# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """dsl: add_b_conv""" import akg.tvm import akg import akg.lang.cce import akg.backend as cce from akg import dim from akg.utils import kernel_exec as utils def add_b_conv_compute(fmap_shape, filter_shape, pad_, stride_, dilation_, tile_hh=0, tile_coco=0, tile_mm=0, tile_kk=0, tile_nn=0, bypass_l1=False, use_bias=False, block_size=16, conv_dtype='float16'): # input shape (NCHW -> NC1HWC0) in_n, in_c, in_h, in_w = fmap_shape in_c = (in_c + block_size - 1) // block_size * block_size # kernel shape (NCHW -> NC1HWC0 -> Fractal) k_n, k_c, k_h, k_w = filter_shape k_c = (k_c + block_size - 1) // block_size * block_size k_n = (k_n + block_size - 1) // block_size * block_size # padding((padding_h, padding_w) -> (padding_top, padding_bottom, padding_left, padding_right)) padding = (pad_[0], pad_[0], pad_[1], pad_[1]) p_top, p_bottom, p_left, p_right = padding # stride (stride_h, stride_w) s_h, s_w = stride_ # dilation (dilation_h, dilation_w) d_h, d_w = dilation_ if tile_hh == in_h: tile_hh += p_top + p_bottom tile_coco = (tile_coco + block_size - 1) // block_size * block_size tile_mm = (tile_mm + block_size - 1) // block_size * block_size tile_kk = (tile_kk + block_size - 1) // block_size * block_size tile_nn = (tile_nn + block_size - 1) // block_size * block_size c0 = block_size c1_cut = tile_coco // c0 h_window_cut = (tile_hh - k_h) // s_h + 1 out_w = (in_w + p_left + p_right - k_w) // (s_w) + 1 kernel_name = "add_b_conv_layer_" + str(in_n) + "_" + str(in_c) + "_" + str(in_h) + "_" + str(in_w) \ + "_" + str(k_n) + "_" + str(in_c) + "_" + str(k_h) + "_" + str(k_w) \ + "_" + str(p_top) + "_" + str(s_h) input_shape_nc1hwc0 = (in_n, in_c // block_size, in_h, in_w, block_size) in_n, in_c1, in_h, in_w, _ = input_shape_nc1hwc0 kernel_shape_nc1hwc0 = (k_n, k_c // block_size, k_h, k_w, block_size) k_n, k_c1, k_h, k_w, k_c0 = kernel_shape_nc1hwc0 kernel_shape_fractal = (k_c // block_size * k_h * k_w, k_n // block_size, block_size, block_size) f_ko, f_no, f_ni, f_ki = kernel_shape_fractal # bias shape bias_shape_nc1hwc0 = (1, k_n // block_size, 1, 1, block_size) # a_value placeholder (NC1HWCO) a_value = akg.tvm.placeholder(input_shape_nc1hwc0, dtype=conv_dtype, name='a_value') # B_placeholder (fractal) b_tmp = akg.tvm.placeholder(kernel_shape_fractal, dtype=conv_dtype, name='b_tmp') b_value = akg.tvm.compute(b_tmp.shape, lambda ko, c1, c0, ki: b_tmp[ko, c1, c0, ki] + 1, name='b_value', attrs={'no_inline': 1}) if use_bias: bias_name = 'bias' bias_value = akg.tvm.placeholder(bias_shape_nc1hwc0, dtype=conv_dtype, name=bias_name) else: bias_name = 'None' bias_value = None # Create reduction variables kc1 = akg.tvm.reduce_axis((0, k_c1), name='kc1') kh = akg.tvm.reduce_axis((0, k_h), name='kh') kw = akg.tvm.reduce_axis((0, k_w), name='kw') kc0 = akg.tvm.reduce_axis((0, k_c0), name='kc0') k_h_d = (k_h - 1) * d_h + 1 k_w_d = (k_w - 1) * d_w + 1 out_h = (in_h + p_top + p_bottom - k_h_d) // (s_h) + 1 tile_out_h = (tile_hh - k_h_d) // s_h + 1 out_w = (in_w + p_left + p_right - k_w_d) // (s_w) + 1 out_shape_nc1hwc0 = (in_n, k_n // block_size, out_h, out_w, block_size) _, out_c1, out_h, out_w, out_c0 = out_shape_nc1hwc0 if tile_coco > 0: c1_cut = tile_coco // block_size else: c1_cut = out_c1 # set dim index = 0 info = dim.Dim() if f_ko > 1: info.setdim(index=index, axis="KO", tilel1=f_ko, tilel0=f_ko) # ko if f_no > 1: info.setdim(index=index, axis="C1", tilel1=c1_cut, tilel0=c1_cut) # c1 if f_ni > 1: info.setdim(index=index, axis="C0", tilel1=out_c0, tilel0=out_c0) # c0 if f_ki > 1: info.setdim(index=index, axis="KI", tilel1=f_ki, tilel0=f_ki) # ki index += 1 if out_c1 > 1: info.setdim(index=index, axis="C1", tilel1=c1_cut, tilel0=0) # c1 if out_h > 1: info.setdim(index=index, axis="H", tilel1=tile_out_h, tilel0=0) # h if out_w > 1: info.setdim(index=index, axis="W", tilel1=out_w, tilel0=0) # w if out_c0 > 1: info.setdim(index=index, axis="C0", tilel1=out_c0, tilel0=0) # c0 if in_c1 > 1: info.setdim(index=index, axis="KC1", tilel1=in_c1, tilel0=0) # kc1 if k_h > 1: info.setdim(index=index, axis="KH", tilel1=k_h, tilel0=0) # kh if k_w > 1: info.setdim(index=index, axis="KW", tilel1=k_w, tilel0=0) # kw # Compute the convolution output_name = "c_value" output_bias_name = "OUT" c_value = akg.tvm.compute(out_shape_nc1hwc0, lambda n, c1, h, w, c0: akg.lang.cce.mmad( akg.tvm.if_then_else(akg.tvm.any((h * s_h + kh) < p_top, (h * s_h + kh) > (in_h + p_top - 1), (w * s_w + kw) < p_left, (w * s_w + kw) > (in_w + p_left - 1)), akg.tvm.const(0.0, 'float16'), a_value[n, kc1, (h * s_h + (kh * d_h) - p_top), \ (w * s_w + (kw * d_w) - p_left), kc0]) * b_value[(kc1 * k_h + kh) * k_w + kw, c1, c0, kc0], axis=[kc1, kh, kw, kc0]), name=output_name, attrs={ "pragma_conv_kernel_n": k_n, "pragma_conv_kernel_h": k_h, "pragma_conv_kernel_w": k_w, "pragma_conv_padding_top": p_top, "pragma_conv_padding_bottom": p_bottom, "pragma_conv_padding_left": p_left, "pragma_conv_padding_right": p_right, "pragma_conv_bypass_l1": 1 if bypass_l1 else 0, "pragma_conv_stride_h": s_h, "pragma_conv_stride_w": s_w, "pragma_conv_dilation_h": d_h, "pragma_conv_dilation_w": d_w, "pragma_conv_fm_n": in_n, "pragma_conv_fm_c": in_c, "pragma_conv_fm_h": in_h, "pragma_conv_fm_w": in_w, "pragma_conv_h_cut": (h_window_cut - 1) * s_h + k_h_d, "pragma_conv_w_cut": (in_w + p_left + p_right), "pragma_conv_co_cut": c1_cut * k_c0, "pragma_conv_m_cut": tile_mm, "pragma_conv_k_cut": tile_kk, "pragma_conv_n_cut": tile_nn, "feature": a_value.op.name, "filter": b_value.op.name, "bias": bias_name, "res": output_name, "res_bias": output_bias_name}) if use_bias: cube = akg.tvm.compute(out_shape_nc1hwc0, lambda n, c1, h, w, c0: c_value[n, c1, h, w, c0] + bias_value[0, c1, 0, 0, c0], name=output_bias_name) else: cube = c_value return cube, a_value, b_tmp, bias_value, kernel_name, str(info) def add_b_conv(fmap_shape, filter_shape, pad_, stride_, dilation_, tile_hh=0, tile_coco=0, tile_mm=0, tile_kk=0, tile_nn=0, bypass_l1=False, use_bias=False, block_size=16, conv_dtype='float16'): conv, a_value, b_value, bias_value, kernel_name, dim_info = add_b_conv_compute(fmap_shape, filter_shape, pad_, stride_, dilation_, tile_hh, tile_coco, tile_mm, tile_kk, tile_nn, bypass_l1, use_bias, block_size, conv_dtype) # schedule s = akg.tvm.create_schedule(conv.op) print(conv, a_value, b_value, bias_value) attrs = {} attrs["pragma_reschedule"] = True attrs["pragma_rmselfdep"] = False attrs['dim'] = dim_info with akg.build_config(add_lower_pass=cce.debug_mode(0), dump_pass_ir=True): if use_bias: mod = akg.build(s, [a_value, b_value, bias_value, conv], "cce", name=kernel_name, attrs=attrs, polyhedral=True) else: mod = akg.build(s, [a_value, b_value, conv], "cce", name=kernel_name, attrs=attrs, polyhedral=True) source_code = mod.imported_modules[0].get_source() cce_path = '.' utils.create_code(kernel_name, cce_path, source_code) return mod def conv_relu(fmap_shape, filter_shape, pad_, stride_, dilation_, tile_hh=0, tile_coco=0, tile_mm=0, tile_kk=0, tile_nn=0, bypass_l1=False, use_bias=False, block_size=16, conv_dtype='float16'): conv, a_value, b_value, bias_value, kernel_name, dim_info = add_b_conv_compute(fmap_shape, filter_shape, pad_, stride_, dilation_, tile_hh, tile_coco, tile_mm, tile_kk, tile_nn, bypass_l1, use_bias, block_size, conv_dtype) # leakly relu negative_slope = 0.0 slope_tmp = akg.tvm.const(negative_slope, dtype=conv_dtype) # negative_slope*x out = akg.lang.cce.vmuls(conv, slope_tmp) # max(x,negative_slope*x) out = akg.lang.cce.vmax(out, conv) # schedule s = akg.tvm.create_schedule(conv.op) with akg.build_config(add_lower_pass=cce.debug_mode(0), dump_pass_ir=True): if use_bias: mod = akg.build(s, [a_value, b_value, bias_value, conv], "cce", name=kernel_name, attrs={"dim": dim_info}, polyhedral=True) else: mod = akg.build(s, [a_value, b_value, conv], "cce", name=kernel_name, attrs={"dim": dim_info}, polyhedral=True) return mod