提交 1314bdfd 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!21 upgrade lenet experiment to r0.5, unify codes for different platf orm

Merge pull request !21 from dyonghan/update_to_0.5
......@@ -129,14 +129,15 @@ dmypy.json
.pyre/
# MindSpore files
.dat
.ir
.meta
.ckpt
*.dat
*.ir
*.meta
*.ckpt
*.pb
# system files
.DS_Store
.swap
*.swap
# IDE
.idea/
......
......@@ -13,7 +13,6 @@ import mindspore.context as context
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore.dataset.transforms.vision import Inter
from mindspore import nn, Tensor
from mindspore.train import Model
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
......@@ -21,120 +20,140 @@ from mindspore.train.serialization import load_checkpoint, load_param_into_net
import logging; logging.getLogger('matplotlib.font_manager').disabled = True
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend') # Ascend, CPU, GPU
DATA_DIR_TRAIN = "MNIST/train" # 训练集信息
DATA_DIR_TEST = "MNIST/test" # 测试集信息
def create_dataset(training=True, num_epoch=1, batch_size=32, resize=(32, 32),
def create_dataset(data_dir, training=True, batch_size=32, resize=(32, 32), repeat=1,
rescale=1/(255*0.3081), shift=-0.1307/0.3081, buffer_size=64):
ds = ms.dataset.MnistDataset(DATA_DIR_TRAIN if training else DATA_DIR_TEST)
# define map operations
resize_op = CV.Resize(resize)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
# apply map operations on images
ds = ds.map(input_columns="image", operations=[resize_op, rescale_op, hwc2chw_op])
ds = ds.map(input_columns="label", operations=C.TypeCast(ms.int32))
ds = ds.shuffle(buffer_size=buffer_size)
ds = ds.batch(batch_size, drop_remainder=True)
ds = ds.repeat(num_epoch)
data_train = os.path.join(data_dir, 'train') # 训练集信息
data_test = os.path.join(data_dir, 'test') # 测试集信息
ds = ms.dataset.MnistDataset(data_train if training else data_test)
ds = ds.map(input_columns=["image"], operations=[CV.Resize(resize), CV.Rescale(rescale, shift), CV.HWC2CHW()])
ds = ds.map(input_columns=["label"], operations=C.TypeCast(ms.int32))
ds = ds.shuffle(buffer_size=buffer_size).batch(batch_size, drop_remainder=True).repeat(repeat)
return ds
class LeNet5(nn.Cell):
def __init__(self):
super(LeNet5, self).__init__()
self.relu = nn.ReLU()
self.conv1 = nn.Conv2d(1, 6, 5, stride=1, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, stride=1, pad_mode='valid')
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
self.fc1 = nn.Dense(400, 120)
self.fc2 = nn.Dense(120, 84)
self.fc3 = nn.Dense(84, 10)
def construct(self, input_x):
output = self.conv1(input_x)
output = self.relu(output)
output = self.pool(output)
output = self.conv2(output)
output = self.relu(output)
output = self.pool(output)
output = self.flatten(output)
output = self.fc1(output)
output = self.fc2(output)
output = self.fc3(output)
return output
def test_train(lr=0.01, momentum=0.9, num_epoch=2, check_point_name="b_lenet"):
ds_train = create_dataset(num_epoch=num_epoch)
ds_eval = create_dataset(training=False)
def construct(self, x):
x = self.relu(self.conv1(x))
x = self.pool(x)
x = self.relu(self.conv2(x))
x = self.pool(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
def train(data_dir, lr=0.01, momentum=0.9, num_epochs=2, ckpt_name="lenet"):
dataset_sink = context.get_context('device_target') == 'Ascend'
repeat = num_epochs if dataset_sink else 1
ds_train = create_dataset(data_dir, repeat=repeat)
ds_eval = create_dataset(data_dir, training=False)
steps_per_epoch = ds_train.get_dataset_size()
net = LeNet5()
loss = nn.loss.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), lr, momentum)
ckpt_cfg = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=5)
ckpt_cb = ModelCheckpoint(prefix=check_point_name, config=ckpt_cfg)
ckpt_cb = ModelCheckpoint(prefix=ckpt_name, directory='ckpt', config=ckpt_cfg)
loss_cb = LossMonitor(steps_per_epoch)
model = Model(net, loss, opt, metrics={'acc', 'loss'})
model.train(num_epoch, ds_train, callbacks=[ckpt_cb, loss_cb], dataset_sink_mode=True)
metrics = model.eval(ds_eval)
model.train(num_epochs, ds_train, callbacks=[ckpt_cb, loss_cb], dataset_sink_mode=dataset_sink)
metrics = model.eval(ds_eval, dataset_sink_mode=dataset_sink)
print('Metrics:', metrics)
CKPT = 'b_lenet-2_1875.ckpt'
CKPT_1 = 'ckpt/lenet-2_1875.ckpt'
def resume_train(lr=0.001, momentum=0.9, num_epoch=2, ckpt_name="b_lenet"):
ds_train = create_dataset(num_epoch=num_epoch)
ds_eval = create_dataset(training=False)
def resume_train(data_dir, lr=0.001, momentum=0.9, num_epochs=2, ckpt_name="lenet"):
dataset_sink = context.get_context('device_target') == 'Ascend'
repeat = num_epochs if dataset_sink else 1
ds_train = create_dataset(data_dir, repeat=repeat)
ds_eval = create_dataset(data_dir, training=False)
steps_per_epoch = ds_train.get_dataset_size()
net = LeNet5()
loss = nn.loss.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), lr, momentum)
param_dict = load_checkpoint(CKPT)
param_dict = load_checkpoint(CKPT_1)
load_param_into_net(net, param_dict)
load_param_into_net(opt, param_dict)
ckpt_cfg = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=5)
ckpt_cb = ModelCheckpoint(prefix=ckpt_name, config=ckpt_cfg)
ckpt_cb = ModelCheckpoint(prefix=ckpt_name, directory='ckpt', config=ckpt_cfg)
loss_cb = LossMonitor(steps_per_epoch)
model = Model(net, loss, opt, metrics={'acc', 'loss'})
model.train(num_epoch, ds_train, callbacks=[ckpt_cb, loss_cb])
metrics = model.eval(ds_eval)
model.train(num_epochs, ds_train, callbacks=[ckpt_cb, loss_cb], dataset_sink_mode=dataset_sink)
metrics = model.eval(ds_eval, dataset_sink_mode=dataset_sink)
print('Metrics:', metrics)
CKPT_2 = 'ckpt/lenet_1-2_1875.ckpt'
def infer(data_dir):
ds = create_dataset(data_dir, training=False).create_dict_iterator()
data = ds.get_next()
images = data['image']
labels = data['label']
net = LeNet5()
load_checkpoint(CKPT_2, net=net)
model = Model(net)
output = model.predict(Tensor(data['image']))
preds = np.argmax(output.asnumpy(), axis=1)
for i in range(1, 5):
plt.subplot(2, 2, i)
plt.imshow(np.squeeze(images[i]))
color = 'blue' if preds[i] == labels[i] else 'red'
plt.title("prediction: {}, truth: {}".format(preds[i], labels[i]), color=color)
plt.xticks([])
plt.show()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_url', required=True, default=None, help='Location of data.')
parser.add_argument('--train_url', required=True, default=None, help='Location of training outputs.')
parser.add_argument('--num_epochs', type=int, default=1, help='Number of training epochs.')
parser.add_argument('--data_url', required=False, default='MNIST', help='Location of data.')
parser.add_argument('--train_url', required=False, default=None, help='Location of training outputs.')
args, unknown = parser.parse_known_args()
import moxing as mox
mox.file.copy_parallel(src_url=args.data_url, dst_url='MNIST/')
os.system('rm -f *.ckpt *.ir *.meta') # 清理旧的运行文件
test_train()
print('\n'.join(sorted([x for x in os.listdir('.') if x.startswith('b_lenet')])))
resume_train()
print('\n'.join(sorted([x for x in os.listdir('.') if x.startswith('b_lenet')])))
\ No newline at end of file
if args.data_url.startswith('s3'):
import moxing
moxing.file.copy_parallel(src_url=args.data_url, dst_url='MNIST')
args.data_url = 'MNIST'
# 请先删除旧的checkpoint目录`ckpt`
train(args.data_url)
print('Checkpoints after first training:')
print('\n'.join(sorted([x for x in os.listdir('ckpt') if x.startswith('lenet')])))
resume_train(args.data_url)
print('Checkpoints after resuming training:')
print('\n'.join(sorted([x for x in os.listdir('ckpt') if x.startswith('lenet')])))
infer(args.data_url)
if args.data_url.startswith('s3'):
import moxing
# 将ckpt目录拷贝至OBS后,可在OBS的`args.train_url`目录下看到ckpt目录
moxing.file.copy_parallel(src_url='ckpt', dst_url=os.path.join(args.data_url, 'ckpt'))
此差异已折叠。
此差异已折叠。
# 在Windows上运行LeNet_MNIST
## 实验介绍
LeNet5 + MINST被誉为深度学习领域的“Hello world”。本实验主要介绍使用MindSpore在Windows环境下MNIST数据集上开发和训练一个LeNet5模型,并验证模型精度。
## 实验目的
- 了解如何使用MindSpore进行简单卷积神经网络的开发。
- 了解如何使用MindSpore进行简单图片分类任务的训练。
- 了解如何使用MindSpore进行简单图片分类任务的验证。
## 预备知识
- 熟练使用Python,了解Shell及Linux操作系统基本知识。
- 具备一定的深度学习理论知识,如卷积神经网络、损失函数、优化器,训练策略等。
- 了解并熟悉MindSpore AI计算框架,MindSpore官网:[https://www.mindspore.cn](https://www.mindspore.cn/)
## 实验环境
- Windows-x64版本MindSpore 0.3.0;安装命令可见官网:
[https://www.mindspore.cn/install](https://www.mindspore.cn/install)(MindSpore版本会定期更新,本指导也会定期刷新,与版本配套)。
## 实验准备
### 创建目录
创建一个experiment文件夹,用于存放实验所需的文件代码等。
### 数据集准备
MNIST是一个手写数字数据集,训练集包含60000张手写数字,测试集包含10000张手写数字,共10类。MNIST数据集的官网:[THE MNIST DATABASE](http://yann.lecun.com/exdb/mnist/)
从MNIST官网下载如下4个文件到本地并解压:
```
train-images-idx3-ubyte.gz: training set images (9912422 bytes)
train-labels-idx1-ubyte.gz: training set labels (28881 bytes)
t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)
t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)
```
### 脚本准备
[课程gitee仓库](https://gitee.com/mindspore/course)上下载本实验相关脚本。
### 准备文件
将脚本和数据集放到到experiment文件夹中,组织为如下形式:
```
experiment
├── MNIST
│ ├── test
│ │ ├── t10k-images-idx3-ubyte
│ │ └── t10k-labels-idx1-ubyte
│ └── train
│ ├── train-images-idx3-ubyte
│ └── train-labels-idx1-ubyte
└── main.py
```
## 实验步骤
### 导入MindSpore模块和辅助模块
```python
import matplotlib.pyplot as plt
import mindspore as ms
import mindspore.context as context
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore import nn
from mindspore.model_zoo.lenet import LeNet5
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
```
### 数据处理
在使用数据集训练网络前,首先需要对数据进行预处理,如下:
```python
DATA_DIR_TRAIN = "MNIST/train" # 训练集信息
DATA_DIR_TEST = "MNIST/test" # 测试集信息
def create_dataset(training=True, num_epoch=1, batch_size=32, resize=(32, 32), rescale=1 / (255 * 0.3081), shift=-0.1307 / 0.3081, buffer_size=64):
ds = ms.dataset.MnistDataset(DATA_DIR_TRAIN if training else DATA_DIR_TEST)
ds = ds.map(input_columns="image", operations=[CV.Resize(resize), CV.Rescale(rescale, shift), CV.HWC2CHW()])
ds = ds.map(input_columns="label", operations=C.TypeCast(ms.int32))
ds = ds.shuffle(buffer_size=buffer_size).batch(batch_size, drop_remainder=True).repeat(num_epoch)
return ds
```
对其中几张图片进行可视化,可以看到图片中的手写数字,图片的大小为32x32。
```python
def show_dataset():
ds = create_dataset(training=False)
data = ds.create_dict_iterator().get_next()
images = data['image']
labels = data['label']
for i in range(1, 5):
plt.subplot(2, 2, i)
plt.imshow(images[i][0])
plt.title('Number: %s' % labels[i])
plt.xticks([])
plt.show()
```
![img]()
### 定义模型
MindSpore model_zoo中提供了多种常见的模型,可以直接使用。这里使用其中的LeNet5模型,模型结构如下图所示:
![img](https://www.mindspore.cn/tutorial/zh-CN/master/_images/LeNet_5.jpg)
图片来源于http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
### 训练
使用MNIST数据集对上述定义的LeNet5模型进行训练。训练策略如下表所示,可以调整训练策略并查看训练效果,要求验证精度大于95%。
| batch size | number of epochs | learning rate | optimizer |
| ---------: | ---------------: | ------------: | -----------: |
| 32 | 3 | 0.01 | Momentum 0.9 |
```python
def test_train(lr=0.01, momentum=0.9, num_epoch=3, ckpt_name="a_lenet"):
ds_train = create_dataset(num_epoch=num_epoch)
ds_eval = create_dataset(training=False)
net = LeNet5()
loss = nn.loss.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), lr, momentum)
loss_cb = LossMonitor(per_print_times=1)
model = Model(net, loss, opt, metrics={'acc', 'loss'})
model.train(num_epoch, ds_train, callbacks=[loss_cb], dataset_sink_mode=False)
metrics = model.eval(ds_eval, dataset_sink_mode=False)
print('Metrics:', metrics)
```
### 实验结果
1. 在训练日志中可以看到`epoch: 1 step: 1875, loss is 0.29772663`等字段,即训练过程的loss值;
2. 在训练日志中可以看到`Metrics: {'loss': 0.06830393138807267, 'acc': 0.9785657051282052}`字段,即训练完成后的验证精度。
```python
...
>>> epoch: 1 step: 1875, loss is 0.29772663
...
>>> epoch: 2 step: 1875, loss is 0.049111396
...
>>> epoch: 3 step: 1875, loss is 0.08183163
>>> Metrics: {'loss': 0.06830393138807267, 'acc': 0.9785657051282052}
```
## 实验小结
本实验展示了如何使用MindSpore进行手写数字识别,以及开发和训练LeNet5模型。通过对LeNet5模型做几代的训练,然后使用训练后的LeNet5模型对手写数字进行识别,识别准确率大于95%。即LeNet5学习到了如何进行手写数字识别。
\ No newline at end of file
# LeNet5 mnist
import matplotlib.pyplot as plt
import mindspore as ms
import mindspore.context as context
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore import nn
from mindspore.model_zoo.lenet import LeNet5
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
DATA_DIR_TRAIN = "MNIST/train" # 训练集信息
DATA_DIR_TEST = "MNIST/test" # 测试集信息
def create_dataset(training=True, num_epoch=1, batch_size=32, resize=(32, 32),
rescale=1 / (255 * 0.3081), shift=-0.1307 / 0.3081, buffer_size=64):
ds = ms.dataset.MnistDataset(DATA_DIR_TRAIN if training else DATA_DIR_TEST)
ds = ds.map(input_columns="image", operations=[CV.Resize(resize), CV.Rescale(rescale, shift), CV.HWC2CHW()])
ds = ds.map(input_columns="label", operations=C.TypeCast(ms.int32))
ds = ds.shuffle(buffer_size=buffer_size).batch(batch_size, drop_remainder=True).repeat(num_epoch)
return ds
def test_train(lr=0.01, momentum=0.9, num_epoch=3, ckpt_name="a_lenet"):
ds_train = create_dataset(num_epoch=num_epoch)
ds_eval = create_dataset(training=False)
net = LeNet5()
loss = nn.loss.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), lr, momentum)
loss_cb = LossMonitor(per_print_times=1)
model = Model(net, loss, opt, metrics={'acc', 'loss'})
model.train(num_epoch, ds_train, callbacks=[loss_cb], dataset_sink_mode=False)
metrics = model.eval(ds_eval, dataset_sink_mode=False)
print('Metrics:', metrics)
def show_dataset():
ds = create_dataset(training=False)
data = ds.create_dict_iterator().get_next()
images = data['image']
labels = data['label']
for i in range(1, 5):
plt.subplot(2, 2, i)
plt.imshow(images[i][0])
plt.title('Number: %s' % labels[i])
plt.xticks([])
plt.show()
if __name__ == "__main__":
show_dataset()
test_train()
\ No newline at end of file
# Save and load model
import matplotlib.pyplot as plt
import numpy as np
import mindspore as ms
import mindspore.context as context
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore import nn, Tensor
from mindspore.train import Model
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
DATA_DIR_TRAIN = "MNIST/train" # 训练集信息
DATA_DIR_TEST = "MNIST/test" # 测试集信息
def create_dataset(training=True, num_epoch=1, batch_size=32, resize=(32, 32),
rescale=1 / (255 * 0.3081), shift=-0.1307 / 0.3081, buffer_size=64):
ds = ms.dataset.MnistDataset(DATA_DIR_TRAIN if training else DATA_DIR_TEST)
# define map operations
resize_op = CV.Resize(resize)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
# apply map operations on images
ds = ds.map(input_columns="image", operations=[resize_op, rescale_op, hwc2chw_op])
ds = ds.map(input_columns="label", operations=C.TypeCast(ms.int32))
ds = ds.shuffle(buffer_size=buffer_size)
ds = ds.batch(batch_size, drop_remainder=True)
ds = ds.repeat(num_epoch)
return ds
class LeNet5(nn.Cell):
def __init__(self):
super(LeNet5, self).__init__()
self.relu = nn.ReLU()
self.conv1 = nn.Conv2d(1, 6, 5, stride=1, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, stride=1, pad_mode='valid')
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
self.fc1 = nn.Dense(400, 120)
self.fc2 = nn.Dense(120, 84)
self.fc3 = nn.Dense(84, 10)
def construct(self, input_x):
output = self.conv1(input_x)
output = self.relu(output)
output = self.pool(output)
output = self.conv2(output)
output = self.relu(output)
output = self.pool(output)
output = self.flatten(output)
output = self.fc1(output)
output = self.fc2(output)
output = self.fc3(output)
return output
def test_train(lr=0.01, momentum=0.9, num_epoch=2, check_point_name="b_lenet"):
ds_train = create_dataset(num_epoch=num_epoch)
ds_eval = create_dataset(training=False)
steps_per_epoch = ds_train.get_dataset_size()
net = LeNet5()
loss = nn.loss.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), lr, momentum)
ckpt_cfg = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=5)
ckpt_cb = ModelCheckpoint(prefix=check_point_name, config=ckpt_cfg)
loss_cb = LossMonitor(steps_per_epoch)
model = Model(net, loss, opt, metrics={'acc', 'loss'})
model.train(num_epoch, ds_train, callbacks=[ckpt_cb, loss_cb], dataset_sink_mode=False)
metrics = model.eval(ds_eval, dataset_sink_mode=False)
print('Metrics:', metrics)
CKPT = 'b_lenet-2_1875.ckpt'
def resume_train(lr=0.001, momentum=0.9, num_epoch=2, ckpt_name="b_lenet"):
ds_train = create_dataset(num_epoch=num_epoch)
ds_eval = create_dataset(training=False)
steps_per_epoch = ds_train.get_dataset_size()
net = LeNet5()
loss = nn.loss.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), lr, momentum)
param_dict = load_checkpoint(CKPT)
load_param_into_net(net, param_dict)
load_param_into_net(opt, param_dict)
ckpt_cfg = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=5)
ckpt_cb = ModelCheckpoint(prefix=ckpt_name, config=ckpt_cfg)
loss_cb = LossMonitor(steps_per_epoch)
model = Model(net, loss, opt, metrics={'acc', 'loss'})
model.train(num_epoch, ds_train, callbacks=[ckpt_cb, loss_cb], dataset_sink_mode=False)
metrics = model.eval(ds_eval, dataset_sink_mode=False)
print('Metrics:', metrics)
def plot_images(pred_fn, ds, net):
for i in range(1, 5):
pred, image, label = pred_fn(ds, net)
plt.subplot(2, 2, i)
plt.imshow(np.squeeze(image))
color = 'blue' if pred == label else 'red'
plt.title("prediction: {}, truth: {}".format(pred, label), color=color)
plt.xticks([])
plt.show()
CKPT = 'b_lenet_1-2_1875.ckpt'
def infer(ds, model):
data = ds.get_next()
images = data['image']
labels = data['label']
output = model.predict(Tensor(data['image']))
pred = np.argmax(output.asnumpy(), axis=1)
return pred[0], images[0], labels[0]
def test_infer():
ds = create_dataset(training=False, batch_size=1).create_dict_iterator()
net = LeNet5()
param_dict = load_checkpoint(CKPT, net)
model = Model(net)
plot_images(infer, ds, model)
if __name__ == "__main__":
test_train()
resume_train()
test_infer()
\ No newline at end of file
# 基于LeNet5的手写数字识别
## 实验介绍
LeNet5 + MINST被誉为深度学习领域的“Hello world”。本实验主要介绍使用MindSpore在MNIST数据集上开发和训练一个LeNet5模型,并验证模型精度。
## 实验目的
- 了解如何使用MindSpore进行简单卷积神经网络的开发。
- 了解如何使用MindSpore进行简单图片分类任务的训练。
- 了解如何使用MindSpore进行简单图片分类任务的验证。
## 预备知识
- 熟练使用Python,了解Shell及Linux操作系统基本知识。
- 具备一定的深度学习理论知识,如卷积神经网络、损失函数、优化器,训练策略等。
- 了解华为云的基本使用方法,包括[OBS(对象存储)](https://www.huaweicloud.com/product/obs.html)[ModelArts(AI开发平台)](https://www.huaweicloud.com/product/modelarts.html)[Notebook(开发工具)](https://support.huaweicloud.com/engineers-modelarts/modelarts_23_0033.html)[训练作业](https://support.huaweicloud.com/engineers-modelarts/modelarts_23_0046.html)等服务。华为云官网:https://www.huaweicloud.com
- 了解并熟悉MindSpore AI计算框架,MindSpore官网:https://www.mindspore.cn
## 实验环境
- MindSpore 0.5.0(MindSpore版本会定期更新,本指导也会定期刷新,与版本配套);
- 华为云ModelArts:ModelArts是华为云提供的面向开发者的一站式AI开发平台,集成了昇腾AI处理器资源池,用户可以在该平台下体验MindSpore。ModelArts官网:https://www.huaweicloud.com/product/modelarts.html
- Windows/Ubuntu x64笔记本,NVIDIA GPU服务器,或Atlas Ascend服务器等。
## 实验准备
### 创建OBS桶
本实验需要使用华为云OBS存储实验脚本和数据集,可以参考[快速通过OBS控制台上传下载文件](https://support.huaweicloud.com/qs-obs/obs_qs_0001.html)了解使用OBS创建桶、上传文件、下载文件的使用方法。
> **提示:** 华为云新用户使用OBS时通常需要创建和配置“访问密钥”,可以在使用OBS时根据提示完成创建和配置。也可以参考[获取访问密钥并完成ModelArts全局配置](https://support.huaweicloud.com/prepare-modelarts/modelarts_08_0002.html)获取并配置访问密钥。
创建OBS桶的参考配置如下:
- 区域:华北-北京四
- 数据冗余存储策略:单AZ存储
- 桶名称:全局唯一的字符串
- 存储类别:标准存储
- 桶策略:公共读
- 归档数据直读:关闭
- 企业项目、标签等配置:免
### 数据集准备
MNIST是一个手写数字数据集,训练集包含60000张手写数字,测试集包含10000张手写数字,共10类。MNIST数据集的官网:[THE MNIST DATABASE](http://yann.lecun.com/exdb/mnist/)
从MNIST官网下载如下4个文件到本地并解压:
```
train-images-idx3-ubyte.gz: training set images (9912422 bytes)
train-labels-idx1-ubyte.gz: training set labels (28881 bytes)
t10k-images-idx3-ubyte.gz: test set images (1648877 bytes)
t10k-labels-idx1-ubyte.gz: test set labels (4542 bytes)
```
### 脚本准备
[课程gitee仓库](https://gitee.com/mindspore/course)上下载本实验相关脚本。
### 上传文件
将脚本和数据集上传到OBS桶中,组织为如下形式:
```
lenet5
├── MNIST
│   ├── test
│   │   ├── t10k-images-idx3-ubyte
│   │   └── t10k-labels-idx1-ubyte
│   └── train
│   ├── train-images-idx3-ubyte
│   └── train-labels-idx1-ubyte
└── main.py
```
## 实验步骤(ModelArts Notebook)
### 创建Notebook
可以参考[创建并打开Notebook](https://support.huaweicloud.com/engineers-modelarts/modelarts_23_0034.html)来创建并打开本实验的Notebook脚本。
创建Notebook的参考配置:
- 计费模式:按需计费
- 名称:lenet5
- 工作环境:Python3
- 资源池:公共资源
- 类型:Ascend
- 规格:单卡1*Ascend 910
- 存储位置:对象存储服务(OBS)->选择上述新建的OBS桶中的lenet5文件夹
- 自动停止等配置:默认
> **注意:**
> - 打开Notebook前,在Jupyter Notebook文件列表页面,勾选目录里的所有文件/文件夹(实验脚本和数据集),并点击列表上方的“Sync OBS”按钮,使OBS桶中的所有文件同时同步到Notebook工作环境中,这样Notebook中的代码才能访问数据集。参考[使用Sync OBS功能](https://support.huaweicloud.com/engineers-modelarts/modelarts_23_0038.html)。
> - 打开Notebook后,选择MindSpore环境作为Kernel。
> **提示:** 上述数据集和脚本的准备工作也可以在Notebook环境中完成,在Jupyter Notebook文件列表页面,点击右上角的"New"->"Terminal",进入Notebook环境所在终端,进入`work`目录,可以使用常用的linux shell命令,如`wget, gzip, tar, mkdir, mv`等,完成数据集和脚本的下载和准备。
> **提示:** 请从上至下阅读提示并执行代码框进行体验。代码框执行过程中左侧呈现[\*],代码框执行完毕后左侧呈现如[1],[2]等。请等上一个代码框执行完毕后再执行下一个代码框。
导入MindSpore模块和辅助模块:
```python
import os
# os.environ['DEVICE_ID'] = '0'
import mindspore as ms
import mindspore.context as context
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore import nn
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend') # Ascend, CPU, GPU
```
### 数据处理
在使用数据集训练网络前,首先需要对数据进行预处理,如下:
```python
def create_dataset(data_dir, training=True, batch_size=32, resize=(32, 32),
rescale=1/(255*0.3081), shift=-0.1307/0.3081, buffer_size=64):
data_train = os.path.join(data_dir, 'train') # 训练集信息
data_test = os.path.join(data_dir, 'test') # 测试集信息
ds = ms.dataset.MnistDataset(data_train if training else data_test)
ds = ds.map(input_columns=["image"], operations=[CV.Resize(resize), CV.Rescale(rescale, shift), CV.HWC2CHW()])
ds = ds.map(input_columns=["label"], operations=C.TypeCast(ms.int32))
# When `dataset_sink_mode=True` on Ascend, append `ds = ds.repeat(num_epochs) to the end
ds = ds.shuffle(buffer_size=buffer_size).batch(batch_size, drop_remainder=True)
return ds
```
对其中几张图片进行可视化,可以看到图片中的手写数字,图片的大小为32x32。
```python
ds = create_dataset('MNIST', training=False)
data = ds.create_dict_iterator().get_next()
images = data['image']
labels = data['label']
for i in range(1, 5):
plt.subplot(2, 2, i)
plt.imshow(images[i][0])
plt.title('Number: %s' % labels[i])
plt.xticks([])
plt.show()
```
![png](images/mnist.png)
### 定义模型
MindSpore model_zoo中提供了多种常见的模型,可以直接使用。LeNet5模型结构如下图所示:
![LeNet5](https://www.mindspore.cn/tutorial/zh-CN/master/_images/LeNet_5.jpg)
[1] 图片来源于http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
```python
class LeNet5(nn.Cell):
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5, stride=1, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, stride=1, pad_mode='valid')
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
self.fc1 = nn.Dense(400, 120)
self.fc2 = nn.Dense(120, 84)
self.fc3 = nn.Dense(84, 10)
def construct(self, x):
x = self.relu(self.conv1(x))
x = self.pool(x)
x = self.relu(self.conv2(x))
x = self.pool(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
```
### 训练
使用MNIST数据集对上述定义的LeNet5模型进行训练。训练策略如下表所示,可以调整训练策略并查看训练效果,要求验证精度大于95%。
| batch size | number of epochs | learning rate | optimizer |
| -- | -- | -- | -- |
| 32 | 3 | 0.01 | Momentum 0.9 |
```python
def train(data_dir, lr=0.01, momentum=0.9, num_epochs=3):
ds_train = create_dataset(data_dir)
ds_eval = create_dataset(data_dir, training=False)
net = LeNet5()
loss = nn.loss.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), lr, momentum)
loss_cb = LossMonitor(per_print_times=ds_train.get_dataset_size())
model = Model(net, loss, opt, metrics={'acc', 'loss'})
# dataset_sink_mode can be True when using Ascend
model.train(num_epochs, ds_train, callbacks=[loss_cb], dataset_sink_mode=False)
metrics = model.eval(ds_eval, dataset_sink_mode=False)
print('Metrics:', metrics)
train('MNIST')
```
epoch: 1 step 1875, loss is 0.23394052684307098
Epoch time: 23049.360, per step time: 12.293, avg loss: 2.049
************************************************************
epoch: 2 step 1875, loss is 0.4737345278263092
Epoch time: 26768.848, per step time: 14.277, avg loss: 0.155
************************************************************
epoch: 3 step 1875, loss is 0.07734094560146332
Epoch time: 25687.625, per step time: 13.700, avg loss: 0.094
************************************************************
Metrics: {'loss': 0.10531254443608654, 'acc': 0.9701522435897436}
## 实验步骤(ModelArts训练作业)
除了Notebook,ModelArts还提供了训练作业服务。相比Notebook,训练作业资源池更大,且具有作业排队等功能,适合大规模并发使用。使用训练作业时,也会有修改代码和调试的需求,有如下三个方案:
1. 在本地修改代码后重新上传;
2. 使用[PyCharm ToolKit](https://support.huaweicloud.com/tg-modelarts/modelarts_15_0001.html)配置一个本地Pycharm+ModelArts的开发环境,便于上传代码、提交训练作业和获取训练日志。
3. 在ModelArts上创建Notebook,然后设置[Sync OBS功能](https://support.huaweicloud.com/engineers-modelarts/modelarts_23_0038.html),可以在线修改代码并自动同步到OBS中。因为只用Notebook来编辑代码,所以创建CPU类型最低规格的Notebook就行。
### 适配训练作业
创建训练作业时,运行参数会通过脚本传参的方式输入给脚本代码,脚本必须解析传参才能在代码中使用相应参数。如data_url和train_url,分别对应数据存储路径(OBS路径)和训练输出路径(OBS路径)。脚本对传参进行解析后赋值到`args`变量里,在后续代码里可以使用。
```python
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_url', required=True, default=None, help='Location of data.')
parser.add_argument('--train_url', required=True, default=None, help='Location of training outputs.')
args, unknown = parser.parse_known_args()
```
MindSpore暂时没有提供直接访问OBS数据的接口,需要通过MoXing提供的API与OBS交互。将OBS中存储的数据拷贝至执行容器:
```python
import moxing
moxing.file.copy_parallel(src_url=args.data_url, dst_url='MNIST/')
```
如需将训练输出(如模型Checkpoint)从执行容器拷贝至OBS,请参考:
```python
import moxing
# dst_url形如's3://OBS/PATH',将ckpt目录拷贝至OBS后,可在OBS的`args.train_url`目录下看到ckpt目录
moxing.file.copy_parallel(src_url='ckpt', dst_url=os.path.join(args.train_url, 'ckpt'))
```
### 创建训练作业
可以参考[使用常用框架训练模型](https://support.huaweicloud.com/engineers-modelarts/modelarts_23_0238.html)来创建并启动训练作业。
创建训练作业的参考配置:
- 算法来源:常用框架->Ascend-Powered-Engine->MindSpore
- 代码目录:选择上述新建的OBS桶中的lenet5目录
- 启动文件:选择上述新建的OBS桶中的lenet5目录下的`main.py`
- 数据来源:数据存储位置->选择上述新建的OBS桶中的lenet5目录下的MNIST目录
- 训练输出位置:选择上述新建的OBS桶中的lenet5目录并在其中创建output目录
- 作业日志路径:同训练输出位置
- 规格:Ascend:1*Ascend 910
- 其他均为默认
启动并查看训练过程:
1. 点击提交以开始训练;
2. 在训练作业列表里可以看到刚创建的训练作业,在训练作业页面可以看到版本管理;
3. 点击运行中的训练作业,在展开的窗口中可以查看作业配置信息,以及训练过程中的日志,日志会不断刷新,等训练作业完成后也可以下载日志到本地进行查看;
4. 参考实验步骤(Notebook),在日志中找到对应的打印信息,检查实验是否成功。
## 实验步骤(本地CPU/GPU/Ascend)
MindSpore还支持在本地CPU/GPU/Ascend环境上运行,如Windows/Ubuntu x64笔记本,NVIDIA GPU服务器,以及Atlas Ascend服务器等。在本地环境运行实验前,需要先参考[安装教程](https://www.mindspore.cn/install/)配置环境。
在Windows/Ubuntu x64笔记本上运行实验:
```shell script
vim main.py # 将第15行的context设置为`device_target='CPU'`
python main.py --data_url=D:\dataset\MNIST
```
在Ascend服务器上运行实验:
```shell script
vim main.py # 将第15行的context设置为`device_target='Ascend'`
python main.py --data_url=/PATH/TO/MNIST
```
## 实验小结
本实验展示了如何使用MindSpore进行手写数字识别,以及开发和训练LeNet5模型。通过对LeNet5模型做几代的训练,然后使用训练后的LeNet5模型对手写数字进行识别,识别准确率大于95%。即LeNet5学习到了如何进行手写数字识别。
# LeNet5 mnist
# LeNet5 MNIST
import os
# os.environ['DEVICE_ID'] = '0'
......@@ -9,52 +9,77 @@ import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore import nn
from mindspore.model_zoo.lenet import LeNet5
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend') # Ascend, CPU, GPU
DATA_DIR_TRAIN = "MNIST/train" # 训练集信息
DATA_DIR_TEST = "MNIST/test" # 测试集信息
def create_dataset(training=True, num_epoch=1, batch_size=32, resize=(32, 32),
def create_dataset(data_dir, training=True, batch_size=32, resize=(32, 32),
rescale=1/(255*0.3081), shift=-0.1307/0.3081, buffer_size=64):
ds = ms.dataset.MnistDataset(DATA_DIR_TRAIN if training else DATA_DIR_TEST)
data_train = os.path.join(data_dir, 'train') # 训练集信息
data_test = os.path.join(data_dir, 'test') # 测试集信息
ds = ms.dataset.MnistDataset(data_train if training else data_test)
ds = ds.map(input_columns=["image"], operations=[CV.Resize(resize), CV.Rescale(rescale, shift), CV.HWC2CHW()])
ds = ds.map(input_columns=["label"], operations=C.TypeCast(ms.int32))
# When `dataset_sink_mode=True` on Ascend, append `ds = ds.repeat(num_epochs) to the end
ds = ds.shuffle(buffer_size=buffer_size).batch(batch_size, drop_remainder=True)
ds = ds.map(input_columns="image", operations=[CV.Resize(resize), CV.Rescale(rescale, shift), CV.HWC2CHW()])
ds = ds.map(input_columns="label", operations=C.TypeCast(ms.int32))
ds = ds.shuffle(buffer_size=buffer_size).batch(batch_size, drop_remainder=True).repeat(num_epoch)
return ds
def test_train(lr=0.01, momentum=0.9, num_epoch=3, ckpt_name="a_lenet"):
ds_train = create_dataset(num_epoch=num_epoch)
ds_eval = create_dataset(training=False)
class LeNet5(nn.Cell):
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5, stride=1, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, stride=1, pad_mode='valid')
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
self.fc1 = nn.Dense(400, 120)
self.fc2 = nn.Dense(120, 84)
self.fc3 = nn.Dense(84, 10)
def construct(self, x):
x = self.relu(self.conv1(x))
x = self.pool(x)
x = self.relu(self.conv2(x))
x = self.pool(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
def train(data_dir, lr=0.01, momentum=0.9, num_epochs=3):
ds_train = create_dataset(data_dir)
ds_eval = create_dataset(data_dir, training=False)
net = LeNet5()
loss = nn.loss.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), lr, momentum)
loss_cb = LossMonitor(per_print_times=1)
loss_cb = LossMonitor(per_print_times=ds_train.get_dataset_size())
model = Model(net, loss, opt, metrics={'acc', 'loss'})
model.train(num_epoch, ds_train, callbacks=[loss_cb])
metrics = model.eval(ds_eval)
# dataset_sink_mode can be True when using Ascend
model.train(num_epochs, ds_train, callbacks=[loss_cb], dataset_sink_mode=False)
metrics = model.eval(ds_eval, dataset_sink_mode=False)
print('Metrics:', metrics)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_url', required=True, default=None, help='Location of data.')
parser.add_argument('--train_url', required=True, default=None, help='Location of training outputs.')
parser.add_argument('--num_epochs', type=int, default=1, help='Number of training epochs.')
parser.add_argument('--data_url', required=False, default='MNIST', help='Location of data.')
parser.add_argument('--train_url', required=False, default=None, help='Location of training outputs.')
args, unknown = parser.parse_known_args()
import moxing as mox
mox.file.copy_parallel(src_url=args.data_url, dst_url='MNIST/')
if args.data_url.startswith('s3'):
import moxing
moxing.file.copy_parallel(src_url=args.data_url, dst_url='MNIST')
args.data_url = 'MNIST'
test_train()
train(args.data_url)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册