main.py 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
import os
import struct
import sys
from easydict import EasyDict as edict

import matplotlib.pyplot as plt
import numpy as np

import mindspore
import mindspore.dataset as ds
import mindspore.nn as nn
from mindspore import context
from mindspore.nn.metrics import Accuracy
from mindspore.train import Model
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore import Tensor

context.set_context(mode=context.GRAPH_MODE, device_target='Ascend')


def read_image(file_name):
    '''
    :param file_name: 文件路径
    :return:  训练或者测试数据
    如下是训练的图片的二进制格式
    [offset] [type]          [value]          [description]
    0000     32 bit integer  0x00000803(2051) magic number
    0004     32 bit integer  60000            number of images
    0008     32 bit integer  28               number of rows
    0012     32 bit integer  28               number of columns
    0016     unsigned byte   ??               pixel
    0017     unsigned byte   ??               pixel
    ........
    xxxx     unsigned byte   ??               pixel
    '''
    file_handle = open(file_name, "rb")  # 以二进制打开文档
    file_content = file_handle.read()  # 读取到缓冲区中
    head = struct.unpack_from('>IIII', file_content, 0)  # 取前4个整数,返回一个元组
    offset = struct.calcsize('>IIII')
    imgNum = head[1]  # 图片数
    width = head[2]  # 宽度
    height = head[3]  # 高度
    bits = imgNum * width * height  # data一共有60000*28*28个像素值
    bitsString = '>' + str(bits) + 'B'  # fmt格式:'>47040000B'
    imgs = struct.unpack_from(bitsString, file_content, offset)  # 取data数据,返回一个元组
    imgs_array = np.array(imgs).reshape((imgNum, width * height))  # 最后将读取的数据reshape成 【图片数,图片像素】二维数组
    return imgs_array


def read_label(file_name):
    '''
    :param file_name:
    :return:
    标签的格式如下:
    [offset] [type]          [value]          [description]
    0000     32 bit integer  0x00000801(2049) magic number (MSB first)
    0004     32 bit integer  60000            number of items
    0008     unsigned byte   ??               label
    0009     unsigned byte   ??               label
    ........
    xxxx     unsigned byte   ??               label
    The labels values are 0 to 9.
    '''
    file_handle = open(file_name, "rb")  # 以二进制打开文档
    file_content = file_handle.read()  # 读取到缓冲区中
    head = struct.unpack_from('>II', file_content, 0)  # 取前2个整数,返回一个元组
    offset = struct.calcsize('>II')
    labelNum = head[1]  # label数
    bitsString = '>' + str(labelNum) + 'B'  # fmt格式:'>47040000B'
    label = struct.unpack_from(bitsString, file_content, offset)  # 取data数据,返回一个元组
    return np.array(label)


def get_data():
    # 文件获取
    train_image = os.path.join(cfg.data_dir_train, 'train-images-idx3-ubyte')
    test_image = os.path.join(cfg.data_dir_test, "t10k-images-idx3-ubyte")
    train_label = os.path.join(cfg.data_dir_train, "train-labels-idx1-ubyte")
    test_label = os.path.join(cfg.data_dir_test, "t10k-labels-idx1-ubyte")
    # 读取数据
    train_x = read_image(train_image)
    test_x = read_image(test_image)
    train_y = read_label(train_label)
    test_y = read_label(test_label)
    return train_x, train_y, test_x, test_y


# 定义前馈神经网络
class Forward_fashion(nn.Cell):
    def __init__(self, num_class=10):  # 一共分十类,图片通道数是1
        super(Forward_fashion, self).__init__()
        self.num_class = num_class
        self.flatten = nn.Flatten()
        self.fc1 = nn.Dense(cfg.channel * cfg.image_height * cfg.image_width, 128)
        self.relu = nn.ReLU()
        self.fc2 = nn.Dense(128, self.num_class)
        self.softmax = nn.Softmax()

    def construct(self, x):
        x = self.flatten(x)
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.softmax(x)
        return x


import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_url', required=True, default=None, help='Location of data.')
parser.add_argument('--train_url', required=True, default=None, help='Location of training outputs.')
args, unknown = parser.parse_known_args()

import moxing as mox
mox.file.copy_parallel(src_url=args.data_url, dst_url='Fashion-MNIST')

cfg = edict({
    'train_size': 60000,  # 训练集大小
    'test_size': 10000,  # 测试集大小
    'channel': 1,  # 图片通道数
    'image_height': 28,  # 图片高度
    'image_width': 28,  # 图片宽度
    'batch_size': 60,
    'num_classes': 10,  # 分类类别
    'lr': 0.001,  # 学习率
    'epoch_size': 20,  # 训练次数
    'data_dir_train': os.path.join('Fashion-MNIST', 'train'),
    'data_dir_test': os.path.join('Fashion-MNIST', 'test'),
    'save_checkpoint_steps': 1,  # 多少步保存一次模型
    'keep_checkpoint_max': 3,  # 最多保存多少个模型
    'output_directory': './model_fashion',  # 保存模型路径
    'output_prefix': "checkpoint_fashion_forward"  # 保存模型文件名字
})

train_x, train_y, test_x, test_y = get_data()
train_x = train_x.reshape(-1, 1, 28, 28)
test_x = test_x.reshape(-1, 1, 28, 28)
train_x = train_x / 255.0
test_x = test_x / 255.0
train_x = train_x.astype('Float32')
test_x = test_x.astype('Float32')
train_y = train_y.astype('int32')
test_y = test_y.astype('int32')
print('训练数据集样本数:', train_x.shape[0])
print('测试数据集样本数:', test_y.shape[0])
print('通道数/图像长/宽:', train_x.shape[1:])
print('一张图像的标签样式:', train_y[0])  # 一共10类,用0-9的数字表达类别。

# 转换数据类型为Dataset
XY_train = list(zip(train_x, train_y))
ds_train = ds.GeneratorDataset(XY_train, ['x', 'y'])
ds_train.set_dataset_size(cfg.train_size)
ds_train = ds_train.shuffle(buffer_size=cfg.train_size).batch(cfg.batch_size, drop_remainder=True).repeat(
    cfg.epoch_size)
XY_test = list(zip(test_x, test_y))
ds_test = ds.GeneratorDataset(XY_test, ['x', 'y'])
ds_test.set_dataset_size(cfg.test_size)
ds_test = ds_test.shuffle(buffer_size=cfg.test_size).batch(cfg.batch_size, drop_remainder=True).repeat(cfg.epoch_size)

# 构建网络
network = Forward_fashion(cfg.num_classes)
# 定义模型的损失函数,优化器
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
net_opt = nn.Adam(network.trainable_params(), cfg.lr)
# 训练模型
model = Model(network, loss_fn=net_loss, optimizer=net_opt, metrics={"acc"})
loss_cb = LossMonitor(per_print_times=int(cfg.train_size / cfg.batch_size))
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
                             keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix=cfg.output_prefix, directory=cfg.output_directory, config=config_ck)
print("============== Starting Training ==============")
model.train(cfg.epoch_size, ds_train, callbacks=[ckpoint_cb, loss_cb], dataset_sink_mode=True)

# 使用测试集评估模型,打印总体准确率
metric = model.eval(ds_test)
print(metric)

# 预测
test_ = ds_test.create_dict_iterator().get_next()
test = Tensor(test_['x'], mindspore.float32)
predictions = model.predict(test)
predictions = predictions.asnumpy()
for i in range(10):
    p_np = predictions[i, :]
    p_list = p_np.tolist()
    print('第' + str(i) + '个sample预测结果:', p_list.index(max(p_list)), '   真实结果:', test_['y'][i])

mox.file.copy_parallel(src_url='model_fashion', dst_url=args.train_url)