# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from akg.utils import kernel_exec as utils from tensorio import compare_tensor import numpy as np from gen_random import random_gaussian from test_op import truncatemod from base import get_rtol_atol def truncatemod_run(shape1, shape2, dtype, attrs): if 'tuning' in attrs.keys(): t = attrs.get("tuning", False) kernel_name = attrs.get("kernel_name", False) mod = utils.op_build_test(truncatemod.truncatemod, [shape1, shape2], [dtype, dtype], kernel_name=kernel_name, attrs=attrs, dump_code=True, tuning=t) if t: expect, input1, input2, output = gen_data(dtype, shape1, shape2) return mod, expect, (input1, input2, output) else: return mod else: expect, input1, input2, output = gen_data(dtype, shape1, shape2) mod = utils.op_build_test(truncatemod.truncatemod, [shape1, shape2], [dtype, dtype], kernel_name="truncatemod", attrs=attrs, dump_code=True) output = utils.mod_launch(mod, (input1, input2, output), expect=expect) rtol, atol = get_rtol_atol("truncatemod", dtype) res = compare_tensor(output, expect, rtol=rtol, atol=atol, equal_nan=True) return (input1, input2), output, expect, res def truncatemod_compute(x, y): dtype = x.dtype if dtype != "float32": x = x.astype("float32") y = y.astype("float32") expect = (x - y*np.trunc(x/y)) if expect.dtype != dtype: expect = expect.astype(dtype) return expect def gen_data(dtype, shape1, shape2): input1 = random_gaussian(shape1).astype(dtype) input2 = random_gaussian(shape2).astype(dtype) # mod 0 is undefined input2 = np.select(input2 == 0, np.ones_like(input2), input2) if utils.product_is_mini(): # If the value of input2 is too small, input1/input2 will be some overflow lower_bound = 1e-3 input2 = np.select([input2 >= 0, input2 < 0], [np.maximum(input2, lower_bound), np.minimum(input2, -lower_bound)]) expect = truncatemod_compute(input1, input2) output = np.full(expect.shape, np.nan, dtype) return expect, input1, input2, output