolCkG1uka1vLZLAZz9aevgKk4CfvslIMXcDVMMdaKCZdo4E0NT+sVblZYlAhfM2Jj6eZb2SLmS9Xjok4gAAIABJREFUAVm2RbaZMxzl5LllnFuGW7f4YnTA22VsRkhgi7ktFe9SJALHvKmId4xSLMOwDLCkr9rOaT7V2i2WL7h6PumkLjnNzvMWokLToc6gUj6VO+hmlLnF5ZZOLyELBNBbH9J7tMVw+xFb1x+znn3Mzz75mqPqmzUKhBBc2dxiuHWN3nD9go8dUAIhvdTPBg6egbbwL/MmX5YImueBucdcAl0NycCQrW8yzHNsPmY8tpRlydbDhzz8/DOO3sqRhP8/e+8SI0m25nn9zste/ox3ZmRVVtW91Y3EbFpCYglIbNgghIQEK8RDiJZAbJCQmpkFYjQLBANLFgiJDQiQRkIIIcGwmwUtBGLBQM/trup7K6sqH5URkeEe4fY6x+ywOHbcLSIjK6PyZt6+VTVfycrMIyPczc3s+5//914CB+y+Tfx20QtyEwAUlskAADNqCuohh/I9i7EgPAg3MgU8+Db0oHclpC13JXsEwA49ILLI19IU0gKXW/zcgrVky5RiOaFYXLI8WrJcXXJ4ecTZ+YqJ0RTJ3+fJn6057z78MFkhJDpJmM33WRweURweUCwe/MxBAIVSIdEnXoexq2q8H8vbXEnv01cfASA+o3kOxWLOpDzClg431CcsHj5h+ewh629/30BAEEBgObyOZX4QHvuSHSMI5kBCxxLHkpYlDSkNH0xFxj5KHc8pdHLGhXPyg5LfpSpqW/gU3bmgUyAVgCOflczmCxaHS47WG85WK1arkvNyzTKxTERFYv8fzBeO5+8RCATDMy0kQkpSk5PPFhSLuB2Qz8PxfVatny4IKLajwODNiv+m1X0MBpFNwttzVX6oxBuQAEUGkwU4u4e1od4JJ1geP+bg6EuePtO4NwyV/KuRKXAA4jDY29vh7LGFWDzeZekZevZoOcCyR032QV2ecUYcgRUMPRvoK3Al3lf0YkKPGVxFfnRv42gZT7g7t51LgK6ZLpdMlyV7RyUH9RXXVyWrqqSgwtgSY1fo8i+x38DZO/oL4xgRKcFIgTESkyeYyRxTHGKKKXkxx+ShTiKfTTDJjHxevAHebspPFwSEGnoAiC2e3/jnYd9x8yJEFRuv+DFdPcr7MgvGkhHcanYK3hqs20MgECLl4NkTlkenTJYPWF18854/+V1lYAFyD2bLMOCxiyt/dPRF5+CumCKnZR/HAsuSmvRDsICo+LF6+YY50G+dg96VNKbBoTBEVY99DuKSET0543qIKAaYAZaprplOHUxrrr0j6SpMtYLyHLt6TrUusaswjeGHfI0EmCkoEjBThZnmJPMlyfQQMznCTI7QxRRjcoRJUFkaEs6MQb+vzkJvGDzyHwP/LOEufwn8q977y6Et+Z8Bvxr+/E+993/8A773+xMF2mgSKbZOuR0v2L2OCi0Jj2kMx8lbm7i1vW/0jKFKq8HOwWHQHKGSjOXhA+YPTlgcHP0egcAE9DEsjuDjQ3i5hnMZ0iGdgy3Nj22/Q5P3OZY9Opb0zOhJ7gKBcc3RD5F4Y1IglZCqkAiSq3CsPOihqqt3eNfQmQZLitp+5GiU142V//tg/2YgeSI8f/D5C+yrb2jOvqU9O8I++4pqFTwkscQkGk835tiyg56MUI+5P4PJsQjTkmbHpLMHJPMT9OwBZnaCSDOUjCnmoYW9FkMK7HtiAv8Vrw8e+bvAn3jvnRDiPwL+hDBzAOBL7/0f3eN9P6wog04SciEpxj/mdSy/a69ubbdB4H2LZleJb4fGPB7o9JT54ZLJYo/53kGY3d39FZsEMofsU+TRI+TjU8xHx9QHE/zZJbw0cG7AmpAmiSKaBFMsH+M4pmdPtMG0xnEjCyJe7IAb95N4UwwhUjkBlhPYW8DBMmyHy/B6PoHZBGYJKjHkYVQMCQy5CuMP9bzrHTc4FkZwmAvWeU5VQCPBDFXSNTuDqWG38EwIij/e5kCKQkqDkAlSJwiTobIUneb0ab4dc++loTcJKINP7nfebwWBuwaPeO//19HLPwX+hXt92u9SjCHNcgqlboDAbYkX4DYIRHYQt7F/6fXSk/cjKeHBmAAihW4e7MDJ3gHzvQOmBwvSvQXN2fkHOoO3iJaopMDMP0N//AuKh4+Znj5k7+EDnixXXC0N7SKhnwxAsCbM0haWhJZj0XIqLIfSstCG1BC89bdnZo/rAt4GBIJw4SKfnwJLBctpUP69BezvwdEBLJZhm88gK0DlhHlSUW4P8XwXU8UjhgjDPNUcJYY6MfRTUBOYXd2EvThEuBu+ymz4CttNwURBIiSd1HQ6BZPik5Q+KaAo8GmONWmYb5mEdmpeGGwcPvIWZvU+WO2/RphJGOUzIcT/TXgE/ob3/u/d9UcffO6AMSRZSiElk+FHb7qlkfTBTSYQlf8uc+JDSTZ+kYYsx/nBkunRkvn+ktnB7x4EjIasyEn3FhRHH7N48BGLB49ZPPyY+YNTZvsnHO8nPF0mPFsa1lNNvdBh3MwrhVQte7LlE1XxSLSc6JY905KKDro0AIHvXtcI2KUa3CURADJ2jYzmBBawWMByAUfLAABHezDfg2IG0wLM7S7I3PFB79pbMDC1aQ6Hk4RuYlBzRbroWF7t3jlS/7HhkQ9bTLsqZLBshBI4JWiNpjMZNiuweUFXTMKxyWhMgh16KrYmxab3i2X9ViAghPjrwzf+r4cfPQMee+/PhRD/GPA/CCH+mvd+fftvP/jcAW0weUE+MIGxHRYlZu6NV3Zz6zi+HgPCh5RoC0aREqb7C+YHC6YHe0z39ji7K63xA0giIJ8ajo4mPHz8McujU6YnJ8wOH7I4fMTswUOm+ydMDh5w+p3mydzwdK54MhG8mAmucnBnkn3R8Lls+AUJj2g4omYmKnTvoMvB10NpJbuKqyi3rIUbYrgJABNgKmExg+US9uaBDRwt4PgAiinoKZgpOzUb39ExxL/LIxkt/DAFKDeSg8ygipRsWjBfXPHwGegunHpKnJmwiz9EN+R4UwqQCjcMyLEmoTEZNi0oswlNMaMxoZ2aTVNKY2hMRpMnd5zj6/LOICCE+FcIDsN/eugwjPe+IZg4eO//LyHEl8AfAv/nu37OO4vSpGnGRAafQMzSux3Jvo31t0FgHBj60AAQJQJBBJ7lfsF0f5/Z3gGz/X3UIqE7u1//uHeVSQony5xHvzzh8WePefTpYxYHJ8z2D5kenjA7OGK6f8Jsvs9kcsg3S8nR1HA6URxPJN8Ukm9Sz3om+Lwv+cO+4lNvOPWa414z6ySy68DW4NKQ52+7sPKPubJhxxDuulAJQfkLBlMgC3R/OYODWTAFDvdhuQdqNvzyjN2ItDet9u/qnRwaxgLCKPLMoGc5k3nG8eKKzRyKdeg5OVb+N67ZW8+0CGXx2tCbDJukuDSnyWaURUGZJJRpQp1lbEzGJg2gcB95JxAQQvwzwL8H/JPe+3L08yPgwnvfCSF+QZhM/Jfv8hm/tRhNmhYUMjCBcZd7uPu5igq/fYtb+9+lRGqoEMxmnsX+PtODBbP9Bfneguuzlx/kcwUwm0k+PZ3z2S9P+fTzX/LZH3zCp59/ynx5wHSxz2y5T54dkud7mGxC5icc5ZoHE8U3E8VhoTgq4DjveTUTfGYTPnGGT53mY6c47hS5Iyh+nUObQVNB2+38iFGX4k25zQYiQkY2EE2B2RRms8AG9veDKbC3D2qfEclmxwK+z8D7IcbfjgVsT9ZIRGZIZoZkluKX4VRMTxjcfJ8Uia03WgansEqQSUKaFqTZhLyYUBQFNkm5LjJKk5KkGWmWkmTqRubDm+Q+IcK7Bo/8CQFG/+5QoBBDgf8E8B8KIaJL54+99xf3+KrvXYxJyIqMRCkSdkr/fWnBMRQYJV6c3xUDuEuMgMLAbL5kPluyWC6ZLhZcy5fvPdFOCVjONJ98tuCXn3/KZ59/wi8/+5TP//ATPv38MybzJdNiSqJnaLGPYA5oEHCqc6b7c3LdkkvLTDcshOMi9XxkDY+s4XGb8MAmzG2CsmZwk1uobNjXK6i6wCVvR7dqbirN2BTIGNiACTb/pIDJBCYZZAmkcc2NFvg45v++0788W+6YJJAayFKYFIiZxMz6ncPz6i1vNSp4C1x2INqqBdmAaJA0ZMKQKUOiepJEoHJFkiaoQr2ftOE3DB75L9/wu38H+Dtv/dTfgRhjSLMUKcPaHlf4cXHr28jeX6Xyj2UGTIoZ09mC2WTJYrbHiwL89W//3oJg+2c5zGYZjx8f8PizR3z2i4/45LNP+OSTRzx+dMrJ0RGJmaFlgRCx2Pp2ibDiaGJwRwnCZqh+wjzreGATHrYJRzZjYTMSW4OdQJNAJWCjwr4CyhU0HWzYVSdvhg+IQCC5pfxAoaCYQJaFeLka4L7voLcg4xzH8V0fZwO+7Srd50pG+2TwWJo0nE8ygSyC03UAgWg4f59VN3ZY+Rq6C+gLaAqoE6gNNArMEvSMtJsFB6uUiMSgMoX/OacNK6PJszBC6i75Mc2UmQGzScZytmQ2W7CY7VPMJ2yuN2/92zeJBHIBkxzm84y9oyn7R/ucfvKIxx+f8vjxQz755CMef3TC6ekJeXqEEFHzIgjsRABKKJYqwS8CAGjds5fDkU05tgkHtmXSZkjbBl9AnUKpoNSwESG5cANsVpB2N50ykRZfc0v5hy3LQtjPZGGT0ZjuoG8HEBin5oype8LrPPD26/tKfN4y0BkkRTivYhYck8UIBCxDGPUNbzUOR3kP/TXYM2hzaHXIxagFJDV0wYZKlUSoFGUKTHq/r/CTBQGTJBRFhvoxjpAaiQAKBNNCMi0WLGYHLOb7zBcHbJ7+cBCQBGt4lsL+MmHvcMLeyRH7J0fsPzjiwaMHPD59wEePjnn80TFHxw/IJ8cIcchOWW7T6niuEiMMe0lGsu/IE7ieSA5tzcKm5G2LaotQvGNbqDK4llDKQI03w7YGkitQ9uZHRD9BVPwJARAyFRQtKyAvwgpsBmXsuqFseMwEIhjEmFHHDm3i5nm7z+B7rrLIQGaQTSCdQFEMbODlzgEaCyw3vG7aRWIxbkbRO3AX4IbJtrWGRoQeddYPLCklUQXSdJh74thPGgTSwiDVh47sf3gJiScwn8yYFXvMpvssFge8yJ/QV2/9861IYGngwVSFwZwP9zl4eMjhyUMOHhyzf3zCyekhjx4ecnpyyP5ynyQ7Rog9gsaNAfXuujtBghE9c9OTLaAtJHmfoW2NbB20bgCBDsocriRci/D2V4SVPiUMFxRXbBNtO8KKWTOs/OxMgmwaTIHJPJT8mmRgAgx/ZyFthnOM2jbuD9+zSwMbp4bFq/8uz9AQt0wHYMom4TxnBdirXXX1UNh4I18qpj9HSyViVke4dt05uMEUqAQUfehq2ytgCnqGNvbebPenCwLGkOVy+yz8qEUM2WPFjNlkyd78gMVsj2I+47p6m3dp+xbMFHx8kPPoo0MOT485PD3h8PSYkwcPODg55ujBQ45P9jg+2KPI9lBqgRBzdnbu25QhKFAwDQSZUqTKIL0LStC7YJ/7NrRerjO4ErASw+rud5E7NSr76uuhbyDBZNgqPyGWOZkGe7uYBueGMUNwHcAFc4CKndLHli7d6Hjcfyz6DX6b/NAcmARWUswDS5kUMJ2CbQITimUVMUW6YQcA0RSKl7wfbbYB+134/bIL181q8BkwB3kAuv+HIGCShDxV/Mitga3MCUxgOV8wW+6xmB8yX+zTvLrC3iNloBBwup/y6eeP+PizTzk5PeH49AFHp8ccnT7g5OExRwcPyfM5iV4gROy4+ENWwpjAH5QnDGlNQTgQPcj4tLtQzZde72j91rZnwJwBdCIDaKvAAkq2+sVEBQUrit0+LQIISDPorw/mQNeGAqItA8jYLbExdWecRXI7jeyHyhCRyHNIp4GlFPOwt2VY0cf1VbHNVDQBxsQkSmQNzofr0XwHjQuswE2APWADqgrX+p637ScKAhKlDYmSoaXAj108bDpBc6lwK4PfZIgmR7sZ3hXsevl9/3sIPEg/WtM7JB5FjxYenXQY3bNL4LwPAMTfvb2yjhT+Bu2OwxmHAY090A+VGl5Cb8ImMhBJ2KsaVANJP7AEBrM9wXmN8yrogvPQWnTbwqYM1XQy8Gnd9WiToZQJ76vrEEFQCTvkMdAn4fOjvSGLsP1gQBhAIEkhT0KziHkWwpY+2V2m2IApYtE4O22cpRZnvG5TCz3ICngFLECugFW4VjJ6He8nP1EQECghMeLD5/r/ruTVM8/1U0/5HVQvBfYyp7uaIPv7gUAH1LZjs7nmanPBZJOQbwzTTcZmk1BuDGWZkG8jf/HpfNNU4bHyx6c5Lmv+1uvbfZZ9mOlX16EPwVUL1zZQ26aDxoehDa0aFNKEIgrZbomGA2pvqG0YOlQKS0UVJkcLwgwDD8Y7dG+RXUtmEhKTkwoTpvMYE/wHwkA3TC3qBlbQJUFZJzPIHIgZP0xdRHhfDNtRydMkAEH8Et7tVn1NcBDGyrVxLDuGRCNTiv3xEw+6BLEK/hO1AVGxHbByzxyInygISLTUJEL8qEKBd4n3sHoOq69g/dRRnkF7abCrFL8pEBTsGpW9WXqg7jquqw2rqyvy64JinVJOkmEzNBODTTtk7sJo8O0TOm6qATdX+9hJOHYTGiv8mA0Mx/0wmbXtoaxhE7cGNg7KfteMqI+fnYNow8NtPLWEK5FRIigtVK2jxFLSYrRGezDb9oI9xluMbcmNITEbCp2Qm5wkNZCZoKzWBFrdDUzAqmBnTys47kNPAjHlfsHlcRKSCclKhYFFDouY/DDcMwFeBMxrTHD6t2rXk6kRoRCTJEQ+dTH4PgcM08aT6hKjS7QsEboEUbJLQHh76vNPFATCRGIj5Y+bCdTQXcHlE1g9hc1TS/kS7JnBrgxUsfp8oILfIz0hS3dzXXN1tWK2zthMDVcbw2Rj2Gwk1cZQpZBoj0jksJIJwqgQ2D3cNeEhq0b7uPK4O/YDMPT9EBXow6pfNoG2lzWUbWABlQ/EplF0TuKtxoXma4DFmYpSK1YklE6zFpqy9KyxlFgMFWboLaqtw3hL4hLytqU1hiIxeGPwyQafJ+gmR0kFraK3BmcN1hlca3BWkjctmQZ5LIZBtvcFAtgCaD4wgUkCywRPToXmCrbbWsB1PqQQiHCF49YQrJZpGlwMsyS8VWEglzDX1xRiTa43zGSDpkVsmdjbz/UnCgICpRRG/EhBwAGvoFrB1TmcfQWrJ7B+5imfQXUmsKsC56NXbULgkm9mAx1Bx64qR15eMylTJleGySqwgO2WCAoDyb5BiHF/rjk7il9yEwBiW7Go+LCzSQcQ6Dqog/L3m5627rB1Tb+p6UtLt+npy2AKdDYkyPlWB4ruh2YBusAbqNCsMKy9YeUFK0sAgqrEeMjxu9WfFmMNZVNhkwyXJ7jE4PKg6JOkxJiEpla4RmGtom4NTSOxtWLSOg4STWYM8kCDjubRfZ6sAUSNgSLBTwzVJOeChHNhONNwpuBMwHMDq01Q+Kj4EWprwsCc/STURy3T4VjCXMOBbFnqDXOxoaVirity7AAEP1sQUOhh5sCPzhy4Bs7h6gxWZ7A+g8ungQ1snjrKl9Beavw6wTNhiBsQFPHNHew8IUX/+homq4pysmJTJJSzwALKtaaZCKoE2gSM0YiZDl727UyBip3yl9wEg/HKDzdAofNQOSg9rnRsNj3XZUddWuympi8butpi69DP35U+pMZbjfbh87XOEcajjebKwzmCS6sHDuRYW8EKKCgxzlBYg7GGwlrMRDBpDT5JsG2CSzJ8m+BTEwp8pKGuFU2tKBtJXStqa6hqydT2kEgOjSbLc8T0CuSC+zkKDQxRFj/JqeaG52XCU234Bs1TDV9LeGrgax36sETlj0DQdyGQIhXsGThO4NCE7YGGIwGXCg7FFQ90idclWrTkWxD+h+bAj4sJ1MAZXD2D1TM4Oxv2z2D1ElZPLe0Z2HOD84ZdfG3BjpK/OYvQAZsWVhvPfFNSlpeUV5JyJWgmmmojw34VZiFikuDZFjk7hY/Kb0fH0TE59kgPINADtYfS0V17yivH5abnouzYlBZbN9iqpW8srupxQwhdWo3pLcZpDDkGjTYh/+MKz6WFFYIza1nhOXftAAKewltyb0gsFNZQtALXGnxucJWBIgWbQW6QNsFJRVlLylpRloqylGwaRVlJ6rpD5gZd5BxOJpi8ADnjfmnFgTF4DDZPeD4peLrI+dIYvhKGLw18KeAvNXwnwOdB4RkPLInuFQUvJHynYW7gxMCFhFMNGwmtrvCiRJuWXFvmtBgsP+Nuw4okMcyU+HF8wUvgDF49H5T9ZWABUfnPLj3PzkrOzlacXa4531yxxnGFo7nRdeP7a1M9oUjv1QbylSObrCgywSRXXEwM04lAeeirjrqqWFxVzIs1Yn4B8xfDbOtbm/VsQeC1+nU/zF3zYD3eebz34AXCS/oeeuexFpo65MDUNTQlqNJhSo9pBKLq0KXDlIKkhTWClYeVgw2GDSGgsBFDta3RaKvJjUZ5gcaQKo1GoqQGL5G9B+fptafrPV3naa2n7XpaL2h7T+s9lbNsyor1ek06SVmkEnUgQB2xyy6E1x2nFjgneCsu+KZe89Rd8aSr+co5vhSOLyV8lcBzBz4mZN6+hREEJHgVtksJ1zrkWF1oWG1LLzzWWZwr6UzFR5Tchwv/KHTkB4tKwnhppX9vKgFfEwecQf0Mypdw8RIuzwYAuAwgsDqDs5eeVQlnq3PONuesyhVnlJxTUm9DcPC26MBYqhYuSpisHcXkkmINxUSwSsE3jqqsKdcl6/M1RbGgKCbMkzlxfrvBbsd7mXGTRjOYDtGCEAaEGroPayQONcxYlkgUctuTuHMBAMoSyiuHqD1mcHTrcjjeeHQJVzq4QTeE/drsuIm1wdPvvUFgSIwJ052EIdNh1LuOXvteB3+lDC4L2JUnxK3yUDaO9aZCXqxxQrDvHPrgKuQAiBivG/c2N8D5cHZnPOeSp+WKJ1XJE1vyxFY8cY6vgG9gl2N1n9LwIWTogOcaLsVQfgFUOOz2vxZN+TNmAokiSXMSqX7/zIEOmjNYP4PNU1g/hc0zWH03KP9q2F7GY8uqPOfMn7HikhUrVpRc3RjyOfbMv136DjbXcJ5CUTjm6TXTRLIyYJsmAIBZUZgJJjEUpiApCrQxYVKyAVOYYZR62OdFoOrb2FVibqUYCJAaaRzKDG13VciE6brQTqC0UFYdZePprkBfgyhdCIVvhpB46Si1Zg1szK7wsDSG1oAtQ7NN4QyaoPSJMMxyQ2IEudYEeNAoBPQqtDe0YDtJ3ym6TmKRWBSi67m2NfJ6TSfB4rB1xaRcM58YZFHAfMg12Abwc+AMzxnP/SXP1iuelSuetBu+KkueuJYnWJ4B2+GUcP98pFEmYQ18aaAyYIXH2jAizZgK875A4A1zB/4D4N8AYnubf997/z8P//YnwL9OANV/x3v/v9zzq70/UQk6L5Dq9wsEmhIun8H6K1h/Ezz+qyew+hYuXw1KfxlWw9WqZeXLQenPKLfqX1IT48BR+ceM4H5SV7C+htUaLtKaiYFFrrFlw5okKJAZ1EUYDAUmNxRFQTEpKIpwbIb9oiiYb/t3DokyZjgeYuKiF8guMoIgXSexVoYmQ1VHWfas1+CuHbq0iNLvKgs3Dl16Kj14IkxQ/tJAaQ2VgYkxeBtWYxEggMLkJJhQAC1CgaHuRcgDALyQdKgQxOh3dYUW6LsOWVUICR0dtrmmyg3FKmc9SZjPCyZlgV4YRF7A0GvBc8a5f8mzagCAsuRZuQ5MgIpvcYH5RxYgGEKQd8i4u9IdbKEz8PX2QXcYazHY9wcC3D13AOA/897/J+MfCCH+UeBfAv4acAr8b0KIP/Tef8hZU69LosiLDPOGXgK/C9kGyjw0PdRruPoWLn8D51+G/eVXsPrKc/YVXF6FUPmKinKr8ptB7VeUrOg4Y5cTEJnAu88gCGADMwNzU7NKLqi0BGeCqe/MkHNiwMJ8UYTR6cUijOJeLCiWBYsFCGsxtkC7ArEQIfnGmmHFCkAgpEMqgUINBbshPbHvhk5jVrGuJKvS4UoPa9CbwAICCIQLW7VDfMIY7AgIHAZrB6epDY5TIwamYgxGsx1EFJuT9NuinMCQ4hW1KKySWNHRNeC6jqqqWRsxRPw0xdww3xQsq4LFqmC+KGARqgYrd8ZZueJZecazcgCCquSZLfkWS2Pt2wHgdvnCbRCIARkDCMvXQ1gwcRbjSgptb44mf4O809yB75F/Dvhvh4ajvxZCfAH848D/fs+/fz+iElRWIP6KQCAS89IHirt5CeXX8OprePUlnH/hufw1nH0JZ9/CpXOsWHFJuVX5cgCAjpKd4pej/R1Ouh8ICLaFy3XIY5knsEpqJNCWQ5FbNezLoKQHB7BYLlgcHnK4WFAeWhbVAmdBLAqMBSME+eA7wAlIYzbjjhEEfwCAo+vB9lB30NQdddtzVUEblT4a/6XdIus2W8EO/UkNWBOYgC0I4DWYAoaEhJxCm5BGrj0GF+CnD674XvTDe0p6AisI/6Joux7bNVjrEZVDYxH4ME1pllMuC6rVgvKwoLQFC1uQL4oAAPaM5+WKJ+WKr8sVz2zJN7bkmmp3ryIQwOtKP64fiIRvnJA5TkzU4Xo+sSE6UljLQpeIe7QW+m18Av+2EOJfJnQS/ne996+AR4RhJFG+GX72mnzQuQNJQloUaPW7d3nEWpDGw5ULzr2rr+DqK8/5l3D2Bbz8As7+Qc3ZRclL33JGyTUla0o2W7q/tXZvbavRcVSHd5eyDI61VRK23kG7gnIzOOk2QdFK4OAZHD5ccbgqqQ4PqUqLcyAwFFZQHhoWiR3MABeil16A2wGBxKBkH4r8lEQg6TqDtTL4BarwuW2YGYovgdKBjwufuFGp4OPqb8EWBmsLbBvQwJBgTE5hEnKTIXBoPFIIlAqltqrVr28EAAAgAElEQVSHrvdDmnBwEAZ/gAyf0XVYa6nais639G6HjPNpRlkuKMsVpV1QVgXWLljYgjO74rw858yueG4DAHxdrnhpKxD27hHZcHfx0NgUGHsuoz/hRla34xtnKWzJwpTcJ0j+rlrynwN/k/DM/03gbxOGkNxbPujcgW7gl/5DT4XfSfwCLWzDV6sXcPkXsPq15/LLjotft7z6S8v5ry2vLi3n3nJJxYp2CwLujQCw4nVAGG+jrhSxOc7biIEi9C47gG4P7CQUprl8iPzFBy3izDYCGB2EZrveMvgPdr+kR58/YgHSk6qOQkJtFMV2yyjMLBxLgVYpTgQ/t2eOI6zCbusHMWjAjntC7xwF2NJQrjRlAitjSZVCC4fQPZoOKXqU7pD0dPghk1nS9GD7HougV8Fp2QdvAL0L1MPZEm9LtO0xlUZMwJQGMzGsyhKMYW0rVrZlZS3lsIU7dAdji+bJ9xHXezu3LBU2ALe1Hw4EvPcvtucmxH8B/E/Dy2+Bj0e/+tHws5+0xHtYAmsP5y54+y//3LP6FVz8RcnFX5yz+rrk8us+RAH6jnM8lzgu8ZTbB/wuBb8DAMQKzAZMCUkFxu1WFUMAgds5qOPpK7FP/xz8YohTF4FJ+3GfjQSoQkHOzvkf6XaCMUmYgksY6WXHQDBmAWII4luHlIrUdKE5sJEUxjAxGY30wd2poZST4YoEGBDD1YmIFAAgPL7xMTeES2NLgy0jk7FsjGGlKrTxCOFCQaIApQP590hKdt2+euTQqFSCgk7ERbimdSXWlvh2AAGrMTZhZcsAQIXBWMvGtlvlD27c8E12T8w95HZZ8W2weK2PhAMX0jlKE0DnPtjxrnMHHnrvnw0v/3ng7w/H/yPw3wgh/lOCY/APgP/jXT7jt5OOrrP0/e+GCfSEdfsVcN7D5QVcfOG5+KLj4ldrLn71kotfvWT9bcO6jRa+ZoNgjeAK8Dey8e4yA6Lyl5Cs4KiEg8E5aCxod3NMUlzJGwJJGOejCnZD7ybQFeCL0JdCbIi1OrsAhOHGA7cFApPvmMBo80RWELsDaaAD6ZGjNIJsAIDCZMykolWSKtEUJkcYSyv8sHruahLsoPpRnQLH8IMfJtgtvrTYDVjjKY1jY1qUAm0cUoMZWvjLIa3fa7+9wjWhis9KsErRdxKnHa0NTKD2La2t8NUalXUBBMokhEytxZSWVVGytpbNFgQsawuVveW7iWB7Wwvv6mcStXkbVrn9FLrQbMQA3lFZaN8XE3jD3IF/SgjxR8PX+A3wbwJ47/9fIcR/D/x/w9f7t37nkQF4YyjlQ0i8j9fAhYeXV/DqK8/LX7ecfXHJxRcvOP/zF5x9+5J16yiRbNBcYdhgqEmGARERBMZ5+bdYgCzhcACAoxL2NyDWoKvX7UvPbuTtuCTNDr8z7tGXhmlgNskQ3mJtt2UBOjra2/C+ISlwUH0RqEEwDWKs3NARYvQ3EUkBPUiB1lB4QW+CSTCThlYpKmOYmwxrLFJ4jGboDRBjIeO6BBBbQLADAQqmgitL7MrSGsvGeIyxKGURIpbfgtACLUNphDCSRgtqKWmU2SYwoUPZg2/B4WixtK7C2pLKbvCtQLQGbAKlwRQGWoMpDRss6wEAShtYwA9ShGjSxfFEsemRZQcAd9YxWXCeKgkM5D61M+917sDw+38L+Fv3+OwPJz60X3+nKVI/ULYswMN5Dd8995x9VfPy1+e8/PMXXPyDF1x8+5yX7QvWdFRklKTU5HhSdi1j7jIFRgCQboLiPxwA4OEGDtegh+KdsXMpPhy3GUAEAeDW4r1rsOE13pZDvf/W0R7+RIT/meF3jU62HnjNoF2hnUcQL0KEAAHCD2+goPdoBbnpKJSiVoo66WiSHmsyrOiQ2rMRuwkkboh4m8EzEIyBaCrY7U9hgy+hNZay3GBMizaW3ltMETIctQBpJCZRGAMi8UOEocfSBx+hGtoZuFgH2eGwVD4AQWUrZCUxE4OxBca2rEoLiWVVDMrvhv0ABK85csf3DO6ODnyfn+C14RkDG0gcrfeU9udcO9B3dL2l9x8eBToCC1hZuDjznD2pefnrl3z3xQuef/Gcl8+ecda84IxnbOjpt6W/sfjHDsexcPR2oU4JaQmn6wAApyWcbsLxYRnMgNsyBgHLzbK06BsY7EwFCGVA5DhVgG1xrcOXDRQhXXfrfTYM1D8J8feYRGRyhAirvyfBYTDeDP6ASEuGmJb0W5+FGZyCYY5GsmuqoTW9kDgBToSgnB4+uR08lQKLH/YBAILtsm13Um5oVyJUNZgeVIVuNSKJ5oxEux6ZChR62+7PikH5AYSi0wInO2p6GuewtqLyLRvbIqwIDsGiRNsEbQtoLVSWFZbNsJU4qh8SyRmv8BEYOl7X1jt7Szrwnso5quQD+gR+78V7vO0HD9cH/BjCbV318Kr0nD1rOPv6jO++es53v3nGy29e8KJ8wXc8oya6UKYEg3wxeifFzhewIWjrsFeb3cr/sISPBxD4+Aoe3OFlHh/fZgERCEa81DtF71M6UjoyRCvpmx476aFq6RPwadh0CqQanWp0stuU0Cid4YUO6XjC4FGjCVijYLjqiU1EhVIYKcmkopCKVigaKZlKTacMvRT0Mua+GcwQYhRYEiosLcngcAvZce32offWUpcGYQSsOzwOk3aYXKM7gewlhh6jNNp5OtWH9oZicARKiVciVPSp0KaoEZayt5SuonQeaWuMK1BVST8p8LaktzmibVnTciVarmi50h2NGGUl3ZaBIN04jo5AP/pZbJTc39rEcE+7PoBs09LLnrZuf8ZMoG1py2s69+7ZdPeRjiEcWMKr33ScfbHi5ZfPufjqnMunV1xVJSUNLtaCbrW0I2jkOMBbEdLiYnbMGtRlWPkflDs/wGINiwomLhCIKLdLB75vku/IrnSy46q3QcG8QJsOl1jILcxDy34GVu/m4JcCtwzhRFt4bNFic4tNLDYJSTtWG4zo0PErx+ZCNmQj0kto+zBQZ2VoV4r6UlFdGNpXhvZS0V9q3KXBXxmU34UiQ1FxjafAUOGHklmLGWITDj2YC95anG1pbYl3hiQ1WAlJItFTBYWEqcJnkt4oupjklIJMu+Bw9ZZeWpxweG1xxgWHpQiA4YWlJcTlNy7hlVtTOMPXbHimS55Q8tKtw/3UV7ubFB2CcR+BOd7D8SMTfVztaKtHx3ENMXUwD00FSUlpNj9jEHAdTdXiug/nHdyyAAevXnrOf11y8efPOPvVC179ZsXqbM2qrbjG0m3vaOR58a9jbN8SjIprtn4AtYLjVVj1D6tA/Q8rWFawcDuLIp6MY5d6OmLfN54BSXh4Ir0cgKLpHOteoJ1CJxaRh574woHoCL0xEvBzsAcGvxDYBbQTh5042tRiEovNBc5YfJKEZkDCh80TUGRonuethBbsWlBeKaq1oV0Z7CrBXhrsRYJ9ZfBrA91QDTiYGR6NYYKjJqHAUg5sIBgLenAOClpwLb0taW2GczVeaJwW+EzjCgEzjV9CXwweQm0QRg4UvAvNiDuLSkLTQmtC+LLWjtZAp8FqRyls6GBEg/YluTd8LdY8cxueU9LHvn/ulu8mrvJxxYddS8Z4D6Pp5tn5eOI+NnaKUSFjCY1GWzAbSrP+GZsDtqUtS1zX3bPf6g+XHth4uKxg9Y3l1W8uOPuLF5x/+ZzVNxWX19dcsaHF4rd3aczdYpPOGJAfpQerEvZWcLqChys4bOGwhqWDPRcsiTlDRt7wFunoxMZppXK0j8eRCWz7gXZsuvBvKuvQrUMWfpsbIAafoZ0J3FJjFxo7B7vwtLmnyi1JbnHG0Ccea3o63WO0G4aIDLS6FfhK4WtwFbQrSXuZ0F4amssBAC4T7GWGW6f4NhmKgDQ9cbCeIMHjyXA0WFJCFD4hZlF6WjQF+AZnc6zdoH1CjyJRAp9rzFTiFwq3VJipREmJQKGkQMo+TAIXHu16MI7OOJzssSIQmkqFIUcaz7W2aFEF56gD7TTP9YZzVvRswG12Y9Ci0jNcfzHaO3a0H3YsID4uJTsQqIf9hl0/WByYwa9k1lR6yX2e/p8mCPSOtqlouh0Rf+8fAVw7WL3suXxS8eo333H2xXPOfv2C1bXlipaShn6b4RYdZGMmEG1EyZYFyFUI/T0cAOB4DQcdHDo4IGzjYR1R6Rkde26GkcYAEM2BCAQxrZ+ODSBNjyp8WFhEmK5tkrDAuNzQzwXtAlwBtnDYzAVTwISQnDUWpzp60e2ePy/wVtK3Hlcruo3AbqBaKapVSrXKqFYJzSrBXmTYy5SuzMEbFIoegUKQba++wGJI0VgyoN4mKfVYLDUx8t/bFOcSWpeSCkGXSHyi8bmGuYQDBVPwXqK8DCE1D9IPE3ycpTcWb3q86XCmxxpoZWACPZYuJhn3Q3qON1zaYfVnHeh5pPn61n4s42SgqPxR4qofB7CM00m2jM+GwSOiAl3SitjD/PvlpwkCtDhXct13W3B9n+IJ8eN1G9qAX35zwcVvXnLx9Xecrb9jQ0eDp99yOghcvRttMZAfNXcTAGCxGqIAqxAROG3Cyn9A2C+AJcG/WHCTOo5me2yZwNjhNGYFMePmxjPSBeeYH/AhAW+BDMwE+sLQFQndXNIXYHOwU4/NW2xqAhjoDid7OuPpNUghAgg4gW0ltpTYUmGvBfWVoV1nNJc59jKlvcxpLzNsmeK8ph+ebhlOAccu7m2HLxUyBSbDPhmy8los13gKrCuwfUbnrgFNrzQkkr7QsJCwVOF6dh7hoO89ovMo51EdCOPA9Pikw+keqztaFcqZQzvwkMzf0w6ooMFeg7geGiBUQ7ya3aofnX7iDftxv9b4wMVR5mP/cRzVuGUOHdvkEDUA0M8XBCxNU1K67oclaNxTPKFt3vWV5+ppzeWTl7z66gVn589Y8YJYZ7abJRWP490PY6TD3R5SU9QalsPq/2gDD68CAJwSFH9GeFhjYGFOSDEYD/2BmzgDOxbQsgOBOwFgkGFV6XUYD1B3oCw4J+mKhD5T9IUKAJCCTVtsarGZpUs6uqSnNx296uhlaJDpvaTvBM4qbKtpS0l7ranXCeUqp14VNKuM5jKjvc6wvaRHbL/CuLYmuj3sjb0YzAJNQ0NPhWdKS0lHhrUZrc/phSRVCjIJEw0LhTiUsBCItkO2PbLrUK5DtD2i9UjrwFg609HJDic9rYRaBv/AblDL8GR0HlwL6ipUQKlud2/M7tdeMwXGlHW8TsTXEQBKdoNbr4fXY/CPVKGPYea3y08UBDxd19N9oBChB8oOrl91XL265ursFevzC67bV7S8YjuCapuWFzUvloNFA3DI6zU1zK7g9Dpsx9dw3MARcEhQ/JjrP57XF5V6/DXHK3786PiAmNHvjJ2Gt8NNA1Z5FyJOiYYMQVaIoasQmLTHFD3GdOisQyWOJO1RqkOYHq96kOFNfe8DiLQBBJpKU10ryquU9jqjvc6xVxnuKsU6iRsBwPgrRR3x7BjBbh9oT0eOZkLLlJ4NnS9w3YTWlyANIiEMEpkK/FzDnsDtQd8O048siMajavCmw/eCrha42uMyEYYBa+ii7e5gO2o8nkxvQG4G+5xdECgCb6ztiKFAPXodWdztoU3RdxxZQEwnuR4+syOMQmcCModugpI5Y3nTgvgTBQGDMTm5VB/MH1D20Gx6qrKkrkuatsFtA/HjBpTxLkdzwI7exYYHZb+EkwpOGjiysN+EVT8qfCzkGa8U8UFxt352+9+j51mONjX6u/h6a7+HLWYWzwnEY4+OQyyHsg+b6ThUHYdZaIOdGZjJjkxCoTpS6RDYkIHYCVyvgq60Atso2sbQ1oa2MdjWYJuErpF0vXgtsjmO8dzVi/OmxPqFjJ4piJpetWA6ukRiM+hz6OaCdiGo5h4z9WRdR+McqRXkrcY2Hc46qqSlcim1TSirhPLKUEuF7/ubbp22GzL8+iEbqd0pecyeHqcBj4u9xiXD4xDhbRCobm0x9KoMpBMwxyCPwTzEqBP20pMbIcJt1d8t+YmCQEKSFhRavfe5A9uKwd5Tlz22LLFVyCfvtsHbGAmA3VOQcpOTEyr/9ht4VMODBg7qEAXYJ4DAhBuzMm98mehPHGvEKOx3AwjGySbjsNM4K2183Icxd1MCAOwP2xE2KL7qOFRwbAggkIYcocyAMR2Z7EjpkVg8ht4r+q7HOUFrJW2rsU2CrQ22Tuhqg2skbS/eqOBvC/bK7e+Y4aLFKqgGryyd9pB6fNYjJtDOQS47xLTHaE+me3LjyFOH6zqyrqd3jkq31G1C06TUG0OdpNQ6wfduoP7sqLoYeLzsbgLAuIzi9v525edtJ2+8j+OCrpaQ2mhNYB1mD9KHkJ1A+pAiO+XQPORxcXLD4vt5gYDQpOmH6zZsPdQOmrKlKUuauqG1Dd02eBvHXEft08PPYqBegO5h38JHDTxuQh7Asoa9NgBA9AOElnW7hwbCg9HyejLQ2A8ZX0cWEH8+NgXGyj9KYRAEd0N0Q0QQOKTbgsBJBAEDx1mw/ZX0IbqgeqTcderrMXRdT2/BtYq60dS1oW4MTW2wtaZrRWhBzs3Axm15ExjsImuKCAIeS88cZE+vgKzD5Y5+5mHWwayjTz0aR0GHlZpOWpzu6OjwvaL0GWWZsLlOqVcJTaLoxcDyYrf3GGnZrt7d6wAQ2Vz0I4zvaXz9fSAQWV+nQvqmy6Cbgp8BR2AeQXHKrDjldPaQx8VDPp2c3riGf+8N1+6nCQLGkBY5qXr/TKAntA2r656y3FDX0RyocTTsnoy7QGCUKTLv4aGDjyx8MgDAtN4pf9xHcyA+JFGh35CBCtyt9PE4PnTj0CGjYw+JhKILzvNFFwEAjug4lMEkODE7NjAxamf9KIIjQXWDU6yHrsf3wXR2NrCBpjHUdUZdJ7StxDWCrtvhmOd1nHqbhD5FfrhoE8DhcfQKvJF0iaWbWOy0o59Y+tzihnZnlh5HN7QX6/DDil4WDeU8pbxMKDNDmST0asgvtv5mYdb4+DYAZHw/K3gbCCCC8jMBsQiZW34PmIM8AfMRs/SUT2Yf8XjxkM/2T/lsPv0ZZwxqQ5JnKP1+IWBrCngoy466vKKpStqypLHlAALR8z/WwtiT3of9RMJRDw+7AAIfNzCrg+YNNf7k7HwCY1s+BhjGKcJRW+LxmBGMs9HGHjZ163U87sKQy1kPUx/9AQEEDuk5oudAdRyankMTBmOSydHndxDz5IXFk9D1Pc6DdQJrFbZVNLWhrTNsY2gbiW0Du+5unbbnpuXyfbJzexhUTKIQPSgJiaBLLDa1tHmLnTW0WejPL2hx9IQeQ5pugANPR21aNpOMepJQ5wZr0pBd6HVoMxZDdjXBax+99fFkooKPGV30CdwGirGv5oZPQAZnn9gDtQd6D9QSxCHIPZCnzPVHPM5O+XzxiM8Ojvj0cMJn+0OI9i3y0wSBxJAWBeoD9Bi0QN17mo2l3myoqw1NW2J9Q7/1CYzjO2OfgBwmSyp44OG0C+bAxzUU9qbnPw7ijZmAMagwPhHYre63FZ3R63gaERzGoHJruY2mwBSYi2AOHCg46uBIEUwB03MkoYi+imz0ebeWsEDJO3rX0zmB7RS2NYNjUGMbga3ZsoAxZsHrFs/bJbABuT0pASpMIm6zGlu01NOatkioVI0dLkJU+p6eHg0DJ6hpAgDMDXWe4ZNd34QwOskHxb9k56y7eTrh+l6xMwleK+Nm5/i9ER0QwebvMlALSI4gOQBzAuYQkkNIjpjKR3yUPeKz2cf8cjbl872EXxwJfnkC98CAd5478N8B/8jwK0vg0nv/R0NX4j8DfjX825967//47afxnkVKpI5Tdd+fxAh/4z22C5liPS2dcPhtGt7tLeYDDFvRwZ6FAwcHw/7IQe53yj9eGVJ2WTK3IwEdNxMRb4cMx6tJtFLi6YyLUYZElLSFgzakJnxk4dTBRx4eOTj1cFTDYdqzn3akSYesu3B+SRcUQwFKgdBDt44UqTOSNCUrcvyiQLY5ui1I+5xKKWotqHVIPGouodkER7sbnaoYnTqjfbyq45/tvpakRdN6Q9sltN5hRUeFo1KKVokhoStQphI/WE4egUeFOkgaJFZLnNF4qUFqQpzRDIkSTaCGG+52WIxTf8e5/tF1EUE/IzQ6UMPsR5mCSkFMw2aWkB9CcRIcgPkR8/SIvfyEj48f8enpgl+eFPzBieDzU8GnC1jmd5zPHfJOcwe89/9iPBZC/G1C0nuUL733f3S/j//xydZmFT1Ih5AWZTqU7BF9WE12LtyRhlGBbGBawaKBpR22wQ0fhtfubMMIAtGauF0hOFZueB0M/K3fGWPSrR4DSQWzBvbrYKF83MFjC6c9PHZwakOzyJmHRHWEXL4+pBP6Dnw/0Nuh9ZBOICtAFwgmmOmCab8g13Om2YxmPqU9TqgvBfULaJ+HqUzNS6jPoDkHexUmmY/N7dgtLYJDZA1u9NXGLVmCq7ajaR2NdVS2o/Q9VedwnR2AO7jcHR0lHkloRGro/v/2zi9Gluy+659TVaeq61R3V/d0z787d2b27q6NSYQgThQiEfwACLBfFniIwgPYKBJCSiQigYQhPEQ8BSQiBQlFCnIkB0U2SA4kDyARIhDiIYbYOLaDcWxvjOxld+/Mnds9f6q769/h4ZwzU9M7szv3z9yemdvfUam6q3u6f9VV53t+5/eXAE1hryh4BL6PEJ4NBGuB9mzphxLqK2SsNgmhwCRVFRGowAx+PwK/A60uRG0IuxB2zBb3IVnHb6/Tb68y6KyzpdbY6iTsrLZ4ddPjlVUz+NdaoHyjBTyXBKL36zsgTGeDnwD+3BW+64XC98C7hswhc6nt1fQ1BBovrPHCCjGt5jQCRwA226OVWwLIIa3NqGqX0C3PLMcurMC5jc6+9DwZzJvRXXx00wjYJADnXnJawNREtbZnsGLzk4YZbNWwW8BWYSrG7hSwWUBsA4eEsB+qSzP4XaZmSxiLYhyCb4OkRAJeiminBEEXv9VBpm1UFlJPBfUI6jUo1i0BWBIoHpoWbSd7cJRZGwwmLqbpMSsbp+fqp5yRgGZCbTatmdSarK7JSkMAJh76jKy1vXITKkJqJKbuk7ETCDwEUghCAma+fbXCZEbO3I/q9Jf3g4setRZ+HYEfQxyDaJkZX6XQ7kGyAu0U2imyvcJKd4ON3hr3ugO205idNGQrFeysCXYVrIbGnhNccfA3JXoW/FngXa31txrHHggh/hcmcPkfa60v80xcHzwP4QVXWxA9Ic5yc2rjDw41IqwIZI03rWy+gKN6N4eZaDXS0hCA0wK6JXQ1pPp8aQG3l3NfPD/ZNM3oZ6X9z7SCeQJoiNTKoD+FtSms5SZLeeMEtmuj/m8XsFvCoDYtBITLW7eVa05LEmu7KeyMJkFGUCmQqbFkRymEbUS7jahDqAV+hRnVexDtQbIHtd2qfTgawOEfwcH3TZckT7tfVdufQZymYU0407TPSKCyBdwr8tIEA84qTalrIy8159dELkRfcwJIKkKrGVTWkOLqG2khmWHLIBVA7apDuWSx+eqhjp2dZTfmNAusimFqEzF0bNb5agXSHl5/hXZ/hV6/z1p/yPZKn/v9FtsrATtDj10FWwH0QsPBZ8XYngzPSgJ/Hfhc4/nbwI7W+pEQ4oeBfy+E+EGt9eH8P15r8xEh8HxxHRwAOCKowKsRssK3mkBATXlO97Y3WJCDclpABmkOaQG92qQHt/X5AT+P00y/xvOycdxZlf259zcJwCklOSgbk7Q+NekJmxNbvGgG26WZ/XcKaNugN+FOR7izt19eWjIotTXjC7McCEPQCvzEaAOiDbSNyutORGPGQh+8TWAf/D1gD/Se4Y2kZZQL+SZwAqXWHDPFzabmlxZzBHCaP0iOJtc1WVEyyUvyooTSuS1PK53QrNPVPOJCuyo88AW+MCTgIwmIyXRtFIpm7sDp3l3QoPG46Spw5eWUIcwyAXoQDAjUCp10yGA4ZGN1yMZam+31gJ2hz85QsNuGHQkdYTI9n8SNehGemgSEEAHw14Afdsds+7GZffwlIcR3gA9juhSdw7U2H+Hq66EnQeP2NzaBoAJpCMAPmlbxxnIgmEA7hDS0BsHc7HuF0QxSbYxrF0U1NRNPmjEBbjFc8N4r2AwocgYMK47fIIDNqU1WnMG9iSGAzSk8yGErh1ZhBr/LUD2d5DTGKl4W9p4vTQAAgbVyh2ZGE5YASDFGjwYBwPmYBYmJT14HRiAeGv5QHiazbwLTNzVH1ZSAjMAOLI2ksGVEMsQ5e0BOyQTTymVSaAqt0VqbJYx2RN0k7DO4So/G/Fcbk6EICPDwCaiIkRTMSo/ytOfL/C08b/53ZBDak3Uk0IVawbQNdZ84GLIRr7GdrrG1qri/FbBzT7C7Kdjtw1YE7cbgfx54Fk3gLwD/R2v9fXdACLEKHGitKyHEq5i+A28+o4xPDs/DdJh43qFCbhwYOhCiJvBLiGu8qDztYHc68gI7nfamkGZ2GZA3NAFrGLzMEe6ujgs+mQ8OukjzhDOXYWMJIO3X9nNj5d+emcG+PYGtDO7nZr+eQ2gJ4D1LitOJzmoAujQBM4U2d2UsQUkoI85u8g7vIYB5uPTAwL59w/y7V0M8ge6R5nA8Re1lhDojIwDiU+NgQUCOPiUCM4i1tQuU5NpO/C7Zp5qPwy3OCVPjnztlx1V+4EMg8QkRxFRa87gOrF9hvlCA5MzaGzaehxhiVBgyMB1gvDqhz4DtYJ1XVcpu6rMz9HhwDx48gPspdIxC8twD4K7iInxP3wGt9Wcw3Yc/N/f2jwH/RAjhUiv+jtb64PmKfAXUBVU+pa4+yEjzlBACEbaQsQlKitsS1Y1QrZBsGhnrcSigXZkgoLZv8wAqk+ftTUDnMMvhpDDuwaYm4DSApiFvMrfPOB8r4Pb2ivr2q7t261nrf29qSODe1Kq2CeAAABqoSURBVBYunsLaBDZzSCbm/0RzgmySiUNgM1hkZjwBsgV1D7R1OUggcrmxH0AATTTjF3Y5daj0cyhmmkpr6n1NpDURBRGSCN2gXm3toRMCpvhM8MioggkEJ+a390+gPoLKmRodbdjfDY8uPgNMgFSEbUJaaSgDgkAi4pigo3nc9XmnK3k0Cnh8OuO7i+BUfkcEivPLgBTJgEGcsnI/ZbAds74bsv2Kx/auYOcVwe4ubK9DP8L0SLjar/jEeNq+A2itP3XBsS8AX3h2sZ4ReUU1y02m1zVACkEgQ2QYEyYhSRLT7UeMO4p8dkIV+dQdTdGpqFVFnUzRLQwJhLaJSJlhG8bZ2ZSzmbe5b1q+3MAvGo+tLUCU5nZLhak/slIbE0RqI5JTSwC9qclZ2siNUXB1BkluCtKQN9b/7rtpfKczbE80MMZWFoVcmfMhN9qPa4n2tJkbAqMRvG4+0tMla9p+9zchfhuUNiVEwtN/kZZqTPnxghxJhhAZqAzTsu0Q02LpBLRre3yMy/yUwACfNTzWgXv4xGj8qsarwdcCSYCQmkB12UsDhhuSdwrJ3oniXSTHpzN+c9C7WnAKgaJDj43WgPXtLqvbgo1XBGuvCTZ3Bfd3YPs+3FuHNDLK7HUsbZu4mxGDVcVsUlBWz93UAIAQAhmGhCpEJTGqG9FuK9JuiyoPqRIJykMnNbUqqBTQrsjjGZk3oyhnMCkgy+GwOKsVOD/4HdyAb+5zEBMT0psCA20qkA2BobarjZkpTNydmbQERwYrhdnLmbX6F+azTvXfJhE0Samp6Qa5aVksY0sAtopOWGAKXsIz3boCc3IfNt/vaViLjeKhViD8Hshx055q1kzF6V9GTg4iA3UC8aEhguAEAkcArjzPDB+fHh6b+NzHYwufbTwSwJ+VyFzjaZ8giJGxRKSag4Hk7TymVyiG31P0csXbSN5FEZCiLAHEpEgSJCmh12VzI+TermD7Ndh8TXDvAWy+DvcewOrQdHP3xLU4ty7EnSWBqpii6+e/HBCY5a9UIWESo9IIlcYkqSLtK3TdMhatRECrMhpAZCLrKplTeDNyJpRlzmRSkJ9oikfG21TB+cHfmIn9zFQBT3MzsXULUBMz4Hul2a/a/bAwvv92YQkgM0sDmYOYgpiZzxTNJXFziXyZRuJsW64hST6GXGKqkFpmkgW05hMbnuHHXtVWAynwFAwkyIHxPvId4B3zI5VIa74wBJCRIcWEoGsJIDyBYGxIQR9DeQSVXSIwo4XHGj5b+OzgsYvPAyS9ysNzlbx9U1RFxDFBF/ZOYtJCkeYpb2uFeqRQY0VKirRbTEqoUuJYESpB0oad1wU7r8G9D8Huh+D+H4N0C4RnTvlFDX6HO0wCBfU1tSYXQiClQEYRoYpR7RjVD2kPI7RQeHGNHxV4LfBkDnFNEFXUUUERFBRiQk1OOc0pDjWFZ4LPHE4N7xbKehVVAd0MksLM9Co7G/iDwjgdhrmpS5pUwMQOeFuiWsw3IGk6Mi4iAHivRuKWvhkg9ZkWQAZyYtYT8qKghqf9sUtzYj8IxCDigG4KUmHzLSTlm1Ce0wEKFAVjdWLWQ6pBAL6d/esTW/7rmJApAyRr+Ny3g/91PF6noDczvQXlzENonyCQyDhEJrA36DLQKUOtSFVKmqSke4rvHabEcYpSQ5RKUCkoJUwMUAd2PgKvfQi2PwK9BzYy+AUP/CbuLAnMpgVV+fxIwIUAnWrEUhAqiWqHtNOINFUUfUVAC18WeFGFbJl6/FIWeLKAqACvMB2Ti5wy12jXP7pxE5yquKUZT8oO+jQ7/9g5GNzMHzRmdTHffcg9n5/958OKm+wz741oagHOW5FnULqeiXYp4D8nAnDCOBvBnwRs/FGsYFNBGdrOhG9ChrQEkCFVhkytPaCbQZwZIjhXpvcYOCKkYIBkE98uByQPKsnuiSRxtfxymyvgh8YDUsSs1SkdUlKZolRKqlJU2kONUlQ6QKWCNDGDX6WQKmivwGt/HO59BNh59lXT88CdJYEqn1JfQ0NktxzwPI9YKU6UQrUV7b6iOFEEfgspa6SElq+J/Bopp0iZ4ckZyPoszNcRQHneowznn6dWA0iLMy2ga5cHTYOhcM9dDO1FbcldEP58/sG8BgAXk4Ab/KebtksBuwVOkGeBE8Kxkz4bKK9gNAJpPJIb0i0BJNmbBZksGKcFSuXINEMmGaixNSBkJlbaGgZFlRFwQoeSIZJ1JFva55WyYPdIkhxJRNYyRQUL63KWgQnx1QqCLrFMeaCGqG6KyoaocQ+VKdIUQwIpZrPRwGkfOh8BscrCB7/D3SQB38eXEu85ZxFKjOEtAAJfEKy00aMhpCPq7gF5kuJNjvDqCjmbGm9zdURdH1FW5VmRTgVxBGFsnyfGo+i8yM62fOpYsgQQNwdf1hj084PfPXeDv+A8ATQ1gIvW/5fhIrc6mAUzmdECzjVUdR/4NHd7Uz1pqCmiMEFFExCFpAtsIEGCDCVSgZYSrQS5lOQhZApOWtpEQFEgq5I4g2hW04oLVkXNlpZs47NTRuxkIZ1pC1FENp4/Ab8LrQRUArprIvyKASJbhWLIep6iJokJAcmEJQFDAN0EYlcuPjUfeVMIAO4qCWACO7znmEHUdMX3MG5CX0r0YB1GB9Rpn7wzQByOYTrFK47xpzVMC5jVVBOTZRsl0FbmXlLKbGli7IjOoZRiiOAUTsWfN+I1XYYXGficNvB+y4AncaBcpBm4OJgwMzOtdG4GxzzwZETQjFC65OSENNlN2rgGBxKklMTKRBHmBBQyIBNwEsAITRaUxNJmbBcaNStITipUBBsx7GiPnZnHg6nPShHhFcpE8tEFvw1R16xDRA+CBEQXGEKxCvQQBXQQdAob66QgcDFBrbmzv0EEAHeVBHyfwDM9bK8DHsarN/QFZRpSD4bkB3vMVIpudahmR9SFR5VV1KMCxjXlCFoByLaZUFa60GtDT5nZYuC9T1jNZQP8gwjgsmNPaypxgUtNBIDQRguQ2ZlWcBqEM2Wu6sgV0LRYXrQBgYRXAQlCSVIl6fbMeqXIhQnBKE2ruHEBk9os5VWgSXRJdwrJyBzbqE3W5E7hs1q0iHIFhYKiY9wQUWqy+8KBSekNUzPCxQbNcE937Zr9pm8D7iwJ+FLiXUPYsIOHsVXpIKBOh+TdITO1QtXqkB+1TBmto5rioKLYN7azGpNl2+maRkODLmz0jAvvfZWWpgp+2bjQlxxv5ts+K9znNeFSnmVmfJCyuSZxqoqLMrrKFPh+BODYzAljNQIF9CQMYSeTFJkkyyTjXDLKYP8EDnNNGhQoXZLkxqbSDmt6QcHWBHYqjx0i0irC1CV3hR5XTDmveAidPgQulrDN9cXwvVjcTRIAfN9HXLPfxQOSQJB2Q07SAcfdPtN4hcA/YFZKOK7goKYac9qJKjoxHqt+YlJ32xl4Pd7/fpqbBC8c/OUlj5+3bbQZyHRKAFiD4ITThpinFvjMvrF9xQ93uGxJMOGshVIB2OCBFRADCA4lm+OA8QmMRjAam5cPpyW9GLoBtGtNOitIjyt6NWyFsCMEKR5n5cptrWWZQjSAzhAC1w3mhi3qnxF3kwR8H19615E/9B5IYCUIyLo9jtUK01aXTLSoC0l1AtVxja7OkvpM6gukJyajz3N2tPeTdT5+vznQm/vn5Zl7PzS/oxlBGBaGAAK3DLjISukqLn/QFzh2m0/LbiZQzOVeC2ADxLqkeyTY3JeMFOxLGARwcABpAD1dM8xLUhtklc40m37N0PNohdKU9RIKfAVexzC0HFjVf5Wnz9q/ubibJICPz/XZBOYhfY+VdsxJt88s6uILBaWknnrMyvPVwX3Oosn9ClOgcr5ewPw9VsztX8RgvypONQENcgpBCael112Aguu+9EH4IFvAvPrjYq0bt7HwER2frUjzMAwY4NMtNWkGA6Hp+RUDLejngkEJ/Zlm2/Pph9IkQoUtCBNrAFwBf9VoAN6Au0gAcGdJoKLS9RMZvp8Fvg9pO0KvbSI3RhzsjZC9R+jOHvmjE7zyiAqjIB8C+xjleAerWB7PfeD8VblJg76Jc8Tl21hemyOPqyXgOqhcRQu4DPMk4CKWXMNNffYdegx1BvsZwV5G8GgCowmMSwgFMowIpUcchiSyRSfsoloRMrkH6h4k9yDZALUB8SbE66b23x0c/A53kwRceF/9omgA/NCjN+zir28hH+6h9/bJVw7I3hkhJzM0OQUmXeUhZ911tznrTXR6m93UQd+Ey5g9jWqyFvPTIiKOEFwvtSe91S7TCjKMPpXNvb8E3YF6DPtjeJwhHmXwOIdHBRwWCOXhoZBeRSRARZp2UhN32tDdhu596O5AsgXBJmbhdncHv8PdJIEaa4l7cSSAD35X0l1fxXtnl2plxDQdcahGeIdHlNU+GZpDzlyBU4x2MMT4lptlBm80XKEcsMZBj7Pmia6HmmtlmnD1s3I1+Jpoujecd6CpAbh6hxqqGTw6gb0TxH6GfHwCjzLEqECMSoIyRHohYRQQez6RDGlHAXGnC4MH0N+FaBfTc+luDo2LcJWiItuYcuPrmF/9V7TWvySEWAH+DSaQ87vAT2itH9sKxL8EfAJztT6ltf7y9Yh/GdyN8YIRgjdQqOF9Bisjxr0RrXSEfzCinkzIOOHA1iXKMQQwwhRmrDBlvW/8qtPZ41y+Q4AJgQutL/108LtWSs9yNrqxXVTiCHPMFWgZS6MF7B/C3gnBfoYcTQjGBYxB+MJkf1aKSLZQUYJqK8J0BdLXIHpgZb/RV+C54yp0VwJ/T2v9ZSFEB/iSEOK3gU8Bv6O1/gUhxKeBTwP/APg4pqzYh4A/Dfyy3b846JqqKq8ti/BSeIDyCAYpycoOnZURcXeMH4zQjJmyB+QUVBxRs09NjFE6K8z42uTZC0e+EJy6/gOzDAi6djlgymWdldB6Wrg13bwWMOGMGIBSmupM4wJGEh6NYf8Y9seIRxMYFfC4gKMCL2oRJCFh1SYWHZKwh0r6yPYGxC8nAcDVKgu9jZms0FofCSG+AWwBb2DKjgF8FvivGBJ4A/g1rbUGflcI0RNCbNrPeTFwbZwWoAwQAYOIcGWdTm/XaALRiOpoxIyInCkZGb7tRWD65JhbL+FsNX2j4caJJyDo2XDattnTJIIrtsC58MPdcu6iMGJbNLAEDn14JGE8M5rAeAx7h/AoIxjliH1rE5iU+G0PrwiRuk2LIYkcEKtViLZ4WQkAnnDhY5uQ/BDwRWC9MbDfwSwXwBDE9xr/9n177MWRgPDwhM9VOrI+d/iYytFbCZ3/t0t/Y0J3fUYymTGd9iiqI3KOKDmm5ISSMRUzelRsUHLPNNO+ObejU/s9DMF1BPRD6IY2N3YDeqvQ3YJoE3MbrGGI4Gmr4IeNzZUYd/qRADRMbTzwuIDHlbH+j0sYT2FUwkmNOKyQE40/9fDzgKBKaIkuSg5otzdo9zaRnYHp+HNzfvEXjiuTgBCijakf+LNa68NmNJ7WWj9p2fBr7TsQSaKOwpcLMu60gQ97tOsBO+JPcBK3mbT77L/7FtnkkEk+ZlaNmBSPmZYjptUYvz6mYsyUjJoCQWnba1wjmgPcbW6d7wlT6kZ6tpRSAJvSJPFvD2FzCPcGsD40z3deBbWNcXze42oRghcJ5DpzNqvzup5sVmeqaygCmEmbIOXb4EQfJvFpSEIQSmQU0uq0SOKczmCL/uZ9Bts79F/ZIrk/gPaT5jXcPVxplAghJIYAfl1r/Rv28LtOzRdCbGI8XwBvYTxfDvftsXO4zr4DQgbEShFcQ1fiK6MLwUcEwzDl9fTDFCsrvPPuHsdHjzg8fsT4+BEn432Ojh7D8QFyNkbUj5nVI6b1mKQ8Nv7uevZsyxoxtzUH/OmE65l+AVFoBr2yPQXDyBwPQ1NLcLNnBv3mCmwMzfO1IaQr0L6P0QBWOHOAPi18zOLI1SF3m03WKW1h1ql/Fo/kSgbOIrMUFAJPhshY0hItklLQXd0i3dylt7tLem+AbD9lIdQ7hqt4BwTwGeAbWutfbLz0W8AngV+w+99sHP8ZIcTnMQbB8Qu1BwBhEJLEbWSwYDdPF6IPw3pPUW9uk769xsHomIPHh8QHe4xH78LjfYrRuwSTA+rZAbPZY45mI5LssanhN9uHYga1Td+rG5uDd8FecDZ5zu9DTN+qWELcgrhtVGLVM0UOVGyi5yIFrcg0F5Ut2BzAcADrKQxXoN+Hbp+zGMinsQFcBqcVuEQd7+x4UZmW4AWma+kJtttbbYihMinGflASthTKq2jj0xneJ733CunWCqq7JACHq4ySPwP8DeBrQoiv2GP/CDP4/60Q4qeA/4tpTArwHzDuwW9jlLS/9VwlvgLCKCJJYnz/BlxoBfEObPUFnddaPDxskez1kXtDxKNNyocPmRy8hX+8R318QHFywMnxPrPsgCh7jMgSmI2hspFweXk+JdhpznC+7L0r+e9y/l2Xo0BAKzRFDZIUkiG0B5D0QPUtGSho2ZznlgLVNoUQhn0YppAkpkeY7wKBrnM97ZYHrqMKUOS2RoKt1zAFZrXxEtTuveB7HrJVEUtIZEBncJ/u+grdrv8SRQF8MK7iHfjvXH6V//wF79fATz+jXM8EGQYkbUkQ3BBjj2dS0gepKW4T3fNh3KV4lDB7q8foYR85egfG+0yPDjgedxmPegzH+3hHLcSsA1UHisdQHBnNoCiMddwF7riMPjfbNwd/LGwxA9snMOmbrDi3peuGCNpD85rqGIJoJZYAWqaicCsymoN40U5Ml3FhEzGq3GoDhSUBSwAZph01gOfjhx6h59PCI1EhnbUhvYFPe8kA53Anfw4ZRiTtgEWvBubhAR0Jom/G9Gzoc7La5dHbEeFen/rRPrODdzkaJ6jkXYI4oROGyKKLKLpQdGF6BMX4jAxkZTa/PtMK3BYL0ypctcxM7gZ1ZwDddUjXoL8B/U3orhkyUD2TQCNbhjSCyC4vFk2oPtC2S6HcnPu0MEQwK86ylqUE6YMn8aRESokKJZ1OSDqM6XTv6E3/DLiTv8epmXHR9+0lUJiW0qINXgtkGpGsh/QeK/oHA/rjdXr7DwkP9vD279lBP4biGLIjyI+hGEF5CF5hq/oUICwhBJUtUxxD0jZrftU2M7xqQ3dgBnxv3ZBAexOiFQjbICOTDHQjfzwJXhuSGjZLs2/bTRXQqY1hM/BA+sRRwLrvcRJ50PFZ3zT1BJY4jzv5k1RlyWxaUzVrhN8geJxlEfYD02xSKUF7tUWYtwhPOoSHG4jxDPH4ACbHUJxAcQizY6sNHJtNTA0BeAX4BXi5aeAntVm7q7bdWwJIFCQDaK1DuAZhB/wYxBP0DFwkPGmLMUamQ9EGxiZwqE0Mtu3ZJYThg1UAD7oR7PSfr+nyruAGDpFnR1FVTKc119CA6LmihVm2dzAl83yJ6ebdCWE1tNGyKVQV1KVRf4sSZhOYZlBkIGbgTQ0BCFtRVExMfr9ShgCiBII2+B0IXMGMFhfkL94uOM+hwjRh3Dj/sjOTrGHaeSc3wE58E3FnSWCWl9R1zU2vA+cKWp2Du7kjOPW5a+x6WJutqmympG0g4LlGAhWnSTZBC/wAPJ/3+Npv68C/CM4jcsHd7F7qvFiJbhXuJAlUec50MqO6poakC4Hz+/vNqB95wRubmXe3eJZ/jrhjlPfccTdJoKzIZ1PquuKp22PfWixv+SWeDDdbV35KVFXJbJpTVS84lXiJJW4h7iQJ1FVFURTWJrDEEku8H+4kCVBVlNX1tSZfYom7hLtJAkCVl+gXWGh0iSVuK+4mCVQVZb3UBJZY4iq4syRQFQX1IoqNLrHELcOdJgG9NAwuscQH4m6SANjmI4sWYoklbj7uLgnoJQssscRVcHdJYIkllrgSliSwxBIvOYS+ARZ0IcQeplzk/qJleQYMud3yw+0/h9suP1zvOexqrVfnD94IEgAQQvye1vpHFi3H0+K2yw+3/xxuu/ywmHNYLgeWWOIlx5IElljiJcdNIoFfWbQAz4jbLj/c/nO47fLDAs7hxtgEllhiicXgJmkCSyyxxAKwcBIQQvxlIcQ3hRDfFkJ8etHyXBVCiO8KIb4mhPiKEOL37LEVIcRvCyG+Zff9RcvZhBDiV4UQD4UQX28cu1BmYfAv7HX5qhDio4uT/FTWi+T/eSHEW/Y6fEUI8YnGa//Qyv9NIcRfWozUZxBCbAsh/osQ4n8LIf5ACPF37fHFXgOt9cI2TAHA7wCvYsrq/j7wA4uU6Qlk/y4wnDv2z4BP28efBv7pouWck+9jwEeBr3+QzJh+kv8RU7Dwx4Av3lD5fx74+xe89wfs/RQBD+x95i9Y/k3go/ZxB/hDK+dCr8GiNYEfBb6ttX5Ta50DnwfeWLBMz4I3gM/ax58F/soCZXkPtNb/DTiYO3yZzG8Av6YNfhfo2Rb0C8Ml8l+GN4DPa61nWus/wjTI/dFrE+4K0Fq/rbX+sn18BHwD2GLB12DRJLAFfK/x/Pv22G2ABv6TEOJLQoi/bY+t67M27O8A64sR7Ylwmcy36dr8jFWXf7WxBLvR8gshXgF+CPgiC74GiyaB24wf11p/FPg48NNCiI81X9RGn7tVrpfbKDPwy8BrwJ8C3gb++WLF+WAIIdrAF4Cf1VofNl9bxDVYNAm8BWw3nt+3x248tNZv2f1D4N9hVM13nbpm9w8XJ+GVcZnMt+LaaK3f1VpXWusa+Fecqfw3Un4hhMQQwK9rrX/DHl7oNVg0CfxP4ENCiAdCiBD4SeC3FizTB0IIkQghOu4x8BeBr2Nk/6R92yeB31yMhE+Ey2T+LeBvWgv1jwHjhsp6YzC3Rv6rmOsARv6fFEJEQogHwIeA//Gi5WtCCCGAzwDf0Fr/YuOlxV6DRVpLGxbQP8RYb39u0fJcUeZXMZbn3wf+wMkNDIDfAb4F/GdgZdGyzsn9OYzKXGDWlz91mcwYi/S/tNfla8CP3FD5/7WV76t20Gw23v9zVv5vAh+/AfL/OEbV/yrwFbt9YtHXYBkxuMQSLzkWvRxYYoklFowlCSyxxEuOJQksscRLjiUJLLHES44lCSyxxEuOJQksscRLjiUJLLHES44lCSyxxEuO/w9Xy/D4x6ZpywAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "dataset_show = create_dataset()\n",
    "iterator_show= dataset_show.create_dict_iterator()\n",
    "images = iterator_show.get_next()[\"image\"]\n",
    "# Images[0].shape is (3,224,224).We need transpose as (224,224,3) for using in plt.show().\n",
    "picture_show = np.transpose(images[0],(1,2,0))\n",
    "plt.imshow(picture_show)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 定义卷积神经网络\n",
    "\n",
    "卷积神经网络已经是图像分类任务的标准算法了。卷积神经网络采用分层的结构对图片进行特征提取,由一系列的网络层堆叠而成,比如卷积层、池化层、激活层等等。\n",
    "ResNet-50通常是较好的选择。首先,它足够深,常见的有34层,50层,101层。通常层次越深,表征能力越强,分类准确率越高。其次,可学习,采用了残差结构,通过shortcut连接把低层直接跟高层相连,解决了反向传播过程中因为网络太深造成的梯度消失问题。此外,ResNet-50网络的性能很好,既表现为识别的准确率,也包括它本身模型的大小和参数量。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "在构建ResNet-50网络中,初始化参数,通过判断`args`的参数,用户决定用哪些功能。\n",
    "可以通过改变`epoch_size`来调节模型,获得更好的性能。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "from mindspore.communication.management import init\n",
    "from mindspore.train.model import Model, ParallelMode\n",
    "from resnet import resnet50\n",
    "from mindspore.parallel._auto_parallel_context import auto_parallel_context\n",
    "\n",
    "# In this way by judging the mark of args, users will decide which function to use\n",
    "if not args_opt.do_eval and args_opt.run_distribute:\n",
    "    context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL)\n",
    "    auto_parallel_context().set_all_reduce_fusion_split_indices([140])\n",
    "    init()\n",
    "epoch_size = args_opt.epoch_size\n",
    "net = resnet50(args_opt.batch_size, args_opt.num_classes)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 定义损失函数和优化器\n",
    "\n",
    "接下来需要定义损失函数(Loss)和优化器(Optimizer)。损失函数是深度学习的训练目标,也叫目标函数,可以理解为神经网络的输出(Logits)和标签(Labels)之间的距离,是一个标量数据。\n",
    "常见的损失函数包括均方误差、L2损失、Hinge损失、交叉熵等等。图像分类应用通常采用交叉熵损失(CrossEntropy)。\n",
    "优化器用于神经网络求解(训练)。由于神经网络参数规模庞大,无法直接求解,因而深度学习中采用随机梯度下降算法(SGD)及其改进算法进行求解。MindSpore封装了常见的优化器,如SGD、ADAM、Momemtum等等。本例采用Momentum优化器,通常需要设定两个参数,动量(moment)和权重衰减项(weight decay)。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "通过调用MindSpore中的API:`Momentum`和`SoftmaxCrossEntropyWithLogits`,设置损失函数和优化器的参数。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "from mindspore.nn.optim.momentum import Momentum\n",
    "from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits\n",
    "\n",
    "ls = SoftmaxCrossEntropyWithLogits(sparse=True, is_grad=False, reduction=\"mean\")\n",
    "opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 调用Model高阶API进行训练和保存模型文件\n",
    "\n",
    "完成数据预处理、网络定义、损失函数和优化器定义之后,就可以进行模型训练了。模型训练包含两层迭代,数据集的多轮迭代(epoch)和一轮数据集内按分组(batch)大小进行的单步迭代。其中,单步迭代指的是按分组从数据集中抽取数据,输入到网络中计算得到损失函数,然后通过优化器计算和更新训练参数的梯度。\n",
    "\n",
    "为了简化训练过程,MindSpore封装了Model高阶接口。用户输入网络、损失函数和优化器完成Model的初始化,然后调用`train`接口进行训练,`train`接口参数包括迭代次数`epoch`和数据集`dataset`。\n",
    "\n",
    "模型保存是对训练参数进行持久化的过程。`Model`类中通过回调函数的方式进行模型保存,如下面代码所示。用户通过`CheckpointConfig`设置回调函数的参数,其中,`save_checkpoint_steps`指每经过固定的单步迭代次数保存一次模型,`keep_checkpoint_max`指最多保存的模型个数。"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "本次体验选择`epoch_size`为10,一共迭代了十次,得到如下的运行结果。体验者可以自行设置不同的`epoch_size`,生成不同的模型,在下面的验证部分查看模型精确度。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:00:19.338.911 [mindspore/train/serialization.py:320] Execute save the graph process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:00:26.722.576 [mindspore/train/callback/_callback.py:52] update parameters in the net.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:00:26.857.220 [mindspore/train/serialization.py:262] Execute load parameter into net process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:00:26.901.030 [mindspore/train/serialization.py:284] Load parameter into net finish, 0 parameters has not been loaded.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:00:26.905.358 [mindspore/train/serialization.py:138] Execute save checkpoint process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:00:27.502.16 [mindspore/train/serialization.py:164] Save checkpoint process finish.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
435
      "epoch: 1 step: 1875, loss is 1.2926\n",
Z
zhangchengmin 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
      "Epoch time: 105040.679, per step time: 56.022, avg loss: 1.293\n",
      "************************************************************\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:01:25.345.641 [mindspore/train/callback/_callback.py:52] update parameters in the net.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:01:25.410.278 [mindspore/train/serialization.py:262] Execute load parameter into net process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:01:25.453.675 [mindspore/train/serialization.py:284] Load parameter into net finish, 0 parameters has not been loaded.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:01:25.457.693 [mindspore/train/serialization.py:138] Execute save checkpoint process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:01:25.650.828 [mindspore/train/serialization.py:164] Save checkpoint process finish.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
455
      "epoch: 2 step: 1875, loss is 0.8226\n",
Z
zhangchengmin 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
      "Epoch time: 58600.447, per step time: 31.254, avg loss: 0.823\n",
      "************************************************************\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:02:23.950.189 [mindspore/train/callback/_callback.py:52] update parameters in the net.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:02:24.153.21 [mindspore/train/serialization.py:262] Execute load parameter into net process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:02:24.591.32 [mindspore/train/serialization.py:284] Load parameter into net finish, 0 parameters has not been loaded.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:02:24.632.58 [mindspore/train/serialization.py:138] Execute save checkpoint process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:02:24.255.873 [mindspore/train/serialization.py:164] Save checkpoint process finish.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
475
      "epoch: 3 step: 1875, loss is 0.6473\n",
Z
zhangchengmin 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
      "Epoch time: 58604.997, per step time: 31.256, avg loss: 0.647\n",
      "************************************************************\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:03:22.548.058 [mindspore/train/callback/_callback.py:52] update parameters in the net.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:03:22.613.155 [mindspore/train/serialization.py:262] Execute load parameter into net process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:03:22.664.126 [mindspore/train/serialization.py:284] Load parameter into net finish, 0 parameters has not been loaded.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:03:22.668.172 [mindspore/train/serialization.py:138] Execute save checkpoint process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:03:22.858.740 [mindspore/train/serialization.py:164] Save checkpoint process finish.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
495
      "epoch: 4 step: 1875, loss is 0.3235\n",
Z
zhangchengmin 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
      "Epoch time: 58602.803, per step time: 31.255, avg loss: 0.324\n",
      "************************************************************\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:04:21.151.561 [mindspore/train/callback/_callback.py:52] update parameters in the net.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:04:21.215.250 [mindspore/train/serialization.py:262] Execute load parameter into net process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:04:21.257.986 [mindspore/train/serialization.py:284] Load parameter into net finish, 0 parameters has not been loaded.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:04:21.261.961 [mindspore/train/serialization.py:138] Execute save checkpoint process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:04:21.453.475 [mindspore/train/serialization.py:164] Save checkpoint process finish.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
515
      "epoch: 5 step: 1875, loss is 0.4524\n",
Z
zhangchengmin 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
      "Epoch time: 58594.759, per step time: 31.251, avg loss: 0.452\n",
      "************************************************************\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:05:19.749.137 [mindspore/train/callback/_callback.py:52] update parameters in the net.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:05:19.813.864 [mindspore/train/serialization.py:262] Execute load parameter into net process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:05:19.857.466 [mindspore/train/serialization.py:284] Load parameter into net finish, 0 parameters has not been loaded.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:05:19.861.498 [mindspore/train/serialization.py:138] Execute save checkpoint process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:05:20.542.51 [mindspore/train/serialization.py:164] Save checkpoint process finish.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
535
      "epoch: 6 step: 1875, loss is 0.5436\n",
Z
zhangchengmin 已提交
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
      "Epoch time: 58600.685, per step time: 31.254, avg loss: 0.544\n",
      "************************************************************\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:06:18.348.434 [mindspore/train/callback/_callback.py:52] update parameters in the net.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:06:18.412.409 [mindspore/train/serialization.py:262] Execute load parameter into net process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:06:18.455.244 [mindspore/train/serialization.py:284] Load parameter into net finish, 0 parameters has not been loaded.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:06:18.459.279 [mindspore/train/serialization.py:138] Execute save checkpoint process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:06:18.653.804 [mindspore/train/serialization.py:164] Save checkpoint process finish.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
555
      "epoch: 7 step: 1875, loss is 0.3080\n",
Z
zhangchengmin 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
      "Epoch time: 58599.470, per step time: 31.253, avg loss: 0.308\n",
      "************************************************************\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:07:16.948.524 [mindspore/train/callback/_callback.py:52] update parameters in the net.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:07:17.128.67 [mindspore/train/serialization.py:262] Execute load parameter into net process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:07:17.584.99 [mindspore/train/serialization.py:284] Load parameter into net finish, 0 parameters has not been loaded.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:07:17.625.36 [mindspore/train/serialization.py:138] Execute save checkpoint process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:07:17.254.278 [mindspore/train/serialization.py:164] Save checkpoint process finish.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
575
      "epoch: 8 step: 1875, loss is 0.4420\n",
Z
zhangchengmin 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
      "Epoch time: 58600.389, per step time: 31.254, avg loss: 0.442\n",
      "************************************************************\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:08:15.546.176 [mindspore/train/callback/_callback.py:52] update parameters in the net.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:08:15.611.947 [mindspore/train/serialization.py:262] Execute load parameter into net process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:08:15.655.998 [mindspore/train/serialization.py:284] Load parameter into net finish, 0 parameters has not been loaded.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:08:15.660.156 [mindspore/train/serialization.py:138] Execute save checkpoint process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:08:15.853.579 [mindspore/train/serialization.py:164] Save checkpoint process finish.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
595
      "epoch: 9 step: 1875, loss is 0.2113\n",
Z
zhangchengmin 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
      "Epoch time: 58599.249, per step time: 31.253, avg loss: 0.211\n",
      "************************************************************\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:09:14.147.518 [mindspore/train/callback/_callback.py:52] update parameters in the net.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:09:14.211.164 [mindspore/train/serialization.py:262] Execute load parameter into net process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:09:14.257.088 [mindspore/train/serialization.py:284] Load parameter into net finish, 0 parameters has not been loaded.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:09:14.261.142 [mindspore/train/serialization.py:138] Execute save checkpoint process.\n",
      "[INFO] ME(27502:140200539502400,MainProcess):2020-07-18-00:09:14.437.118 [mindspore/train/serialization.py:164] Save checkpoint process finish.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
615
      "epoch: 10 step: 1875, loss is 0.3720\n",
Z
zhangchengmin 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
      "Epoch time: 58583.483, per step time: 31.245, avg loss: 0.372\n",
      "************************************************************\n"
     ]
    }
   ],
   "source": [
    "from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor\n",
    "from mindspore.train.serialization import load_checkpoint, load_param_into_net\n",
    "\n",
    "model = Model(net, loss_fn=ls, optimizer=opt, metrics={'acc'})\n",
    "\n",
    "# As for train, users could use model.train\n",
    "if args_opt.do_train:\n",
    "    dataset = create_dataset(epoch_size)\n",
    "    batch_num = dataset.get_dataset_size()\n",
    "    config_ck = CheckpointConfig(save_checkpoint_steps=batch_num, keep_checkpoint_max=35)\n",
    "    ckpoint_cb = ModelCheckpoint(prefix=\"train_resnet_cifar10\", directory=\"./\", config=config_ck)\n",
    "    loss_cb = LossMonitor()\n",
    "    model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 加载保存的模型进行验证\n",
    "\n",
    "使用保存的模型,调用`model.eval`得到最终精度数据约为0.84远高于0.5,准确度较高,验证得出模型是性能较优的。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "result:  {'acc': 0.8386833333333333}\n"
     ]
    }
   ],
   "source": [
    "# As for evaluation, users could use model.eval\n",
    "if args_opt.do_eval:\n",
    "    if args_opt.checkpoint_path:\n",
    "        param_dict = load_checkpoint(args_opt.checkpoint_path)\n",
    "        load_param_into_net(net, param_dict)\n",
    "    eval_dataset = create_dataset(1, training=False)\n",
    "    res = model.eval(eval_dataset)\n",
    "    print(\"result: \", res)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 总结\n",
    "\n",
    "本次体验,带领体验者了解了MindSpore的卷积神经网络ResNet-50,通过构建ResNet-50对CIFAR-10进行分类。可以看出MindSpore的ResNet-50的构建非常容易,损失函数和优化器都有封装好的API,对于初学者和研发人员都非常的友善。"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}