add_b_conv.py 10.5 KB
Newer Older
C
ckey_Dou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""dsl: add_b_conv"""
import akg.tvm
import akg
import akg.lang.cce
import akg.backend as cce
from akg import dim
from akg.utils import kernel_exec as utils


def add_b_conv_compute(fmap_shape, filter_shape, pad_, stride_, dilation_,
                       tile_hh=0, tile_coco=0, tile_mm=0, tile_kk=0, tile_nn=0, bypass_l1=False,
                       use_bias=False, block_size=16, conv_dtype='float16'):
    # input shape (NCHW -> NC1HWC0)
    in_n, in_c, in_h, in_w = fmap_shape
    in_c = (in_c + block_size - 1) // block_size * block_size
    # kernel shape (NCHW -> NC1HWC0 -> Fractal)
    k_n, k_c, k_h, k_w = filter_shape
    k_c = (k_c + block_size - 1) // block_size * block_size
    k_n = (k_n + block_size - 1) // block_size * block_size
    # padding((padding_h, padding_w) -> (padding_top, padding_bottom, padding_left, padding_right))
    padding = (pad_[0], pad_[0], pad_[1], pad_[1])
    p_top, p_bottom, p_left, p_right = padding

    # stride (stride_h, stride_w)
    s_h, s_w = stride_

    # dilation (dilation_h, dilation_w)
    d_h, d_w = dilation_

    if tile_hh == in_h:
        tile_hh += p_top + p_bottom
    tile_coco = (tile_coco + block_size - 1) // block_size * block_size
    tile_mm = (tile_mm + block_size - 1) // block_size * block_size
    tile_kk = (tile_kk + block_size - 1) // block_size * block_size
    tile_nn = (tile_nn + block_size - 1) // block_size * block_size

    c0 = block_size
    c1_cut = tile_coco // c0
    h_window_cut = (tile_hh - k_h) // s_h + 1

    out_w = (in_w + p_left + p_right - k_w) // (s_w) + 1

    kernel_name = "add_b_conv_layer_" + str(in_n) + "_" + str(in_c) + "_" + str(in_h) + "_" + str(in_w) \
                  + "_" + str(k_n) + "_" + str(in_c) + "_" + str(k_h) + "_" + str(k_w) \
                  + "_" + str(p_top) + "_" + str(s_h)

    input_shape_nc1hwc0 = (in_n, in_c // block_size, in_h, in_w, block_size)
    in_n, in_c1, in_h, in_w, _ = input_shape_nc1hwc0

    kernel_shape_nc1hwc0 = (k_n, k_c // block_size, k_h, k_w, block_size)
    k_n, k_c1, k_h, k_w, k_c0 = kernel_shape_nc1hwc0
    kernel_shape_fractal = (k_c // block_size * k_h * k_w, k_n // block_size, block_size, block_size)
    f_ko, f_no, f_ni, f_ki = kernel_shape_fractal

    # bias shape
    bias_shape_nc1hwc0 = (1, k_n // block_size, 1, 1, block_size)

    # a_value placeholder (NC1HWCO)
    a_value = akg.tvm.placeholder(input_shape_nc1hwc0, dtype=conv_dtype, name='a_value')
    # B_placeholder (fractal)
    b_tmp = akg.tvm.placeholder(kernel_shape_fractal, dtype=conv_dtype, name='b_tmp')
    b_value = akg.tvm.compute(b_tmp.shape, lambda ko, c1, c0, ki: b_tmp[ko, c1, c0, ki] + 1, name='b_value', attrs={'no_inline': 1})

    if use_bias:
        bias_name = 'bias'
        bias_value = akg.tvm.placeholder(bias_shape_nc1hwc0, dtype=conv_dtype, name=bias_name)
    else:
        bias_name = 'None'
        bias_value = None

    # Create reduction variables
    kc1 = akg.tvm.reduce_axis((0, k_c1), name='kc1')
    kh = akg.tvm.reduce_axis((0, k_h), name='kh')
    kw = akg.tvm.reduce_axis((0, k_w), name='kw')
    kc0 = akg.tvm.reduce_axis((0, k_c0), name='kc0')

    k_h_d = (k_h - 1) * d_h + 1
    k_w_d = (k_w - 1) * d_w + 1
    out_h = (in_h + p_top + p_bottom - k_h_d) // (s_h) + 1
    tile_out_h = (tile_hh - k_h_d) // s_h + 1
    out_w = (in_w + p_left + p_right - k_w_d) // (s_w) + 1

    out_shape_nc1hwc0 = (in_n, k_n // block_size, out_h, out_w, block_size)
    _, out_c1, out_h, out_w, out_c0 = out_shape_nc1hwc0

    if tile_coco > 0:
        c1_cut = tile_coco // block_size
    else:
        c1_cut = out_c1

    # set dim
    index = 0
    info = dim.Dim()
    if f_ko > 1:
        info.setdim(index=index, axis="KO", tilel1=f_ko, tilel0=f_ko)  # ko
    if f_no > 1:
        info.setdim(index=index, axis="C1", tilel1=c1_cut, tilel0=c1_cut)  # c1
    if f_ni > 1:
        info.setdim(index=index, axis="C0", tilel1=out_c0, tilel0=out_c0)  # c0
    if f_ki > 1:
        info.setdim(index=index, axis="KI", tilel1=f_ki, tilel0=f_ki)  # ki

    index += 1
    if out_c1 > 1:
        info.setdim(index=index, axis="C1", tilel1=c1_cut, tilel0=0)  # c1
    if out_h > 1:
        info.setdim(index=index, axis="H", tilel1=tile_out_h, tilel0=0)  # h
    if out_w > 1:
        info.setdim(index=index, axis="W", tilel1=out_w, tilel0=0)  # w
    if out_c0 > 1:
        info.setdim(index=index, axis="C0", tilel1=out_c0, tilel0=0)  # c0
    if in_c1 > 1:
        info.setdim(index=index, axis="KC1", tilel1=in_c1, tilel0=0)  # kc1
    if k_h > 1:
        info.setdim(index=index, axis="KH", tilel1=k_h, tilel0=0)  # kh
    if k_w > 1:
        info.setdim(index=index, axis="KW", tilel1=k_w, tilel0=0)  # kw

    # Compute the convolution
    output_name = "c_value"
    output_bias_name = "OUT"
    c_value = akg.tvm.compute(out_shape_nc1hwc0,
                          lambda n, c1, h, w, c0: akg.lang.cce.mmad(
                          akg.tvm.if_then_else(akg.tvm.any((h * s_h + kh) < p_top, (h * s_h + kh) > (in_h + p_top - 1),
                                                 (w * s_w + kw) < p_left, (w * s_w + kw) > (in_w + p_left - 1)),
                                         akg.tvm.const(0.0, 'float16'),
                                         a_value[n, kc1, (h * s_h + (kh * d_h) - p_top), \
                                                 (w * s_w + (kw * d_w) - p_left), kc0])
                        * b_value[(kc1 * k_h + kh) * k_w + kw, c1, c0, kc0],
                        axis=[kc1, kh, kw, kc0]), name=output_name,
                    attrs={
                        "pragma_conv_kernel_n": k_n,
                        "pragma_conv_kernel_h": k_h,
                        "pragma_conv_kernel_w": k_w,
                        "pragma_conv_padding_top": p_top,
                        "pragma_conv_padding_bottom": p_bottom,
                        "pragma_conv_padding_left": p_left,
                        "pragma_conv_padding_right": p_right,
                        "pragma_conv_bypass_l1": 1 if bypass_l1 else 0,
                        "pragma_conv_stride_h": s_h,
                        "pragma_conv_stride_w": s_w,
                        "pragma_conv_dilation_h": d_h,
                        "pragma_conv_dilation_w": d_w,
                        "pragma_conv_fm_n": in_n,
                        "pragma_conv_fm_c": in_c,
                        "pragma_conv_fm_h": in_h,
                        "pragma_conv_fm_w": in_w,
                        "pragma_conv_h_cut": (h_window_cut - 1) * s_h + k_h_d,
                        "pragma_conv_w_cut": (in_w + p_left + p_right),
                        "pragma_conv_co_cut": c1_cut * k_c0,
                        "pragma_conv_m_cut": tile_mm,
                        "pragma_conv_k_cut": tile_kk,
                        "pragma_conv_n_cut": tile_nn,
                        "feature": a_value.op.name,
                        "filter": b_value.op.name,
                        "bias": bias_name,
                        "res": output_name,
                        "res_bias": output_bias_name})

    if use_bias:
        cube = akg.tvm.compute(out_shape_nc1hwc0, lambda n, c1, h, w, c0: c_value[n, c1, h, w, c0] + bias_value[0, c1, 0, 0, c0],
                           name=output_bias_name)
    else:
        cube = c_value
    return cube, a_value, b_tmp, bias_value, kernel_name, str(info)


def add_b_conv(fmap_shape, filter_shape, pad_, stride_, dilation_,
               tile_hh=0, tile_coco=0, tile_mm=0, tile_kk=0, tile_nn=0, bypass_l1=False,
               use_bias=False, block_size=16, conv_dtype='float16'):
    conv, a_value, b_value, bias_value, kernel_name, dim_info = add_b_conv_compute(fmap_shape, filter_shape, pad_, stride_, dilation_,
                                                                                   tile_hh, tile_coco, tile_mm, tile_kk, tile_nn, bypass_l1,
                                                                                   use_bias, block_size, conv_dtype)
    # schedule
    s = akg.tvm.create_schedule(conv.op)
    print(conv, a_value, b_value, bias_value)

    attrs = {}
    attrs["pragma_reschedule"] = True
    attrs["pragma_rmselfdep"] = False
    attrs['dim'] = dim_info
    with akg.build_config(add_lower_pass=cce.debug_mode(0), dump_pass_ir=True):

        if use_bias:
            mod = akg.build(s, [a_value, b_value, bias_value, conv], "cce", name=kernel_name, attrs=attrs, polyhedral=True)
        else:
            mod = akg.build(s, [a_value, b_value, conv], "cce", name=kernel_name, attrs=attrs, polyhedral=True)
    source_code = mod.imported_modules[0].get_source()
    cce_path = '.'
204
    utils.create_code(kernel_name, cce_path, source_code)
C
ckey_Dou 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

    return mod


def conv_relu(fmap_shape, filter_shape, pad_, stride_, dilation_,
              tile_hh=0, tile_coco=0, tile_mm=0, tile_kk=0, tile_nn=0, bypass_l1=False,
              use_bias=False, block_size=16, conv_dtype='float16'):
    conv, a_value, b_value, bias_value, kernel_name, dim_info = add_b_conv_compute(fmap_shape, 
                                                                                   filter_shape, pad_, stride_, dilation_,
                                                                                   tile_hh, tile_coco, tile_mm, tile_kk, 
                                                                                   tile_nn, bypass_l1,
                                                                                   use_bias, block_size, conv_dtype)
    # leakly relu
    negative_slope = 0.0
    slope_tmp = akg.tvm.const(negative_slope, dtype=conv_dtype)
    # negative_slope*x
    out = akg.lang.cce.vmuls(conv, slope_tmp)
    # max(x,negative_slope*x)
    out = akg.lang.cce.vmax(out, conv)
    # schedule
    s = akg.tvm.create_schedule(conv.op)
    with akg.build_config(add_lower_pass=cce.debug_mode(0), dump_pass_ir=True):

        if use_bias:
            mod = akg.build(s, [a_value, b_value, bias_value, conv], "cce", name=kernel_name, attrs={"dim": dim_info}, polyhedral=True)
        else:
            mod = akg.build(s, [a_value, b_value, conv], "cce", name=kernel_name, attrs={"dim": dim_info}, polyhedral=True)
    return mod