truncatemod_run.py 2.8 KB
Newer Older
C
ckey_Dou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from akg.utils import kernel_exec as utils
from tensorio import compare_tensor
import numpy as np
from gen_random import random_gaussian

from test_op import truncatemod
from base import get_rtol_atol


def truncatemod_run(shape1, shape2, dtype, attrs):
    if 'tuning' in attrs.keys():
        t = attrs.get("tuning", False)
        kernel_name = attrs.get("kernel_name", False)
        mod = utils.op_build_test(truncatemod.truncatemod, [shape1, shape2], [dtype, dtype], kernel_name=kernel_name,
29
                                  attrs=attrs, dump_code=True, tuning=t)
C
ckey_Dou 已提交
30 31 32 33 34 35 36 37
        if t:
            expect, input1, input2, output = gen_data(dtype, shape1, shape2)
            return mod, expect, (input1, input2, output)
        else:
            return mod
    else:
        expect, input1, input2, output = gen_data(dtype, shape1, shape2)
        mod = utils.op_build_test(truncatemod.truncatemod, [shape1, shape2], [dtype, dtype], kernel_name="truncatemod",
38
                                  attrs=attrs, dump_code=True)
C
ckey_Dou 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
        output = utils.mod_launch(mod, (input1, input2, output), expect=expect)
        rtol, atol = get_rtol_atol("truncatemod", dtype)
        res = compare_tensor(output, expect, rtol=rtol, atol=atol, equal_nan=True)
        return (input1, input2), output, expect, res


def truncatemod_compute(x, y):
    dtype = x.dtype
    if dtype != "float32":
        x = x.astype("float32")
        y = y.astype("float32")
    expect = (x - y*np.trunc(x/y))

    if expect.dtype != dtype:
        expect = expect.astype(dtype)

    return expect


def gen_data(dtype, shape1, shape2):
    input1 = random_gaussian(shape1).astype(dtype)
    input2 = random_gaussian(shape2).astype(dtype)
    # mod 0 is undefined
    input2 = np.select(input2 == 0, np.ones_like(input2), input2)
    if utils.product_is_mini():
        # If the value of input2 is too small, input1/input2 will be some overflow
        lower_bound = 1e-3
        input2 = np.select([input2 >= 0, input2 < 0], [np.maximum(input2, lower_bound),
                                                       np.minimum(input2, -lower_bound)])
    expect = truncatemod_compute(input1, input2)
    output = np.full(expect.shape, np.nan, dtype)
    return expect, input1, input2, output