perf_event.c 137.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
37
/*
38
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
39
 */
40
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
41

42
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
43 44 45
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

46 47 48 49
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
50

51
/*
52
 * perf event paranoia level:
53 54
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
55
 *   1 - disallow cpu events for unpriv
56
 *   2 - disallow kernel profiling for unpriv
57
 */
58
int sysctl_perf_event_paranoid __read_mostly = 1;
59

60
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
61 62

/*
63
 * max perf event sample rate
64
 */
65
int sysctl_perf_event_sample_rate __read_mostly = 100000;
66

67
static atomic64_t perf_event_id;
68

T
Thomas Gleixner 已提交
69
/*
70
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
71
 */
72
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
73

74 75 76
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

77
void __weak perf_event_print_debug(void)	{ }
78

79
static DEFINE_PER_CPU(int, perf_disable_count);
80 81 82

void perf_disable(void)
{
P
Peter Zijlstra 已提交
83 84
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
85 86 87 88
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
89
	if (!--__get_cpu_var(perf_disable_count))
90 91 92
		hw_perf_enable();
}

93
static void get_ctx(struct perf_event_context *ctx)
94
{
95
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
96 97
}

98 99
static void free_ctx(struct rcu_head *head)
{
100
	struct perf_event_context *ctx;
101

102
	ctx = container_of(head, struct perf_event_context, rcu_head);
103 104 105
	kfree(ctx);
}

106
static void put_ctx(struct perf_event_context *ctx)
107
{
108 109 110
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
111 112 113
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
114
	}
115 116
}

117
static void unclone_ctx(struct perf_event_context *ctx)
118 119 120 121 122 123 124
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

125
/*
126
 * If we inherit events we want to return the parent event id
127 128
 * to userspace.
 */
129
static u64 primary_event_id(struct perf_event *event)
130
{
131
	u64 id = event->id;
132

133 134
	if (event->parent)
		id = event->parent->id;
135 136 137 138

	return id;
}

139
/*
140
 * Get the perf_event_context for a task and lock it.
141 142 143
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
144
static struct perf_event_context *
145
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
146
{
147
	struct perf_event_context *ctx;
148 149

	rcu_read_lock();
P
Peter Zijlstra 已提交
150
retry:
151
	ctx = rcu_dereference(task->perf_event_ctxp);
152 153 154 155
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
156
		 * perf_event_task_sched_out, though the
157 158 159 160 161 162
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
163
		raw_spin_lock_irqsave(&ctx->lock, *flags);
164
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
165
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
166 167
			goto retry;
		}
168 169

		if (!atomic_inc_not_zero(&ctx->refcount)) {
170
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
171 172
			ctx = NULL;
		}
173 174 175 176 177 178 179 180 181 182
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
183
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
184
{
185
	struct perf_event_context *ctx;
186 187 188 189 190
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
191
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
192 193 194 195
	}
	return ctx;
}

196
static void perf_unpin_context(struct perf_event_context *ctx)
197 198 199
{
	unsigned long flags;

200
	raw_spin_lock_irqsave(&ctx->lock, flags);
201
	--ctx->pin_count;
202
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
203 204 205
	put_ctx(ctx);
}

206 207
static inline u64 perf_clock(void)
{
208
	return local_clock();
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

234 235 236 237 238 239
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
240 241 242 243 244 245 246 247 248

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

249 250 251 252 253 254 255 256 257 258 259 260
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

261 262 263 264 265 266 267 268 269
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

270
/*
271
 * Add a event from the lists for its context.
272 273
 * Must be called with ctx->mutex and ctx->lock held.
 */
274
static void
275
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
276
{
277 278
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
279 280

	/*
281 282 283
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
284
	 */
285
	if (event->group_leader == event) {
286 287
		struct list_head *list;

288 289 290
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

291 292
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
293
	}
P
Peter Zijlstra 已提交
294

295 296 297
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
298
		ctx->nr_stat++;
299 300
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

319
/*
320
 * Remove a event from the lists for its context.
321
 * Must be called with ctx->mutex and ctx->lock held.
322
 */
323
static void
324
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325
{
326 327 328 329
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
330
		return;
331 332 333

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

334 335
	ctx->nr_events--;
	if (event->attr.inherit_stat)
336
		ctx->nr_stat--;
337

338
	list_del_rcu(&event->event_entry);
339

340 341
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
342

343
	update_group_times(event);
344 345 346 347 348 349 350 351 352 353

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
354 355
}

356
static void perf_group_detach(struct perf_event *event)
357 358
{
	struct perf_event *sibling, *tmp;
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
380

381
	/*
382 383
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
384
	 * to whatever list we are on.
385
	 */
386
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
387 388
		if (list)
			list_move_tail(&sibling->group_entry, list);
389
		sibling->group_leader = sibling;
390 391 392

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
393 394 395
	}
}

396 397 398 399 400 401
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

402
static void
403
event_sched_out(struct perf_event *event,
404
		  struct perf_cpu_context *cpuctx,
405
		  struct perf_event_context *ctx)
406
{
407 408 409 410 411 412 413 414 415 416 417 418 419 420
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

421
	if (event->state != PERF_EVENT_STATE_ACTIVE)
422 423
		return;

424 425 426 427
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
428
	}
429 430 431
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
432

433
	if (!is_software_event(event))
434 435
		cpuctx->active_oncpu--;
	ctx->nr_active--;
436
	if (event->attr.exclusive || !cpuctx->active_oncpu)
437 438 439
		cpuctx->exclusive = 0;
}

440
static void
441
group_sched_out(struct perf_event *group_event,
442
		struct perf_cpu_context *cpuctx,
443
		struct perf_event_context *ctx)
444
{
445
	struct perf_event *event;
446
	int state = group_event->state;
447

448
	event_sched_out(group_event, cpuctx, ctx);
449 450 451 452

	/*
	 * Schedule out siblings (if any):
	 */
453 454
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
455

456
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
457 458 459
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
460
/*
461
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
462
 *
463
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
464 465
 * remove it from the context list.
 */
466
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
467 468
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
469 470
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
471 472 473 474 475 476

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
477
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
478 479
		return;

480
	raw_spin_lock(&ctx->lock);
481 482
	/*
	 * Protect the list operation against NMI by disabling the
483
	 * events on a global level.
484 485
	 */
	perf_disable();
T
Thomas Gleixner 已提交
486

487
	event_sched_out(event, cpuctx, ctx);
488

489
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
490 491 492

	if (!ctx->task) {
		/*
493
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
494 495 496
		 * reservation:
		 */
		cpuctx->max_pertask =
497 498
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
499 500
	}

501
	perf_enable();
502
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
503 504 505 506
}


/*
507
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
508
 *
509
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
510
 *
511
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
512
 * call when the task is on a CPU.
513
 *
514 515
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
516 517
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
518
 * When called from perf_event_exit_task, it's OK because the
519
 * context has been detached from its task.
T
Thomas Gleixner 已提交
520
 */
521
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
522
{
523
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
524 525 526 527
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
528
		 * Per cpu events are removed via an smp call and
529
		 * the removal is always successful.
T
Thomas Gleixner 已提交
530
		 */
531 532 533
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
534 535 536 537
		return;
	}

retry:
538 539
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
540

541
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
542 543 544
	/*
	 * If the context is active we need to retry the smp call.
	 */
545
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
546
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
547 548 549 550 551
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
552
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
553 554
	 * succeed.
	 */
P
Peter Zijlstra 已提交
555
	if (!list_empty(&event->group_entry))
556
		list_del_event(event, ctx);
557
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
558 559
}

560
/*
561
 * Cross CPU call to disable a performance event
562
 */
563
static void __perf_event_disable(void *info)
564
{
565
	struct perf_event *event = info;
566
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
567
	struct perf_event_context *ctx = event->ctx;
568 569

	/*
570 571
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
572
	 */
573
	if (ctx->task && cpuctx->task_ctx != ctx)
574 575
		return;

576
	raw_spin_lock(&ctx->lock);
577 578

	/*
579
	 * If the event is on, turn it off.
580 581
	 * If it is in error state, leave it in error state.
	 */
582
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
583
		update_context_time(ctx);
584 585 586
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
587
		else
588 589
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
590 591
	}

592
	raw_spin_unlock(&ctx->lock);
593 594 595
}

/*
596
 * Disable a event.
597
 *
598 599
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
600
 * remains valid.  This condition is satisifed when called through
601 602 603 604
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
605
 * is the current context on this CPU and preemption is disabled,
606
 * hence we can't get into perf_event_task_sched_out for this context.
607
 */
608
void perf_event_disable(struct perf_event *event)
609
{
610
	struct perf_event_context *ctx = event->ctx;
611 612 613 614
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
615
		 * Disable the event on the cpu that it's on
616
		 */
617 618
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
619 620 621
		return;
	}

P
Peter Zijlstra 已提交
622
retry:
623
	task_oncpu_function_call(task, __perf_event_disable, event);
624

625
	raw_spin_lock_irq(&ctx->lock);
626
	/*
627
	 * If the event is still active, we need to retry the cross-call.
628
	 */
629
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
630
		raw_spin_unlock_irq(&ctx->lock);
631 632 633 634 635 636 637
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
638 639 640
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
641
	}
642

643
	raw_spin_unlock_irq(&ctx->lock);
644 645
}

646
static int
647
event_sched_in(struct perf_event *event,
648
		 struct perf_cpu_context *cpuctx,
649
		 struct perf_event_context *ctx)
650
{
651
	if (event->state <= PERF_EVENT_STATE_OFF)
652 653
		return 0;

654
	event->state = PERF_EVENT_STATE_ACTIVE;
655
	event->oncpu = smp_processor_id();
656 657 658 659 660
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

661 662 663
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
664 665 666
		return -EAGAIN;
	}

667
	event->tstamp_running += ctx->time - event->tstamp_stopped;
668

669
	if (!is_software_event(event))
670
		cpuctx->active_oncpu++;
671 672
	ctx->nr_active++;

673
	if (event->attr.exclusive)
674 675
		cpuctx->exclusive = 1;

676 677 678
	return 0;
}

679
static int
680
group_sched_in(struct perf_event *group_event,
681
	       struct perf_cpu_context *cpuctx,
682
	       struct perf_event_context *ctx)
683
{
684
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
685
	struct pmu *pmu = group_event->pmu;
686
	bool txn = false;
687

688
	if (group_event->state == PERF_EVENT_STATE_OFF)
689 690
		return 0;

691 692 693 694 695 696
	/* Check if group transaction availabe */
	if (pmu->start_txn)
		txn = true;

	if (txn)
		pmu->start_txn(pmu);
697

698 699 700
	if (event_sched_in(group_event, cpuctx, ctx)) {
		if (txn)
			pmu->cancel_txn(pmu);
701
		return -EAGAIN;
702
	}
703 704 705 706

	/*
	 * Schedule in siblings as one group (if any):
	 */
707
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
708
		if (event_sched_in(event, cpuctx, ctx)) {
709
			partial_group = event;
710 711 712 713
			goto group_error;
		}
	}

714
	if (!txn || !pmu->commit_txn(pmu))
715
		return 0;
716

717 718 719 720 721
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
722 723
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
724
			break;
725
		event_sched_out(event, cpuctx, ctx);
726
	}
727
	event_sched_out(group_event, cpuctx, ctx);
728

729 730 731
	if (txn)
		pmu->cancel_txn(pmu);

732 733 734
	return -EAGAIN;
}

735
/*
736
 * Work out whether we can put this event group on the CPU now.
737
 */
738
static int group_can_go_on(struct perf_event *event,
739 740 741 742
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
743
	 * Groups consisting entirely of software events can always go on.
744
	 */
745
	if (event->group_flags & PERF_GROUP_SOFTWARE)
746 747 748
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
749
	 * events can go on.
750 751 752 753 754
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
755
	 * events on the CPU, it can't go on.
756
	 */
757
	if (event->attr.exclusive && cpuctx->active_oncpu)
758 759 760 761 762 763 764 765
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

766 767
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
768
{
769
	list_add_event(event, ctx);
770
	perf_group_attach(event);
771 772 773
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
774 775
}

T
Thomas Gleixner 已提交
776
/*
777
 * Cross CPU call to install and enable a performance event
778 779
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
780 781 782 783
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
784 785 786
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
787
	int err;
T
Thomas Gleixner 已提交
788 789 790 791 792

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
793
	 * Or possibly this is the right context but it isn't
794
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
795
	 */
796
	if (ctx->task && cpuctx->task_ctx != ctx) {
797
		if (cpuctx->task_ctx || ctx->task != current)
798 799 800
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
801

802
	raw_spin_lock(&ctx->lock);
803
	ctx->is_active = 1;
804
	update_context_time(ctx);
T
Thomas Gleixner 已提交
805 806 807

	/*
	 * Protect the list operation against NMI by disabling the
808
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
809
	 */
810
	perf_disable();
T
Thomas Gleixner 已提交
811

812
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
813

814 815 816
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

817
	/*
818
	 * Don't put the event on if it is disabled or if
819 820
	 * it is in a group and the group isn't on.
	 */
821 822
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
823 824
		goto unlock;

825
	/*
826 827 828
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
829
	 */
830
	if (!group_can_go_on(event, cpuctx, 1))
831 832
		err = -EEXIST;
	else
833
		err = event_sched_in(event, cpuctx, ctx);
834

835 836
	if (err) {
		/*
837
		 * This event couldn't go on.  If it is in a group
838
		 * then we have to pull the whole group off.
839
		 * If the event group is pinned then put it in error state.
840
		 */
841
		if (leader != event)
842
			group_sched_out(leader, cpuctx, ctx);
843
		if (leader->attr.pinned) {
844
			update_group_times(leader);
845
			leader->state = PERF_EVENT_STATE_ERROR;
846
		}
847
	}
T
Thomas Gleixner 已提交
848

849
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
850 851
		cpuctx->max_pertask--;

P
Peter Zijlstra 已提交
852
unlock:
853
	perf_enable();
854

855
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
856 857 858
}

/*
859
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
860
 *
861 862
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
863
 *
864
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
865 866
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
867 868
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
869 870
 */
static void
871 872
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
873 874 875 876 877 878
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
879
		 * Per cpu events are installed via an smp call and
880
		 * the install is always successful.
T
Thomas Gleixner 已提交
881 882
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
883
					 event, 1);
T
Thomas Gleixner 已提交
884 885 886 887 888
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
889
				 event);
T
Thomas Gleixner 已提交
890

891
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
892 893 894
	/*
	 * we need to retry the smp call.
	 */
895
	if (ctx->is_active && list_empty(&event->group_entry)) {
896
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
897 898 899 900 901
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
902
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
903 904
	 * succeed.
	 */
905 906
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
907
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
908 909
}

910
/*
911
 * Put a event into inactive state and update time fields.
912 913 914 915 916 917
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
918 919
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
920
{
921
	struct perf_event *sub;
922

923 924
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
925 926
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
927 928
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
929 930
		}
	}
931 932
}

933
/*
934
 * Cross CPU call to enable a performance event
935
 */
936
static void __perf_event_enable(void *info)
937
{
938
	struct perf_event *event = info;
939
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
940 941
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
942
	int err;
943

944
	/*
945 946
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
947
	 */
948
	if (ctx->task && cpuctx->task_ctx != ctx) {
949
		if (cpuctx->task_ctx || ctx->task != current)
950 951 952
			return;
		cpuctx->task_ctx = ctx;
	}
953

954
	raw_spin_lock(&ctx->lock);
955
	ctx->is_active = 1;
956
	update_context_time(ctx);
957

958
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
959
		goto unlock;
960
	__perf_event_mark_enabled(event, ctx);
961

962 963 964
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

965
	/*
966
	 * If the event is in a group and isn't the group leader,
967
	 * then don't put it on unless the group is on.
968
	 */
969
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
970
		goto unlock;
971

972
	if (!group_can_go_on(event, cpuctx, 1)) {
973
		err = -EEXIST;
974
	} else {
975
		perf_disable();
976
		if (event == leader)
977
			err = group_sched_in(event, cpuctx, ctx);
978
		else
979
			err = event_sched_in(event, cpuctx, ctx);
980
		perf_enable();
981
	}
982 983 984

	if (err) {
		/*
985
		 * If this event can't go on and it's part of a
986 987
		 * group, then the whole group has to come off.
		 */
988
		if (leader != event)
989
			group_sched_out(leader, cpuctx, ctx);
990
		if (leader->attr.pinned) {
991
			update_group_times(leader);
992
			leader->state = PERF_EVENT_STATE_ERROR;
993
		}
994 995
	}

P
Peter Zijlstra 已提交
996
unlock:
997
	raw_spin_unlock(&ctx->lock);
998 999 1000
}

/*
1001
 * Enable a event.
1002
 *
1003 1004
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1005
 * remains valid.  This condition is satisfied when called through
1006 1007
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1008
 */
1009
void perf_event_enable(struct perf_event *event)
1010
{
1011
	struct perf_event_context *ctx = event->ctx;
1012 1013 1014 1015
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1016
		 * Enable the event on the cpu that it's on
1017
		 */
1018 1019
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1020 1021 1022
		return;
	}

1023
	raw_spin_lock_irq(&ctx->lock);
1024
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1025 1026 1027
		goto out;

	/*
1028 1029
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1030 1031 1032 1033
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1034 1035
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1036

P
Peter Zijlstra 已提交
1037
retry:
1038
	raw_spin_unlock_irq(&ctx->lock);
1039
	task_oncpu_function_call(task, __perf_event_enable, event);
1040

1041
	raw_spin_lock_irq(&ctx->lock);
1042 1043

	/*
1044
	 * If the context is active and the event is still off,
1045 1046
	 * we need to retry the cross-call.
	 */
1047
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1048 1049 1050 1051 1052 1053
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1054 1055
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1056

P
Peter Zijlstra 已提交
1057
out:
1058
	raw_spin_unlock_irq(&ctx->lock);
1059 1060
}

1061
static int perf_event_refresh(struct perf_event *event, int refresh)
1062
{
1063
	/*
1064
	 * not supported on inherited events
1065
	 */
1066
	if (event->attr.inherit)
1067 1068
		return -EINVAL;

1069 1070
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1071 1072

	return 0;
1073 1074
}

1075 1076 1077 1078 1079 1080 1081 1082 1083
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1084
{
1085
	struct perf_event *event;
1086

1087
	raw_spin_lock(&ctx->lock);
1088
	ctx->is_active = 0;
1089
	if (likely(!ctx->nr_events))
1090
		goto out;
1091
	update_context_time(ctx);
1092

1093
	perf_disable();
1094 1095 1096
	if (!ctx->nr_active)
		goto out_enable;

P
Peter Zijlstra 已提交
1097
	if (event_type & EVENT_PINNED) {
1098 1099
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1100
	}
1101

P
Peter Zijlstra 已提交
1102
	if (event_type & EVENT_FLEXIBLE) {
1103
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1104
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1105
	}
1106 1107

 out_enable:
1108
	perf_enable();
P
Peter Zijlstra 已提交
1109
out:
1110
	raw_spin_unlock(&ctx->lock);
1111 1112
}

1113 1114 1115
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1116 1117 1118 1119
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1120
 * in them directly with an fd; we can only enable/disable all
1121
 * events via prctl, or enable/disable all events in a family
1122 1123
 * via ioctl, which will have the same effect on both contexts.
 */
1124 1125
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1126 1127
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1128
		&& ctx1->parent_gen == ctx2->parent_gen
1129
		&& !ctx1->pin_count && !ctx2->pin_count;
1130 1131
}

1132 1133
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1134 1135 1136
{
	u64 value;

1137
	if (!event->attr.inherit_stat)
1138 1139 1140
		return;

	/*
1141
	 * Update the event value, we cannot use perf_event_read()
1142 1143
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1144
	 * we know the event must be on the current CPU, therefore we
1145 1146
	 * don't need to use it.
	 */
1147 1148
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1149 1150
		event->pmu->read(event);
		/* fall-through */
1151

1152 1153
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1154 1155 1156 1157 1158 1159 1160
		break;

	default:
		break;
	}

	/*
1161
	 * In order to keep per-task stats reliable we need to flip the event
1162 1163
	 * values when we flip the contexts.
	 */
1164 1165 1166
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1167

1168 1169
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1170

1171
	/*
1172
	 * Since we swizzled the values, update the user visible data too.
1173
	 */
1174 1175
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1176 1177 1178 1179 1180
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1181 1182
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1183
{
1184
	struct perf_event *event, *next_event;
1185 1186 1187 1188

	if (!ctx->nr_stat)
		return;

1189 1190
	update_context_time(ctx);

1191 1192
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1193

1194 1195
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1196

1197 1198
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1199

1200
		__perf_event_sync_stat(event, next_event);
1201

1202 1203
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1204 1205 1206
	}
}

T
Thomas Gleixner 已提交
1207
/*
1208
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1209 1210
 * with interrupts disabled.
 *
1211
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1212
 *
I
Ingo Molnar 已提交
1213
 * This does not protect us against NMI, but disable()
1214 1215 1216
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1217
 */
1218
void perf_event_task_sched_out(struct task_struct *task,
1219
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1220
{
1221
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1222 1223 1224
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1225
	int do_switch = 1;
T
Thomas Gleixner 已提交
1226

1227
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1228

1229
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1230 1231
		return;

1232 1233
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1234
	next_ctx = next->perf_event_ctxp;
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1246 1247
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1248
		if (context_equiv(ctx, next_ctx)) {
1249 1250
			/*
			 * XXX do we need a memory barrier of sorts
1251
			 * wrt to rcu_dereference() of perf_event_ctxp
1252
			 */
1253 1254
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1255 1256 1257
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1258

1259
			perf_event_sync_stat(ctx, next_ctx);
1260
		}
1261 1262
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1263
	}
1264
	rcu_read_unlock();
1265

1266
	if (do_switch) {
1267
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1268 1269
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1270 1271
}

1272 1273
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1274 1275 1276
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1277 1278
	if (!cpuctx->task_ctx)
		return;
1279 1280 1281 1282

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1283
	ctx_sched_out(ctx, cpuctx, event_type);
1284 1285 1286
	cpuctx->task_ctx = NULL;
}

1287 1288 1289
/*
 * Called with IRQs disabled
 */
1290
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1291
{
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1302 1303
}

1304
static void
1305
ctx_pinned_sched_in(struct perf_event_context *ctx,
1306
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1307
{
1308
	struct perf_event *event;
T
Thomas Gleixner 已提交
1309

1310 1311
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1312
			continue;
1313
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1314 1315
			continue;

1316
		if (group_can_go_on(event, cpuctx, 1))
1317
			group_sched_in(event, cpuctx, ctx);
1318 1319 1320 1321 1322

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1323 1324 1325
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1326
		}
1327
	}
1328 1329 1330 1331
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1332
		      struct perf_cpu_context *cpuctx)
1333 1334 1335
{
	struct perf_event *event;
	int can_add_hw = 1;
1336

1337 1338 1339
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1340
			continue;
1341 1342
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1343
		 * of events:
1344
		 */
1345
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1346 1347
			continue;

P
Peter Zijlstra 已提交
1348
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1349
			if (group_sched_in(event, cpuctx, ctx))
1350
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1351
		}
T
Thomas Gleixner 已提交
1352
	}
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1374
		ctx_pinned_sched_in(ctx, cpuctx);
1375 1376 1377

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1378
		ctx_flexible_sched_in(ctx, cpuctx);
1379

1380
	perf_enable();
P
Peter Zijlstra 已提交
1381
out:
1382
	raw_spin_unlock(&ctx->lock);
1383 1384
}

1385 1386 1387 1388 1389 1390 1391 1392
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1406
/*
1407
 * Called from scheduler to add the events of the current task
1408 1409
 * with interrupts disabled.
 *
1410
 * We restore the event value and then enable it.
1411 1412
 *
 * This does not protect us against NMI, but enable()
1413 1414 1415
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1416
 */
1417
void perf_event_task_sched_in(struct task_struct *task)
1418
{
1419 1420
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1421

1422 1423
	if (likely(!ctx))
		return;
1424

1425 1426 1427
	if (cpuctx->task_ctx == ctx)
		return;

1428 1429
	perf_disable();

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1442 1443

	perf_enable();
1444 1445
}

1446 1447
#define MAX_INTERRUPTS (~0ULL)

1448
static void perf_log_throttle(struct perf_event *event, int enable);
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1517 1518 1519
	if (!divisor)
		return dividend;

1520 1521 1522
	return div64_u64(dividend, divisor);
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1539
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1540
{
1541
	struct hw_perf_event *hwc = &event->hw;
1542
	s64 period, sample_period;
1543 1544
	s64 delta;

1545
	period = perf_calculate_period(event, nsec, count);
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1556

1557
	if (local64_read(&hwc->period_left) > 8*sample_period) {
1558
		perf_disable();
1559
		perf_event_stop(event);
1560
		local64_set(&hwc->period_left, 0);
1561
		perf_event_start(event);
1562 1563
		perf_enable();
	}
1564 1565
}

1566
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1567
{
1568 1569
	struct perf_event *event;
	struct hw_perf_event *hwc;
1570 1571
	u64 interrupts, now;
	s64 delta;
1572

1573
	raw_spin_lock(&ctx->lock);
1574
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1575
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1576 1577
			continue;

1578 1579 1580
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1581
		hwc = &event->hw;
1582 1583 1584

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1585

1586
		/*
1587
		 * unthrottle events on the tick
1588
		 */
1589
		if (interrupts == MAX_INTERRUPTS) {
1590
			perf_log_throttle(event, 1);
1591
			perf_disable();
1592
			event->pmu->unthrottle(event);
1593
			perf_enable();
1594 1595
		}

1596
		if (!event->attr.freq || !event->attr.sample_freq)
1597 1598
			continue;

1599
		perf_disable();
1600
		event->pmu->read(event);
1601
		now = local64_read(&event->count);
1602 1603
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1604

1605 1606
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1607
		perf_enable();
1608
	}
1609
	raw_spin_unlock(&ctx->lock);
1610 1611
}

1612
/*
1613
 * Round-robin a context's events:
1614
 */
1615
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1616
{
1617
	raw_spin_lock(&ctx->lock);
1618 1619 1620 1621

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1622
	raw_spin_unlock(&ctx->lock);
1623 1624
}

1625
void perf_event_task_tick(struct task_struct *curr)
1626
{
1627
	struct perf_cpu_context *cpuctx;
1628
	struct perf_event_context *ctx;
1629
	int rotate = 0;
1630

1631
	if (!atomic_read(&nr_events))
1632 1633
		return;

1634
	cpuctx = &__get_cpu_var(perf_cpu_context);
1635 1636 1637
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1638

1639 1640 1641
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1642

1643
	perf_ctx_adjust_freq(&cpuctx->ctx);
1644
	if (ctx)
1645
		perf_ctx_adjust_freq(ctx);
1646

1647 1648 1649 1650
	if (!rotate)
		return;

	perf_disable();
1651
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1652
	if (ctx)
1653
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1654

1655
	rotate_ctx(&cpuctx->ctx);
1656 1657
	if (ctx)
		rotate_ctx(ctx);
1658

1659
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1660
	if (ctx)
1661
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1662
	perf_enable();
T
Thomas Gleixner 已提交
1663 1664
}

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1680
/*
1681
 * Enable all of a task's events that have been marked enable-on-exec.
1682 1683
 * This expects task == current.
 */
1684
static void perf_event_enable_on_exec(struct task_struct *task)
1685
{
1686 1687
	struct perf_event_context *ctx;
	struct perf_event *event;
1688 1689
	unsigned long flags;
	int enabled = 0;
1690
	int ret;
1691 1692

	local_irq_save(flags);
1693 1694
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1695 1696
		goto out;

1697
	__perf_event_task_sched_out(ctx);
1698

1699
	raw_spin_lock(&ctx->lock);
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1711 1712 1713
	}

	/*
1714
	 * Unclone this context if we enabled any event.
1715
	 */
1716 1717
	if (enabled)
		unclone_ctx(ctx);
1718

1719
	raw_spin_unlock(&ctx->lock);
1720

1721
	perf_event_task_sched_in(task);
P
Peter Zijlstra 已提交
1722
out:
1723 1724 1725
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1726
/*
1727
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1728
 */
1729
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1730
{
1731
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1732 1733
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1734

1735 1736 1737 1738
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1739 1740
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1741 1742 1743 1744
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1745
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1746
	update_context_time(ctx);
1747
	update_event_times(event);
1748
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1749

P
Peter Zijlstra 已提交
1750
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1751 1752
}

P
Peter Zijlstra 已提交
1753 1754
static inline u64 perf_event_count(struct perf_event *event)
{
1755
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1756 1757
}

1758
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1759 1760
{
	/*
1761 1762
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1763
	 */
1764 1765 1766 1767
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1768 1769 1770
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1771
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1772
		update_context_time(ctx);
1773
		update_event_times(event);
1774
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1775 1776
	}

P
Peter Zijlstra 已提交
1777
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1778 1779
}

1780 1781 1782 1783 1784 1785 1786 1787 1788
/*
 * Callchain support
 */

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1789
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
{
}

__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
{
}

static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;

	entries = container_of(head, struct callchain_cpus_entries, rcu_head);

	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);

	kfree(entries);
}

static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;

	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}

static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;

	/*
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
	 */
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();

	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;

1845
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
	}

	rcu_assign_pointer(callchain_cpus_entries, entries);

	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

1990
/*
1991
 * Initialize the perf_event context in a task_struct:
1992 1993
 */
static void
1994
__perf_event_init_context(struct perf_event_context *ctx,
1995 1996
			    struct task_struct *task)
{
1997
	raw_spin_lock_init(&ctx->lock);
1998
	mutex_init(&ctx->mutex);
1999 2000
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2001 2002 2003 2004 2005
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

2006
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
2007
{
2008
	struct perf_event_context *ctx;
2009
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
2010
	struct task_struct *task;
2011
	unsigned long flags;
2012
	int err;
T
Thomas Gleixner 已提交
2013

2014
	if (pid == -1 && cpu != -1) {
2015
		/* Must be root to operate on a CPU event: */
2016
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2017 2018
			return ERR_PTR(-EACCES);

2019
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
2020 2021 2022
			return ERR_PTR(-EINVAL);

		/*
2023
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2024 2025 2026
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2027
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2028 2029 2030 2031
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
2032
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

2049
	/*
2050
	 * Can't attach events to a dying task.
2051 2052 2053 2054 2055
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
2056
	/* Reuse ptrace permission checks for now. */
2057 2058 2059 2060
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

P
Peter Zijlstra 已提交
2061
retry:
2062
	ctx = perf_lock_task_context(task, &flags);
2063
	if (ctx) {
2064
		unclone_ctx(ctx);
2065
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2066 2067
	}

2068
	if (!ctx) {
2069
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2070 2071 2072
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2073
		__perf_event_init_context(ctx, task);
2074
		get_ctx(ctx);
2075
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
2076 2077 2078 2079 2080
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
2081
			goto retry;
2082
		}
2083
		get_task_struct(task);
2084 2085
	}

2086
	put_task_struct(task);
T
Thomas Gleixner 已提交
2087
	return ctx;
2088

P
Peter Zijlstra 已提交
2089
errout:
2090 2091
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2092 2093
}

L
Li Zefan 已提交
2094 2095
static void perf_event_free_filter(struct perf_event *event);

2096
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2097
{
2098
	struct perf_event *event;
P
Peter Zijlstra 已提交
2099

2100 2101 2102
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2103
	perf_event_free_filter(event);
2104
	kfree(event);
P
Peter Zijlstra 已提交
2105 2106
}

2107
static void perf_pending_sync(struct perf_event *event);
2108
static void perf_buffer_put(struct perf_buffer *buffer);
2109

2110
static void free_event(struct perf_event *event)
2111
{
2112
	perf_pending_sync(event);
2113

2114 2115
	if (!event->parent) {
		atomic_dec(&nr_events);
2116
		if (event->attr.mmap || event->attr.mmap_data)
2117 2118 2119 2120 2121
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2122 2123
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2124
	}
2125

2126 2127 2128
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2129 2130
	}

2131 2132
	if (event->destroy)
		event->destroy(event);
2133

2134 2135
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
2136 2137
}

2138
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2139
{
2140
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2141

2142 2143 2144 2145 2146 2147
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2148
	WARN_ON_ONCE(ctx->parent_ctx);
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2162
	raw_spin_lock_irq(&ctx->lock);
2163
	perf_group_detach(event);
2164 2165
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2166
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2167

2168 2169 2170 2171
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2172

2173
	free_event(event);
T
Thomas Gleixner 已提交
2174 2175 2176

	return 0;
}
2177
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2178

2179 2180 2181 2182
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2183
{
2184
	struct perf_event *event = file->private_data;
2185

2186
	file->private_data = NULL;
2187

2188
	return perf_event_release_kernel(event);
2189 2190
}

2191
static int perf_event_read_size(struct perf_event *event)
2192 2193 2194 2195 2196
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2197
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2198 2199
		size += sizeof(u64);

2200
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2201 2202
		size += sizeof(u64);

2203
	if (event->attr.read_format & PERF_FORMAT_ID)
2204 2205
		entry += sizeof(u64);

2206 2207
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2208 2209 2210 2211 2212 2213 2214 2215
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2216
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2217
{
2218
	struct perf_event *child;
2219 2220
	u64 total = 0;

2221 2222 2223
	*enabled = 0;
	*running = 0;

2224
	mutex_lock(&event->child_mutex);
2225
	total += perf_event_read(event);
2226 2227 2228 2229 2230 2231
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2232
		total += perf_event_read(child);
2233 2234 2235
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2236
	mutex_unlock(&event->child_mutex);
2237 2238 2239

	return total;
}
2240
EXPORT_SYMBOL_GPL(perf_event_read_value);
2241

2242
static int perf_event_read_group(struct perf_event *event,
2243 2244
				   u64 read_format, char __user *buf)
{
2245
	struct perf_event *leader = event->group_leader, *sub;
2246 2247
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2248
	u64 values[5];
2249
	u64 count, enabled, running;
2250

2251
	mutex_lock(&ctx->mutex);
2252
	count = perf_event_read_value(leader, &enabled, &running);
2253 2254

	values[n++] = 1 + leader->nr_siblings;
2255 2256 2257 2258
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2259 2260 2261
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2262 2263 2264 2265

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2266
		goto unlock;
2267

2268
	ret = size;
2269

2270
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2271
		n = 0;
2272

2273
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2274 2275 2276 2277 2278
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2279
		if (copy_to_user(buf + ret, values, size)) {
2280 2281 2282
			ret = -EFAULT;
			goto unlock;
		}
2283 2284

		ret += size;
2285
	}
2286 2287
unlock:
	mutex_unlock(&ctx->mutex);
2288

2289
	return ret;
2290 2291
}

2292
static int perf_event_read_one(struct perf_event *event,
2293 2294
				 u64 read_format, char __user *buf)
{
2295
	u64 enabled, running;
2296 2297 2298
	u64 values[4];
	int n = 0;

2299 2300 2301 2302 2303
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2304
	if (read_format & PERF_FORMAT_ID)
2305
		values[n++] = primary_event_id(event);
2306 2307 2308 2309 2310 2311 2312

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2313
/*
2314
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2315 2316
 */
static ssize_t
2317
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2318
{
2319
	u64 read_format = event->attr.read_format;
2320
	int ret;
T
Thomas Gleixner 已提交
2321

2322
	/*
2323
	 * Return end-of-file for a read on a event that is in
2324 2325 2326
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2327
	if (event->state == PERF_EVENT_STATE_ERROR)
2328 2329
		return 0;

2330
	if (count < perf_event_read_size(event))
2331 2332
		return -ENOSPC;

2333
	WARN_ON_ONCE(event->ctx->parent_ctx);
2334
	if (read_format & PERF_FORMAT_GROUP)
2335
		ret = perf_event_read_group(event, read_format, buf);
2336
	else
2337
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2338

2339
	return ret;
T
Thomas Gleixner 已提交
2340 2341 2342 2343 2344
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2345
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2346

2347
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2348 2349 2350 2351
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2352
	struct perf_event *event = file->private_data;
2353
	struct perf_buffer *buffer;
2354
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2355 2356

	rcu_read_lock();
2357 2358 2359
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2360
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2361

2362
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2363 2364 2365 2366

	return events;
}

2367
static void perf_event_reset(struct perf_event *event)
2368
{
2369
	(void)perf_event_read(event);
2370
	local64_set(&event->count, 0);
2371
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2372 2373
}

2374
/*
2375 2376 2377 2378
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2379
 */
2380 2381
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2382
{
2383
	struct perf_event *child;
P
Peter Zijlstra 已提交
2384

2385 2386 2387 2388
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2389
		func(child);
2390
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2391 2392
}

2393 2394
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2395
{
2396 2397
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2398

2399 2400
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2401
	event = event->group_leader;
2402

2403 2404 2405 2406
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2407
	mutex_unlock(&ctx->mutex);
2408 2409
}

2410
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2411
{
2412
	struct perf_event_context *ctx = event->ctx;
2413 2414 2415 2416
	unsigned long size;
	int ret = 0;
	u64 value;

2417
	if (!event->attr.sample_period)
2418 2419 2420 2421 2422 2423 2424 2425 2426
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2427
	raw_spin_lock_irq(&ctx->lock);
2428 2429
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2430 2431 2432 2433
			ret = -EINVAL;
			goto unlock;
		}

2434
		event->attr.sample_freq = value;
2435
	} else {
2436 2437
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2438 2439
	}
unlock:
2440
	raw_spin_unlock_irq(&ctx->lock);
2441 2442 2443 2444

	return ret;
}

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2466
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2467

2468 2469
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2470 2471
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2472
	u32 flags = arg;
2473 2474

	switch (cmd) {
2475 2476
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2477
		break;
2478 2479
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2480
		break;
2481 2482
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2483
		break;
P
Peter Zijlstra 已提交
2484

2485 2486
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2487

2488 2489
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2490

2491
	case PERF_EVENT_IOC_SET_OUTPUT:
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2509

L
Li Zefan 已提交
2510 2511 2512
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2513
	default:
P
Peter Zijlstra 已提交
2514
		return -ENOTTY;
2515
	}
P
Peter Zijlstra 已提交
2516 2517

	if (flags & PERF_IOC_FLAG_GROUP)
2518
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2519
	else
2520
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2521 2522

	return 0;
2523 2524
}

2525
int perf_event_task_enable(void)
2526
{
2527
	struct perf_event *event;
2528

2529 2530 2531 2532
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2533 2534 2535 2536

	return 0;
}

2537
int perf_event_task_disable(void)
2538
{
2539
	struct perf_event *event;
2540

2541 2542 2543 2544
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2545 2546 2547 2548

	return 0;
}

2549 2550
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2551 2552
#endif

2553
static int perf_event_index(struct perf_event *event)
2554
{
2555
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2556 2557
		return 0;

2558
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2559 2560
}

2561 2562 2563 2564 2565
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2566
void perf_event_update_userpage(struct perf_event *event)
2567
{
2568
	struct perf_event_mmap_page *userpg;
2569
	struct perf_buffer *buffer;
2570 2571

	rcu_read_lock();
2572 2573
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2574 2575
		goto unlock;

2576
	userpg = buffer->user_page;
2577

2578 2579 2580 2581 2582
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2583
	++userpg->lock;
2584
	barrier();
2585
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2586
	userpg->offset = perf_event_count(event);
2587
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2588
		userpg->offset -= local64_read(&event->hw.prev_count);
2589

2590 2591
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2592

2593 2594
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2595

2596
	barrier();
2597
	++userpg->lock;
2598
	preempt_enable();
2599
unlock:
2600
	rcu_read_unlock();
2601 2602
}

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2622
#ifndef CONFIG_PERF_USE_VMALLOC
2623

2624 2625 2626
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2627

2628
static struct page *
2629
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2630
{
2631
	if (pgoff > buffer->nr_pages)
2632
		return NULL;
2633

2634
	if (pgoff == 0)
2635
		return virt_to_page(buffer->user_page);
2636

2637
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2638 2639
}

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2653
static struct perf_buffer *
2654
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2655
{
2656
	struct perf_buffer *buffer;
2657 2658 2659
	unsigned long size;
	int i;

2660
	size = sizeof(struct perf_buffer);
2661 2662
	size += nr_pages * sizeof(void *);

2663 2664
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2665 2666
		goto fail;

2667
	buffer->user_page = perf_mmap_alloc_page(cpu);
2668
	if (!buffer->user_page)
2669 2670 2671
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2672
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2673
		if (!buffer->data_pages[i])
2674 2675 2676
			goto fail_data_pages;
	}

2677
	buffer->nr_pages = nr_pages;
2678

2679 2680
	perf_buffer_init(buffer, watermark, flags);

2681
	return buffer;
2682 2683 2684

fail_data_pages:
	for (i--; i >= 0; i--)
2685
		free_page((unsigned long)buffer->data_pages[i]);
2686

2687
	free_page((unsigned long)buffer->user_page);
2688 2689

fail_user_page:
2690
	kfree(buffer);
2691 2692

fail:
2693
	return NULL;
2694 2695
}

2696 2697
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2698
	struct page *page = virt_to_page((void *)addr);
2699 2700 2701 2702 2703

	page->mapping = NULL;
	__free_page(page);
}

2704
static void perf_buffer_free(struct perf_buffer *buffer)
2705 2706 2707
{
	int i;

2708 2709 2710 2711
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2712 2713
}

2714
static inline int page_order(struct perf_buffer *buffer)
2715 2716 2717 2718
{
	return 0;
}

2719 2720 2721 2722 2723 2724 2725 2726
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2727
static inline int page_order(struct perf_buffer *buffer)
2728
{
2729
	return buffer->page_order;
2730 2731
}

2732
static struct page *
2733
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2734
{
2735
	if (pgoff > (1UL << page_order(buffer)))
2736 2737
		return NULL;

2738
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2739 2740 2741 2742 2743 2744 2745 2746 2747
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2748
static void perf_buffer_free_work(struct work_struct *work)
2749
{
2750
	struct perf_buffer *buffer;
2751 2752 2753
	void *base;
	int i, nr;

2754 2755
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2756

2757
	base = buffer->user_page;
2758 2759 2760 2761
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2762
	kfree(buffer);
2763 2764
}

2765
static void perf_buffer_free(struct perf_buffer *buffer)
2766
{
2767
	schedule_work(&buffer->work);
2768 2769
}

2770
static struct perf_buffer *
2771
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2772
{
2773
	struct perf_buffer *buffer;
2774 2775 2776
	unsigned long size;
	void *all_buf;

2777
	size = sizeof(struct perf_buffer);
2778 2779
	size += sizeof(void *);

2780 2781
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2782 2783
		goto fail;

2784
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2785 2786 2787 2788 2789

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2790 2791 2792 2793
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2794

2795 2796
	perf_buffer_init(buffer, watermark, flags);

2797
	return buffer;
2798 2799

fail_all_buf:
2800
	kfree(buffer);
2801 2802 2803 2804 2805 2806 2807

fail:
	return NULL;
}

#endif

2808
static unsigned long perf_data_size(struct perf_buffer *buffer)
2809
{
2810
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2811 2812
}

2813 2814 2815
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2816
	struct perf_buffer *buffer;
2817 2818 2819 2820 2821 2822 2823 2824 2825
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2826 2827
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2828 2829 2830 2831 2832
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2833
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2848
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2849
{
2850
	struct perf_buffer *buffer;
2851

2852 2853
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2854 2855
}

2856
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2857
{
2858
	struct perf_buffer *buffer;
2859

2860
	rcu_read_lock();
2861 2862 2863 2864
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2865 2866 2867
	}
	rcu_read_unlock();

2868
	return buffer;
2869 2870
}

2871
static void perf_buffer_put(struct perf_buffer *buffer)
2872
{
2873
	if (!atomic_dec_and_test(&buffer->refcount))
2874
		return;
2875

2876
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2877 2878 2879 2880
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2881
	struct perf_event *event = vma->vm_file->private_data;
2882

2883
	atomic_inc(&event->mmap_count);
2884 2885 2886 2887
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2888
	struct perf_event *event = vma->vm_file->private_data;
2889

2890
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2891
		unsigned long size = perf_data_size(event->buffer);
2892
		struct user_struct *user = event->mmap_user;
2893
		struct perf_buffer *buffer = event->buffer;
2894

2895
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2896
		vma->vm_mm->locked_vm -= event->mmap_locked;
2897
		rcu_assign_pointer(event->buffer, NULL);
2898
		mutex_unlock(&event->mmap_mutex);
2899

2900
		perf_buffer_put(buffer);
2901
		free_uid(user);
2902
	}
2903 2904
}

2905
static const struct vm_operations_struct perf_mmap_vmops = {
2906 2907 2908 2909
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2910 2911 2912 2913
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2914
	struct perf_event *event = file->private_data;
2915
	unsigned long user_locked, user_lock_limit;
2916
	struct user_struct *user = current_user();
2917
	unsigned long locked, lock_limit;
2918
	struct perf_buffer *buffer;
2919 2920
	unsigned long vma_size;
	unsigned long nr_pages;
2921
	long user_extra, extra;
2922
	int ret = 0, flags = 0;
2923

2924 2925 2926 2927 2928 2929 2930 2931
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2932
	if (!(vma->vm_flags & VM_SHARED))
2933
		return -EINVAL;
2934 2935 2936 2937

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2938
	/*
2939
	 * If we have buffer pages ensure they're a power-of-two number, so we
2940 2941 2942
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2943 2944
		return -EINVAL;

2945
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2946 2947
		return -EINVAL;

2948 2949
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2950

2951 2952
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2953 2954 2955
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2956
		else
2957 2958 2959 2960
			ret = -EINVAL;
		goto unlock;
	}

2961
	user_extra = nr_pages + 1;
2962
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2963 2964 2965 2966 2967 2968

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2969
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2970

2971 2972 2973
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2974

2975
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2976
	lock_limit >>= PAGE_SHIFT;
2977
	locked = vma->vm_mm->locked_vm + extra;
2978

2979 2980
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2981 2982 2983
		ret = -EPERM;
		goto unlock;
	}
2984

2985
	WARN_ON(event->buffer);
2986

2987 2988 2989 2990 2991
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
2992
	if (!buffer) {
2993
		ret = -ENOMEM;
2994
		goto unlock;
2995
	}
2996
	rcu_assign_pointer(event->buffer, buffer);
2997

2998 2999 3000 3001 3002
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3003
unlock:
3004 3005
	if (!ret)
		atomic_inc(&event->mmap_count);
3006
	mutex_unlock(&event->mmap_mutex);
3007 3008 3009

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3010 3011

	return ret;
3012 3013
}

P
Peter Zijlstra 已提交
3014 3015 3016
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3017
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3018 3019 3020
	int retval;

	mutex_lock(&inode->i_mutex);
3021
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3022 3023 3024 3025 3026 3027 3028 3029
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3030
static const struct file_operations perf_fops = {
3031
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3032 3033 3034
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3035 3036
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3037
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3038
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3039 3040
};

3041
/*
3042
 * Perf event wakeup
3043 3044 3045 3046 3047
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3048
void perf_event_wakeup(struct perf_event *event)
3049
{
3050
	wake_up_all(&event->waitq);
3051

3052 3053 3054
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3055
	}
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

3067
static void perf_pending_event(struct perf_pending_entry *entry)
3068
{
3069 3070
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3071

3072 3073 3074
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3075 3076
	}

3077 3078 3079
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3080 3081 3082
	}
}

3083
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3084

3085
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3086 3087 3088
	PENDING_TAIL,
};

3089 3090
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
3091
{
3092
	struct perf_pending_entry **head;
3093

3094
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3095 3096
		return;

3097 3098 3099
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
3100 3101

	do {
3102 3103
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
3104

3105
	set_perf_event_pending();
3106

3107
	put_cpu_var(perf_pending_head);
3108 3109 3110 3111
}

static int __perf_pending_run(void)
{
3112
	struct perf_pending_entry *list;
3113 3114
	int nr = 0;

3115
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3116
	while (list != PENDING_TAIL) {
3117 3118
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
3119 3120 3121

		list = list->next;

3122 3123
		func = entry->func;
		entry->next = NULL;
3124 3125 3126 3127 3128 3129 3130
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

3131
		func(entry);
3132 3133 3134 3135 3136 3137
		nr++;
	}

	return nr;
}

3138
static inline int perf_not_pending(struct perf_event *event)
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
3153
	return event->pending.next == NULL;
3154 3155
}

3156
static void perf_pending_sync(struct perf_event *event)
3157
{
3158
	wait_event(event->waitq, perf_not_pending(event));
3159 3160
}

3161
void perf_event_do_pending(void)
3162 3163 3164 3165
{
	__perf_pending_run();
}

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3187 3188 3189
/*
 * Output
 */
3190
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3191
			      unsigned long offset, unsigned long head)
3192 3193 3194
{
	unsigned long mask;

3195
	if (!buffer->writable)
3196 3197
		return true;

3198
	mask = perf_data_size(buffer) - 1;
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3209
static void perf_output_wakeup(struct perf_output_handle *handle)
3210
{
3211
	atomic_set(&handle->buffer->poll, POLL_IN);
3212

3213
	if (handle->nmi) {
3214 3215 3216
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3217
	} else
3218
		perf_event_wakeup(handle->event);
3219 3220
}

3221
/*
3222
 * We need to ensure a later event_id doesn't publish a head when a former
3223
 * event isn't done writing. However since we need to deal with NMIs we
3224 3225 3226
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3227
 * event completes.
3228
 */
3229
static void perf_output_get_handle(struct perf_output_handle *handle)
3230
{
3231
	struct perf_buffer *buffer = handle->buffer;
3232

3233
	preempt_disable();
3234 3235
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3236 3237
}

3238
static void perf_output_put_handle(struct perf_output_handle *handle)
3239
{
3240
	struct perf_buffer *buffer = handle->buffer;
3241
	unsigned long head;
3242 3243

again:
3244
	head = local_read(&buffer->head);
3245 3246

	/*
3247
	 * IRQ/NMI can happen here, which means we can miss a head update.
3248 3249
	 */

3250
	if (!local_dec_and_test(&buffer->nest))
3251
		goto out;
3252 3253

	/*
3254
	 * Publish the known good head. Rely on the full barrier implied
3255
	 * by atomic_dec_and_test() order the buffer->head read and this
3256
	 * write.
3257
	 */
3258
	buffer->user_page->data_head = head;
3259

3260 3261
	/*
	 * Now check if we missed an update, rely on the (compiler)
3262
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3263
	 */
3264 3265
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3266 3267 3268
		goto again;
	}

3269
	if (handle->wakeup != local_read(&buffer->wakeup))
3270
		perf_output_wakeup(handle);
3271

P
Peter Zijlstra 已提交
3272
out:
3273
	preempt_enable();
3274 3275
}

3276
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3277
		      const void *buf, unsigned int len)
3278
{
3279
	do {
3280
		unsigned long size = min_t(unsigned long, handle->size, len);
3281 3282 3283 3284 3285

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3286
		buf += size;
3287 3288
		handle->size -= size;
		if (!handle->size) {
3289
			struct perf_buffer *buffer = handle->buffer;
3290

3291
			handle->page++;
3292 3293 3294
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3295 3296
		}
	} while (len);
3297 3298
}

3299
int perf_output_begin(struct perf_output_handle *handle,
3300
		      struct perf_event *event, unsigned int size,
3301
		      int nmi, int sample)
3302
{
3303
	struct perf_buffer *buffer;
3304
	unsigned long tail, offset, head;
3305 3306 3307 3308 3309 3310
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3311

3312
	rcu_read_lock();
3313
	/*
3314
	 * For inherited events we send all the output towards the parent.
3315
	 */
3316 3317
	if (event->parent)
		event = event->parent;
3318

3319 3320
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3321 3322
		goto out;

3323
	handle->buffer	= buffer;
3324
	handle->event	= event;
3325 3326
	handle->nmi	= nmi;
	handle->sample	= sample;
3327

3328
	if (!buffer->nr_pages)
3329
		goto out;
3330

3331
	have_lost = local_read(&buffer->lost);
3332 3333 3334
	if (have_lost)
		size += sizeof(lost_event);

3335
	perf_output_get_handle(handle);
3336

3337
	do {
3338 3339 3340 3341 3342
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3343
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3344
		smp_rmb();
3345
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3346
		head += size;
3347
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3348
			goto fail;
3349
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3350

3351 3352
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3353

3354 3355 3356 3357
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3358
	handle->addr += handle->size;
3359
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3360

3361
	if (have_lost) {
3362
		lost_event.header.type = PERF_RECORD_LOST;
3363 3364
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3365
		lost_event.id          = event->id;
3366
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3367 3368 3369 3370

		perf_output_put(handle, lost_event);
	}

3371
	return 0;
3372

3373
fail:
3374
	local_inc(&buffer->lost);
3375
	perf_output_put_handle(handle);
3376 3377
out:
	rcu_read_unlock();
3378

3379 3380
	return -ENOSPC;
}
3381

3382
void perf_output_end(struct perf_output_handle *handle)
3383
{
3384
	struct perf_event *event = handle->event;
3385
	struct perf_buffer *buffer = handle->buffer;
3386

3387
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3388

3389
	if (handle->sample && wakeup_events) {
3390
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3391
		if (events >= wakeup_events) {
3392 3393
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3394
		}
3395 3396
	}

3397
	perf_output_put_handle(handle);
3398
	rcu_read_unlock();
3399 3400
}

3401
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3402 3403
{
	/*
3404
	 * only top level events have the pid namespace they were created in
3405
	 */
3406 3407
	if (event->parent)
		event = event->parent;
3408

3409
	return task_tgid_nr_ns(p, event->ns);
3410 3411
}

3412
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3413 3414
{
	/*
3415
	 * only top level events have the pid namespace they were created in
3416
	 */
3417 3418
	if (event->parent)
		event = event->parent;
3419

3420
	return task_pid_nr_ns(p, event->ns);
3421 3422
}

3423
static void perf_output_read_one(struct perf_output_handle *handle,
3424
				 struct perf_event *event)
3425
{
3426
	u64 read_format = event->attr.read_format;
3427 3428 3429
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3430
	values[n++] = perf_event_count(event);
3431
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3432 3433
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3434 3435
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3436 3437
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3438 3439
	}
	if (read_format & PERF_FORMAT_ID)
3440
		values[n++] = primary_event_id(event);
3441 3442 3443 3444 3445

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3446
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3447 3448
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3449
			    struct perf_event *event)
3450
{
3451 3452
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3464
	if (leader != event)
3465 3466
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3467
	values[n++] = perf_event_count(leader);
3468
	if (read_format & PERF_FORMAT_ID)
3469
		values[n++] = primary_event_id(leader);
3470 3471 3472

	perf_output_copy(handle, values, n * sizeof(u64));

3473
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3474 3475
		n = 0;

3476
		if (sub != event)
3477 3478
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3479
		values[n++] = perf_event_count(sub);
3480
		if (read_format & PERF_FORMAT_ID)
3481
			values[n++] = primary_event_id(sub);
3482 3483 3484 3485 3486 3487

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3488
			     struct perf_event *event)
3489
{
3490 3491
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3492
	else
3493
		perf_output_read_one(handle, event);
3494 3495
}

3496 3497 3498
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3499
			struct perf_event *event)
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3530
		perf_output_read(handle, event);
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3568
			 struct perf_event *event,
3569
			 struct pt_regs *regs)
3570
{
3571
	u64 sample_type = event->attr.sample_type;
3572

3573
	data->type = sample_type;
3574

3575
	header->type = PERF_RECORD_SAMPLE;
3576 3577 3578 3579
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3580

3581
	if (sample_type & PERF_SAMPLE_IP) {
3582 3583 3584
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3585
	}
3586

3587
	if (sample_type & PERF_SAMPLE_TID) {
3588
		/* namespace issues */
3589 3590
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3591

3592
		header->size += sizeof(data->tid_entry);
3593 3594
	}

3595
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3596
		data->time = perf_clock();
3597

3598
		header->size += sizeof(data->time);
3599 3600
	}

3601
	if (sample_type & PERF_SAMPLE_ADDR)
3602
		header->size += sizeof(data->addr);
3603

3604
	if (sample_type & PERF_SAMPLE_ID) {
3605
		data->id = primary_event_id(event);
3606

3607 3608 3609 3610
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3611
		data->stream_id = event->id;
3612 3613 3614

		header->size += sizeof(data->stream_id);
	}
3615

3616
	if (sample_type & PERF_SAMPLE_CPU) {
3617 3618
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3619

3620
		header->size += sizeof(data->cpu_entry);
3621 3622
	}

3623
	if (sample_type & PERF_SAMPLE_PERIOD)
3624
		header->size += sizeof(data->period);
3625

3626
	if (sample_type & PERF_SAMPLE_READ)
3627
		header->size += perf_event_read_size(event);
3628

3629
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3630
		int size = 1;
3631

3632 3633 3634 3635 3636 3637
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3638 3639
	}

3640
	if (sample_type & PERF_SAMPLE_RAW) {
3641 3642 3643 3644 3645 3646 3647 3648
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3649
		header->size += size;
3650
	}
3651
}
3652

3653
static void perf_event_output(struct perf_event *event, int nmi,
3654 3655 3656 3657 3658
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3659

3660 3661 3662
	/* protect the callchain buffers */
	rcu_read_lock();

3663
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3664

3665
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3666
		goto exit;
3667

3668
	perf_output_sample(&handle, &header, data, event);
3669

3670
	perf_output_end(&handle);
3671 3672 3673

exit:
	rcu_read_unlock();
3674 3675
}

3676
/*
3677
 * read event_id
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3688
perf_event_read_event(struct perf_event *event,
3689 3690 3691
			struct task_struct *task)
{
	struct perf_output_handle handle;
3692
	struct perf_read_event read_event = {
3693
		.header = {
3694
			.type = PERF_RECORD_READ,
3695
			.misc = 0,
3696
			.size = sizeof(read_event) + perf_event_read_size(event),
3697
		},
3698 3699
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3700
	};
3701
	int ret;
3702

3703
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3704 3705 3706
	if (ret)
		return;

3707
	perf_output_put(&handle, read_event);
3708
	perf_output_read(&handle, event);
3709

3710 3711 3712
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3713
/*
P
Peter Zijlstra 已提交
3714 3715
 * task tracking -- fork/exit
 *
3716
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3717 3718
 */

P
Peter Zijlstra 已提交
3719
struct perf_task_event {
3720
	struct task_struct		*task;
3721
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3722 3723 3724 3725 3726 3727

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3728 3729
		u32				tid;
		u32				ptid;
3730
		u64				time;
3731
	} event_id;
P
Peter Zijlstra 已提交
3732 3733
};

3734
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3735
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3736 3737
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3738
	struct task_struct *task = task_event->task;
3739 3740
	int size, ret;

3741 3742
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3743

3744
	if (ret)
P
Peter Zijlstra 已提交
3745 3746
		return;

3747 3748
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3749

3750 3751
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3752

3753
	perf_output_put(&handle, task_event->event_id);
3754

P
Peter Zijlstra 已提交
3755 3756 3757
	perf_output_end(&handle);
}

3758
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3759
{
P
Peter Zijlstra 已提交
3760
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3761 3762
		return 0;

3763 3764 3765
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3766 3767
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3768 3769 3770 3771 3772
		return 1;

	return 0;
}

3773
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3774
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3775
{
3776
	struct perf_event *event;
P
Peter Zijlstra 已提交
3777

3778 3779 3780
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3781 3782 3783
	}
}

3784
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3785 3786
{
	struct perf_cpu_context *cpuctx;
3787
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3788

3789
	rcu_read_lock();
P
Peter Zijlstra 已提交
3790
	cpuctx = &get_cpu_var(perf_cpu_context);
3791
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3792
	if (!ctx)
P
Peter Zijlstra 已提交
3793
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3794
	if (ctx)
3795
		perf_event_task_ctx(ctx, task_event);
3796
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3797 3798 3799
	rcu_read_unlock();
}

3800 3801
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3802
			      int new)
P
Peter Zijlstra 已提交
3803
{
P
Peter Zijlstra 已提交
3804
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3805

3806 3807 3808
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3809 3810
		return;

P
Peter Zijlstra 已提交
3811
	task_event = (struct perf_task_event){
3812 3813
		.task	  = task,
		.task_ctx = task_ctx,
3814
		.event_id    = {
P
Peter Zijlstra 已提交
3815
			.header = {
3816
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3817
				.misc = 0,
3818
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3819
			},
3820 3821
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3822 3823
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3824
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3825 3826 3827
		},
	};

3828
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3829 3830
}

3831
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3832
{
3833
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3834 3835
}

3836 3837 3838 3839 3840
/*
 * comm tracking
 */

struct perf_comm_event {
3841 3842
	struct task_struct	*task;
	char			*comm;
3843 3844 3845 3846 3847 3848 3849
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3850
	} event_id;
3851 3852
};

3853
static void perf_event_comm_output(struct perf_event *event,
3854 3855 3856
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3857 3858
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3859 3860 3861 3862

	if (ret)
		return;

3863 3864
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3865

3866
	perf_output_put(&handle, comm_event->event_id);
3867 3868 3869 3870 3871
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3872
static int perf_event_comm_match(struct perf_event *event)
3873
{
P
Peter Zijlstra 已提交
3874
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3875 3876
		return 0;

3877 3878 3879
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3880
	if (event->attr.comm)
3881 3882 3883 3884 3885
		return 1;

	return 0;
}

3886
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3887 3888
				  struct perf_comm_event *comm_event)
{
3889
	struct perf_event *event;
3890

3891 3892 3893
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3894 3895 3896
	}
}

3897
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3898 3899
{
	struct perf_cpu_context *cpuctx;
3900
	struct perf_event_context *ctx;
3901
	unsigned int size;
3902
	char comm[TASK_COMM_LEN];
3903

3904
	memset(comm, 0, sizeof(comm));
3905
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3906
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3907 3908 3909 3910

	comm_event->comm = comm;
	comm_event->comm_size = size;

3911
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3912

3913
	rcu_read_lock();
3914
	cpuctx = &get_cpu_var(perf_cpu_context);
3915 3916
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3917
	if (ctx)
3918
		perf_event_comm_ctx(ctx, comm_event);
3919
	put_cpu_var(perf_cpu_context);
3920
	rcu_read_unlock();
3921 3922
}

3923
void perf_event_comm(struct task_struct *task)
3924
{
3925 3926
	struct perf_comm_event comm_event;

3927 3928
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3929

3930
	if (!atomic_read(&nr_comm_events))
3931
		return;
3932

3933
	comm_event = (struct perf_comm_event){
3934
		.task	= task,
3935 3936
		/* .comm      */
		/* .comm_size */
3937
		.event_id  = {
3938
			.header = {
3939
				.type = PERF_RECORD_COMM,
3940 3941 3942 3943 3944
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3945 3946 3947
		},
	};

3948
	perf_event_comm_event(&comm_event);
3949 3950
}

3951 3952 3953 3954 3955
/*
 * mmap tracking
 */

struct perf_mmap_event {
3956 3957 3958 3959
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3960 3961 3962 3963 3964 3965 3966 3967 3968

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3969
	} event_id;
3970 3971
};

3972
static void perf_event_mmap_output(struct perf_event *event,
3973 3974 3975
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3976 3977
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3978 3979 3980 3981

	if (ret)
		return;

3982 3983
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3984

3985
	perf_output_put(&handle, mmap_event->event_id);
3986 3987
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3988
	perf_output_end(&handle);
3989 3990
}

3991
static int perf_event_mmap_match(struct perf_event *event,
3992 3993
				   struct perf_mmap_event *mmap_event,
				   int executable)
3994
{
P
Peter Zijlstra 已提交
3995
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3996 3997
		return 0;

3998 3999 4000
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4001 4002
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4003 4004 4005 4006 4007
		return 1;

	return 0;
}

4008
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4009 4010
				  struct perf_mmap_event *mmap_event,
				  int executable)
4011
{
4012
	struct perf_event *event;
4013

4014
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4015
		if (perf_event_mmap_match(event, mmap_event, executable))
4016
			perf_event_mmap_output(event, mmap_event);
4017 4018 4019
	}
}

4020
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4021 4022
{
	struct perf_cpu_context *cpuctx;
4023
	struct perf_event_context *ctx;
4024 4025
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4026 4027 4028
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4029
	const char *name;
4030

4031 4032
	memset(tmp, 0, sizeof(tmp));

4033
	if (file) {
4034 4035 4036 4037 4038 4039
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4040 4041 4042 4043
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4044
		name = d_path(&file->f_path, buf, PATH_MAX);
4045 4046 4047 4048 4049
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4050 4051 4052
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4053
			goto got_name;
4054
		}
4055 4056 4057 4058

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4059 4060 4061 4062 4063 4064 4065 4066
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4067 4068
		}

4069 4070 4071 4072 4073
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4074
	size = ALIGN(strlen(name)+1, sizeof(u64));
4075 4076 4077 4078

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4079
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4080

4081
	rcu_read_lock();
4082
	cpuctx = &get_cpu_var(perf_cpu_context);
4083
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
4084
	ctx = rcu_dereference(current->perf_event_ctxp);
4085
	if (ctx)
4086
		perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
4087
	put_cpu_var(perf_cpu_context);
4088 4089
	rcu_read_unlock();

4090 4091 4092
	kfree(buf);
}

4093
void perf_event_mmap(struct vm_area_struct *vma)
4094
{
4095 4096
	struct perf_mmap_event mmap_event;

4097
	if (!atomic_read(&nr_mmap_events))
4098 4099 4100
		return;

	mmap_event = (struct perf_mmap_event){
4101
		.vma	= vma,
4102 4103
		/* .file_name */
		/* .file_size */
4104
		.event_id  = {
4105
			.header = {
4106
				.type = PERF_RECORD_MMAP,
4107
				.misc = PERF_RECORD_MISC_USER,
4108 4109 4110 4111
				/* .size */
			},
			/* .pid */
			/* .tid */
4112 4113
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4114
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4115 4116 4117
		},
	};

4118
	perf_event_mmap_event(&mmap_event);
4119 4120
}

4121 4122 4123 4124
/*
 * IRQ throttle logging
 */

4125
static void perf_log_throttle(struct perf_event *event, int enable)
4126 4127 4128 4129 4130 4131 4132
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4133
		u64				id;
4134
		u64				stream_id;
4135 4136
	} throttle_event = {
		.header = {
4137
			.type = PERF_RECORD_THROTTLE,
4138 4139 4140
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4141
		.time		= perf_clock(),
4142 4143
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4144 4145
	};

4146
	if (enable)
4147
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4148

4149
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4150 4151 4152 4153 4154 4155 4156
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4157
/*
4158
 * Generic event overflow handling, sampling.
4159 4160
 */

4161
static int __perf_event_overflow(struct perf_event *event, int nmi,
4162 4163
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4164
{
4165 4166
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4167 4168
	int ret = 0;

4169
	throttle = (throttle && event->pmu->unthrottle != NULL);
4170

4171
	if (!throttle) {
4172
		hwc->interrupts++;
4173
	} else {
4174 4175
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4176
			if (HZ * hwc->interrupts >
4177
					(u64)sysctl_perf_event_sample_rate) {
4178
				hwc->interrupts = MAX_INTERRUPTS;
4179
				perf_log_throttle(event, 0);
4180 4181 4182 4183
				ret = 1;
			}
		} else {
			/*
4184
			 * Keep re-disabling events even though on the previous
4185
			 * pass we disabled it - just in case we raced with a
4186
			 * sched-in and the event got enabled again:
4187
			 */
4188 4189 4190
			ret = 1;
		}
	}
4191

4192
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4193
		u64 now = perf_clock();
4194
		s64 delta = now - hwc->freq_time_stamp;
4195

4196
		hwc->freq_time_stamp = now;
4197

4198 4199
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4200 4201
	}

4202 4203
	/*
	 * XXX event_limit might not quite work as expected on inherited
4204
	 * events
4205 4206
	 */

4207 4208
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4209
		ret = 1;
4210
		event->pending_kill = POLL_HUP;
4211
		if (nmi) {
4212 4213 4214
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
4215
		} else
4216
			perf_event_disable(event);
4217 4218
	}

4219 4220 4221 4222 4223
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4224
	return ret;
4225 4226
}

4227
int perf_event_overflow(struct perf_event *event, int nmi,
4228 4229
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4230
{
4231
	return __perf_event_overflow(event, nmi, 1, data, regs);
4232 4233
}

4234
/*
4235
 * Generic software event infrastructure
4236 4237
 */

4238
/*
4239 4240
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4241 4242 4243 4244
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4245
static u64 perf_swevent_set_period(struct perf_event *event)
4246
{
4247
	struct hw_perf_event *hwc = &event->hw;
4248 4249 4250 4251 4252
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4253 4254

again:
4255
	old = val = local64_read(&hwc->period_left);
4256 4257
	if (val < 0)
		return 0;
4258

4259 4260 4261
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4262
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4263
		goto again;
4264

4265
	return nr;
4266 4267
}

4268
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4269 4270
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4271
{
4272
	struct hw_perf_event *hwc = &event->hw;
4273
	int throttle = 0;
4274

4275
	data->period = event->hw.last_period;
4276 4277
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4278

4279 4280
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4281

4282
	for (; overflow; overflow--) {
4283
		if (__perf_event_overflow(event, nmi, throttle,
4284
					    data, regs)) {
4285 4286 4287 4288 4289 4290
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4291
		throttle = 1;
4292
	}
4293 4294
}

4295
static void perf_swevent_add(struct perf_event *event, u64 nr,
4296 4297
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4298
{
4299
	struct hw_perf_event *hwc = &event->hw;
4300

4301
	local64_add(nr, &event->count);
4302

4303 4304 4305
	if (!regs)
		return;

4306 4307
	if (!hwc->sample_period)
		return;
4308

4309 4310 4311
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4312
	if (local64_add_negative(nr, &hwc->period_left))
4313
		return;
4314

4315
	perf_swevent_overflow(event, 0, nmi, data, regs);
4316 4317
}

4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4332
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4333
				enum perf_type_id type,
L
Li Zefan 已提交
4334 4335 4336
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4337
{
4338
	if (event->attr.type != type)
4339
		return 0;
4340

4341
	if (event->attr.config != event_id)
4342 4343
		return 0;

4344 4345
	if (perf_exclude_event(event, regs))
		return 0;
4346 4347 4348 4349

	return 1;
}

4350 4351 4352 4353 4354 4355 4356
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4357 4358
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4359
{
4360 4361 4362 4363
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4364

4365 4366 4367 4368 4369
/* For the read side: events when they trigger */
static inline struct hlist_head *
find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	struct swevent_hlist *hlist;
4370 4371 4372 4373 4374

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
	hlist = rcu_dereference_protected(ctx->swevent_hlist,
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4397 4398 4399 4400 4401 4402
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4403
{
4404
	struct perf_cpu_context *cpuctx;
4405
	struct perf_event *event;
4406 4407
	struct hlist_node *node;
	struct hlist_head *head;
4408

4409 4410 4411 4412
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

4413
	head = find_swevent_head_rcu(cpuctx, type, event_id);
4414 4415 4416 4417 4418

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4419
		if (perf_swevent_match(event, type, event_id, data, regs))
4420
			perf_swevent_add(event, nr, nmi, data, regs);
4421
	}
4422 4423
end:
	rcu_read_unlock();
4424 4425
}

4426
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4427
{
4428
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4429

4430
	return get_recursion_context(cpuctx->recursion);
P
Peter Zijlstra 已提交
4431
}
I
Ingo Molnar 已提交
4432
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4433

4434
void inline perf_swevent_put_recursion_context(int rctx)
4435
{
4436
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4437 4438

	put_recursion_context(cpuctx->recursion, rctx);
4439
}
4440

4441
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4442
			    struct pt_regs *regs, u64 addr)
4443
{
4444
	struct perf_sample_data data;
4445 4446
	int rctx;

4447
	preempt_disable_notrace();
4448 4449 4450
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4451

4452
	perf_sample_data_init(&data, addr);
4453

4454
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4455 4456

	perf_swevent_put_recursion_context(rctx);
4457
	preempt_enable_notrace();
4458 4459
}

4460
static void perf_swevent_read(struct perf_event *event)
4461 4462 4463
{
}

4464
static int perf_swevent_enable(struct perf_event *event)
4465
{
4466
	struct hw_perf_event *hwc = &event->hw;
4467 4468 4469 4470
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4471 4472 4473

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4474
		perf_swevent_set_period(event);
4475
	}
4476

4477
	head = find_swevent_head(cpuctx, event);
4478 4479 4480 4481 4482
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4483 4484 4485
	return 0;
}

4486
static void perf_swevent_disable(struct perf_event *event)
4487
{
4488
	hlist_del_rcu(&event->hlist_entry);
4489 4490
}

P
Peter Zijlstra 已提交
4491 4492 4493 4494 4495 4496 4497 4498 4499
static void perf_swevent_void(struct perf_event *event)
{
}

static int perf_swevent_int(struct perf_event *event)
{
	return 0;
}

4500 4501 4502 4503 4504 4505 4506 4507
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
swevent_hlist_deref(struct perf_cpu_context *cpuctx)
{
	return rcu_dereference_protected(cpuctx->swevent_hlist,
					 lockdep_is_held(&cpuctx->hlist_mutex));
}

4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
4518
	struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4519

4520
	if (!hlist)
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
		return;

	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

4559
	if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
P
Peter Zijlstra 已提交
4570
exit:
4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4595
fail:
4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4606
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4607

4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;

	WARN_ON(event->parent);

	atomic_dec(&perf_swevent_enabled[event_id]);
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

		atomic_inc(&perf_swevent_enabled[event_id]);
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
	.event_init	= perf_swevent_init,
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
P
Peter Zijlstra 已提交
4655 4656
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
4657
	.read		= perf_swevent_read,
4658
	.unthrottle	= perf_swevent_void, /* hwc->interrupts already reset */
4659 4660
};

4661 4662
#ifdef CONFIG_EVENT_TRACING

4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4677 4678 4679 4680
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4681 4682 4683 4684 4685 4686 4687 4688 4689
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4690
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4691 4692
{
	struct perf_sample_data data;
4693 4694 4695
	struct perf_event *event;
	struct hlist_node *node;

4696 4697 4698 4699 4700 4701 4702 4703
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4704 4705 4706
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
			perf_swevent_add(event, count, 1, &data, regs);
4707
	}
4708 4709

	perf_swevent_put_recursion_context(rctx);
4710 4711 4712
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4713
static void tp_perf_event_destroy(struct perf_event *event)
4714
{
4715
	perf_trace_destroy(event);
4716 4717
}

4718
static int perf_tp_event_init(struct perf_event *event)
4719
{
4720 4721
	int err;

4722 4723 4724
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4725 4726 4727 4728
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4729
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4730
			perf_paranoid_tracepoint_raw() &&
4731
			!capable(CAP_SYS_ADMIN))
4732
		return -EPERM;
4733

4734 4735
	err = perf_trace_init(event);
	if (err)
4736
		return err;
4737

4738
	event->destroy = tp_perf_event_destroy;
4739

4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
	return 0;
}

static struct pmu perf_tracepoint = {
	.event_init	= perf_tp_event_init,
	.enable		= perf_trace_enable,
	.disable	= perf_trace_disable,
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_void,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4756
}
L
Li Zefan 已提交
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4781
#else
L
Li Zefan 已提交
4782

4783
static inline void perf_tp_register(void)
4784 4785
{
}
L
Li Zefan 已提交
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4796
#endif /* CONFIG_EVENT_TRACING */
4797

4798
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4799
void perf_bp_event(struct perf_event *bp, void *data)
4800
{
4801 4802 4803 4804 4805 4806 4807
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	perf_sample_data_init(&sample, bp->attr.bp_addr);

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4808
}
4809 4810 4811 4812 4813
#endif

/*
 * hrtimer based swevent callback
 */
4814

4815
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4816
{
4817 4818 4819 4820 4821
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4822

4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);

	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4835

4836 4837
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4838

4839
	return ret;
4840 4841
}

4842
static void perf_swevent_start_hrtimer(struct perf_event *event)
4843
{
4844
	struct hw_perf_event *hwc = &event->hw;
4845

4846 4847 4848 4849
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;
4850

4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
4864
}
4865 4866

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4867
{
4868 4869 4870 4871 4872 4873 4874 4875
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
4876 4877
}

4878 4879 4880 4881 4882
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4883
{
4884 4885 4886 4887 4888 4889 4890
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4891 4892
}

4893 4894 4895 4896
static int cpu_clock_event_enable(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	int cpu = raw_smp_processor_id();
4897

4898 4899 4900 4901 4902 4903 4904
	local64_set(&hwc->prev_count, cpu_clock(cpu));
	perf_swevent_start_hrtimer(event);

	return 0;
}

static void cpu_clock_event_disable(struct perf_event *event)
4905
{
4906 4907 4908
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4909

4910 4911 4912 4913
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
4914

4915 4916 4917 4918 4919 4920 4921 4922 4923
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
4924 4925
}

4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
static struct pmu perf_cpu_clock = {
	.event_init	= cpu_clock_event_init,
	.enable		= cpu_clock_event_enable,
	.disable	= cpu_clock_event_disable,
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
4938
{
4939 4940
	u64 prev;
	s64 delta;
4941

4942 4943 4944 4945
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
4946

4947 4948 4949 4950
static int task_clock_event_enable(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	u64 now;
4951

4952
	now = event->ctx->time;
4953

4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
	local64_set(&hwc->prev_count, now);

	perf_swevent_start_hrtimer(event);

	return 0;
}

static void task_clock_event_disable(struct perf_event *event)
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);

}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
}

static struct pmu perf_task_clock = {
	.event_init	= task_clock_event_init,
	.enable		= task_clock_event_enable,
	.disable	= task_clock_event_disable,
	.read		= task_clock_event_read,
};

static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

int perf_pmu_register(struct pmu *pmu)
{
	mutex_lock(&pmus_lock);
	list_add_rcu(&pmu->entry, &pmus);
	mutex_unlock(&pmus_lock);

	return 0;
}

void perf_pmu_unregister(struct pmu *pmu)
{
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);

	synchronize_srcu(&pmus_srcu);
}

struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
			break;
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
			break;
5037
		}
5038
	}
5039
	srcu_read_unlock(&pmus_srcu, idx);
5040

5041
	return pmu;
5042 5043
}

T
Thomas Gleixner 已提交
5044
/*
5045
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5046
 */
5047 5048
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
5049
		   int cpu,
5050 5051 5052
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5053
		   perf_overflow_handler_t overflow_handler,
5054
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
5055
{
P
Peter Zijlstra 已提交
5056
	struct pmu *pmu;
5057 5058
	struct perf_event *event;
	struct hw_perf_event *hwc;
5059
	long err;
T
Thomas Gleixner 已提交
5060

5061 5062
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
5063
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5064

5065
	/*
5066
	 * Single events are their own group leaders, with an
5067 5068 5069
	 * empty sibling list:
	 */
	if (!group_leader)
5070
		group_leader = event;
5071

5072 5073
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5074

5075 5076 5077 5078
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
5079

5080
	mutex_init(&event->mmap_mutex);
5081

5082 5083 5084 5085 5086 5087
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
5088

5089
	event->parent		= parent_event;
5090

5091 5092
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5093

5094
	event->state		= PERF_EVENT_STATE_INACTIVE;
5095

5096 5097
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5098
	
5099
	event->overflow_handler	= overflow_handler;
5100

5101
	if (attr->disabled)
5102
		event->state = PERF_EVENT_STATE_OFF;
5103

5104
	pmu = NULL;
5105

5106
	hwc = &event->hw;
5107
	hwc->sample_period = attr->sample_period;
5108
	if (attr->freq && attr->sample_freq)
5109
		hwc->sample_period = 1;
5110
	hwc->last_period = hwc->sample_period;
5111

5112
	local64_set(&hwc->period_left, hwc->sample_period);
5113

5114
	/*
5115
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5116
	 */
5117
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5118 5119
		goto done;

5120
	pmu = perf_init_event(event);
5121

5122 5123
done:
	err = 0;
5124
	if (!pmu)
5125
		err = -EINVAL;
5126 5127
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5128

5129
	if (err) {
5130 5131 5132
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5133
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5134
	}
5135

5136
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5137

5138 5139
	if (!event->parent) {
		atomic_inc(&nr_events);
5140
		if (event->attr.mmap || event->attr.mmap_data)
5141 5142 5143 5144 5145
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5146 5147 5148 5149 5150 5151 5152
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5153
	}
5154

5155
	return event;
T
Thomas Gleixner 已提交
5156 5157
}

5158 5159
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5160 5161
{
	u32 size;
5162
	int ret;
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5187 5188 5189
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5190 5191
	 */
	if (size > sizeof(*attr)) {
5192 5193 5194
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5195

5196 5197
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5198

5199
		for (; addr < end; addr++) {
5200 5201 5202 5203 5204 5205
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5206
		size = sizeof(*attr);
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5220
	if (attr->__reserved_1)
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5238 5239
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5240
{
5241
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5242 5243
	int ret = -EINVAL;

5244
	if (!output_event)
5245 5246
		goto set;

5247 5248
	/* don't allow circular references */
	if (event == output_event)
5249 5250
		goto out;

5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5263
set:
5264
	mutex_lock(&event->mmap_mutex);
5265 5266 5267
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5268

5269 5270
	if (output_event) {
		/* get the buffer we want to redirect to */
5271 5272
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5273
			goto unlock;
5274 5275
	}

5276 5277
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5278
	ret = 0;
5279 5280 5281
unlock:
	mutex_unlock(&event->mmap_mutex);

5282 5283
	if (old_buffer)
		perf_buffer_put(old_buffer);
5284 5285 5286 5287
out:
	return ret;
}

T
Thomas Gleixner 已提交
5288
/**
5289
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5290
 *
5291
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5292
 * @pid:		target pid
I
Ingo Molnar 已提交
5293
 * @cpu:		target cpu
5294
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5295
 */
5296 5297
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5298
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5299
{
5300
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5301 5302 5303
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5304
	struct file *group_file = NULL;
5305
	int event_fd;
5306
	int fput_needed = 0;
5307
	int err;
T
Thomas Gleixner 已提交
5308

5309
	/* for future expandability... */
5310
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5311 5312
		return -EINVAL;

5313 5314 5315
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5316

5317 5318 5319 5320 5321
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5322
	if (attr.freq) {
5323
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5324 5325 5326
			return -EINVAL;
	}

5327 5328 5329 5330
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5331
	/*
I
Ingo Molnar 已提交
5332 5333 5334
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
5335 5336 5337 5338
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_fd;
	}
I
Ingo Molnar 已提交
5339

5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
			goto err_put_context;
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

I
Ingo Molnar 已提交
5353
	/*
5354
	 * Look up the group leader (we will attach this event to it):
5355
	 */
5356
	if (group_leader) {
5357
		err = -EINVAL;
5358 5359

		/*
I
Ingo Molnar 已提交
5360 5361 5362 5363 5364 5365 5366 5367
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5368
		 */
I
Ingo Molnar 已提交
5369 5370
		if (group_leader->ctx != ctx)
			goto err_put_context;
5371 5372 5373
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5374
		if (attr.exclusive || attr.pinned)
5375
			goto err_put_context;
5376 5377
	}

5378
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5379
				     NULL, NULL, GFP_KERNEL);
5380 5381
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
T
Thomas Gleixner 已提交
5382
		goto err_put_context;
5383 5384 5385 5386 5387 5388 5389
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
			goto err_free_put_context;
	}
T
Thomas Gleixner 已提交
5390

5391 5392 5393
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5394
		goto err_free_put_context;
5395
	}
5396

5397
	event->filp = event_file;
5398
	WARN_ON_ONCE(ctx->parent_ctx);
5399
	mutex_lock(&ctx->mutex);
5400
	perf_install_in_context(ctx, event, cpu);
5401
	++ctx->generation;
5402
	mutex_unlock(&ctx->mutex);
5403

5404
	event->owner = current;
5405
	get_task_struct(current);
5406 5407 5408
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5409

5410 5411 5412 5413 5414 5415
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5416 5417 5418
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5419

5420
err_free_put_context:
5421
	free_event(event);
T
Thomas Gleixner 已提交
5422
err_put_context:
5423
	fput_light(group_file, fput_needed);
5424 5425 5426
	put_ctx(ctx);
err_fd:
	put_unused_fd(event_fd);
5427
	return err;
T
Thomas Gleixner 已提交
5428 5429
}

5430 5431 5432 5433 5434 5435 5436 5437 5438
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5439 5440
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5451 5452 5453 5454
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5455 5456

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5457
				 NULL, overflow_handler, GFP_KERNEL);
5458 5459
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5460
		goto err_put_context;
5461
	}
5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5478 5479 5480 5481
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5482 5483 5484
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5485
/*
5486
 * inherit a event from parent task to child task:
5487
 */
5488 5489
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5490
	      struct task_struct *parent,
5491
	      struct perf_event_context *parent_ctx,
5492
	      struct task_struct *child,
5493 5494
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5495
{
5496
	struct perf_event *child_event;
5497

5498
	/*
5499 5500
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5501 5502 5503
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5504 5505
	if (parent_event->parent)
		parent_event = parent_event->parent;
5506

5507 5508 5509
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5510
					   NULL, GFP_KERNEL);
5511 5512
	if (IS_ERR(child_event))
		return child_event;
5513
	get_ctx(child_ctx);
5514

5515
	/*
5516
	 * Make the child state follow the state of the parent event,
5517
	 * not its attr.disabled bit.  We hold the parent's mutex,
5518
	 * so we won't race with perf_event_{en, dis}able_family.
5519
	 */
5520 5521
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5522
	else
5523
		child_event->state = PERF_EVENT_STATE_OFF;
5524

5525 5526 5527 5528 5529 5530 5531
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

5532
		local64_set(&hwc->period_left, sample_period);
5533
	}
5534

5535 5536
	child_event->overflow_handler = parent_event->overflow_handler;

5537 5538 5539
	/*
	 * Link it up in the child's context:
	 */
5540
	add_event_to_ctx(child_event, child_ctx);
5541 5542 5543

	/*
	 * Get a reference to the parent filp - we will fput it
5544
	 * when the child event exits. This is safe to do because
5545 5546 5547
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5548
	atomic_long_inc(&parent_event->filp->f_count);
5549

5550
	/*
5551
	 * Link this into the parent event's child list
5552
	 */
5553 5554 5555 5556
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5557

5558
	return child_event;
5559 5560
}

5561
static int inherit_group(struct perf_event *parent_event,
5562
	      struct task_struct *parent,
5563
	      struct perf_event_context *parent_ctx,
5564
	      struct task_struct *child,
5565
	      struct perf_event_context *child_ctx)
5566
{
5567 5568 5569
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5570

5571
	leader = inherit_event(parent_event, parent, parent_ctx,
5572
				 child, NULL, child_ctx);
5573 5574
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5575 5576
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5577 5578 5579
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5580
	}
5581 5582 5583
	return 0;
}

5584
static void sync_child_event(struct perf_event *child_event,
5585
			       struct task_struct *child)
5586
{
5587
	struct perf_event *parent_event = child_event->parent;
5588
	u64 child_val;
5589

5590 5591
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5592

P
Peter Zijlstra 已提交
5593
	child_val = perf_event_count(child_event);
5594 5595 5596 5597

	/*
	 * Add back the child's count to the parent's count:
	 */
5598
	atomic64_add(child_val, &parent_event->child_count);
5599 5600 5601 5602
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5603 5604

	/*
5605
	 * Remove this event from the parent's list
5606
	 */
5607 5608 5609 5610
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5611 5612

	/*
5613
	 * Release the parent event, if this was the last
5614 5615
	 * reference to it.
	 */
5616
	fput(parent_event->filp);
5617 5618
}

5619
static void
5620 5621
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5622
			 struct task_struct *child)
5623
{
5624
	struct perf_event *parent_event;
5625

5626
	perf_event_remove_from_context(child_event);
5627

5628
	parent_event = child_event->parent;
5629
	/*
5630
	 * It can happen that parent exits first, and has events
5631
	 * that are still around due to the child reference. These
5632
	 * events need to be zapped - but otherwise linger.
5633
	 */
5634 5635 5636
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5637
	}
5638 5639 5640
}

/*
5641
 * When a child task exits, feed back event values to parent events.
5642
 */
5643
void perf_event_exit_task(struct task_struct *child)
5644
{
5645 5646
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5647
	unsigned long flags;
5648

5649 5650
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5651
		return;
P
Peter Zijlstra 已提交
5652
	}
5653

5654
	local_irq_save(flags);
5655 5656 5657 5658 5659 5660
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5661 5662
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5663 5664 5665

	/*
	 * Take the context lock here so that if find_get_context is
5666
	 * reading child->perf_event_ctxp, we wait until it has
5667 5668
	 * incremented the context's refcount before we do put_ctx below.
	 */
5669
	raw_spin_lock(&child_ctx->lock);
5670
	child->perf_event_ctxp = NULL;
5671 5672 5673
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5674
	 * the events from it.
5675 5676
	 */
	unclone_ctx(child_ctx);
5677
	update_context_time(child_ctx);
5678
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5679 5680

	/*
5681 5682 5683
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5684
	 */
5685
	perf_event_task(child, child_ctx, 0);
5686

5687 5688 5689
	/*
	 * We can recurse on the same lock type through:
	 *
5690 5691 5692
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5693 5694 5695 5696 5697
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5698
	mutex_lock(&child_ctx->mutex);
5699

5700
again:
5701 5702 5703 5704 5705
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5706
				 group_entry)
5707
		__perf_event_exit_task(child_event, child_ctx, child);
5708 5709

	/*
5710
	 * If the last event was a group event, it will have appended all
5711 5712 5713
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5714 5715
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5716
		goto again;
5717 5718 5719 5720

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5721 5722
}

5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5737
	perf_group_detach(event);
5738 5739 5740 5741
	list_del_event(event, ctx);
	free_event(event);
}

5742 5743 5744 5745
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5746
void perf_event_free_task(struct task_struct *task)
5747
{
5748 5749
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5750 5751 5752 5753 5754 5755

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5756 5757
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5758

5759 5760 5761
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5762

5763 5764 5765
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5766

5767
	mutex_unlock(&ctx->mutex);
5768

5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5784 5785
	}

5786 5787 5788 5789 5790 5791 5792
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5793

5794 5795 5796 5797
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5798

5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5811 5812
}

5813

5814
/*
5815
 * Initialize the perf_event context in task_struct
5816
 */
5817
int perf_event_init_task(struct task_struct *child)
5818
{
5819
	struct perf_event_context *child_ctx, *parent_ctx;
5820 5821
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5822
	struct task_struct *parent = current;
5823
	int inherited_all = 1;
5824
	int ret = 0;
5825

5826
	child->perf_event_ctxp = NULL;
5827

5828 5829
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5830

5831
	if (likely(!parent->perf_event_ctxp))
5832 5833
		return 0;

5834
	/*
5835 5836
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5837
	 */
5838 5839
	parent_ctx = perf_pin_task_context(parent);

5840 5841 5842 5843 5844 5845 5846
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5847 5848 5849 5850
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5851
	mutex_lock(&parent_ctx->mutex);
5852 5853 5854 5855 5856

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5857 5858 5859 5860 5861 5862
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5863

5864 5865 5866 5867
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5868
			break;
5869 5870
	}

5871 5872
	child_ctx = child->perf_event_ctxp;

5873
	if (child_ctx && inherited_all) {
5874 5875 5876
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5877 5878
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5879
		 * because the list of events and the generation
5880
		 * count can't have changed since we took the mutex.
5881
		 */
5882 5883 5884
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5885
			child_ctx->parent_gen = parent_ctx->parent_gen;
5886 5887 5888 5889 5890
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5891 5892
	}

5893
	mutex_unlock(&parent_ctx->mutex);
5894

5895
	perf_unpin_context(parent_ctx);
5896

5897
	return ret;
5898 5899
}

5900 5901 5902 5903 5904 5905 5906
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5907
		mutex_init(&cpuctx->hlist_mutex);
5908 5909 5910 5911
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5912
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5913
{
5914
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5915

5916
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5917

5918
	spin_lock(&perf_resource_lock);
5919
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5920
	spin_unlock(&perf_resource_lock);
5921 5922 5923 5924 5925 5926 5927 5928 5929 5930

	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5931 5932 5933
}

#ifdef CONFIG_HOTPLUG_CPU
5934
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5935 5936
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5937 5938
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5939

5940 5941 5942
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5943
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5944
}
5945
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5946
{
5947
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5948
	struct perf_event_context *ctx = &cpuctx->ctx;
5949

5950 5951 5952 5953
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5954
	mutex_lock(&ctx->mutex);
5955
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5956
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5957 5958
}
#else
5959
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5960 5961 5962 5963 5964 5965 5966
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
5967
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
5968 5969

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
5970
	case CPU_DOWN_FAILED:
5971
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5972 5973
		break;

P
Peter Zijlstra 已提交
5974
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
5975
	case CPU_DOWN_PREPARE:
5976
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5977 5978 5979 5980 5981 5982 5983 5984 5985
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5986
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5987
{
5988
	perf_event_init_all_cpus();
5989 5990 5991 5992 5993 5994
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
5995 5996
}

5997 5998 5999
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
6000 6001 6002 6003 6004 6005
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
6006
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
6017
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
6018 6019
		return -EINVAL;

6020
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6021 6022 6023
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
6024
		raw_spin_lock_irq(&cpuctx->ctx.lock);
6025 6026
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
6027
		cpuctx->max_pertask = mpt;
6028
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
6029
	}
6030
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6031 6032 6033 6034

	return count;
}

6035 6036 6037
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
6038 6039 6040 6041 6042
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
6043 6044 6045
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

6056
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6057
	perf_overcommit = val;
6058
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
6085
	.name			= "perf_events",
T
Thomas Gleixner 已提交
6086 6087
};

6088
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
6089 6090 6091 6092
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
6093
device_initcall(perf_event_sysfs_init);