perf_event.c 129.3 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
34
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
35

36 37
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
38
/*
39
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
40
 */
41
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
42

43
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
44 45 46
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

47 48 49 50
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
51

52
/*
53
 * perf event paranoia level:
54 55
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
56
 *   1 - disallow cpu events for unpriv
57
 *   2 - disallow kernel profiling for unpriv
58
 */
59
int sysctl_perf_event_paranoid __read_mostly = 1;
60

61
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62 63

/*
64
 * max perf event sample rate
65
 */
66
int sysctl_perf_event_sample_rate __read_mostly = 100000;
67

68
static atomic64_t perf_event_id;
69

T
Thomas Gleixner 已提交
70
/*
71
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
72
 */
73
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
74 75 76 77

/*
 * Architecture provided APIs - weak aliases:
 */
78
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
79
{
80
	return NULL;
T
Thomas Gleixner 已提交
81 82
}

83 84 85
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

86
void __weak perf_event_print_debug(void)	{ }
87

88
static DEFINE_PER_CPU(int, perf_disable_count);
89 90 91

void perf_disable(void)
{
P
Peter Zijlstra 已提交
92 93
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
94 95 96 97
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
98
	if (!--__get_cpu_var(perf_disable_count))
99 100 101
		hw_perf_enable();
}

102
static void get_ctx(struct perf_event_context *ctx)
103
{
104
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 106
}

107 108
static void free_ctx(struct rcu_head *head)
{
109
	struct perf_event_context *ctx;
110

111
	ctx = container_of(head, struct perf_event_context, rcu_head);
112 113 114
	kfree(ctx);
}

115
static void put_ctx(struct perf_event_context *ctx)
116
{
117 118 119
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
120 121 122
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
123
	}
124 125
}

126
static void unclone_ctx(struct perf_event_context *ctx)
127 128 129 130 131 132 133
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

134
/*
135
 * If we inherit events we want to return the parent event id
136 137
 * to userspace.
 */
138
static u64 primary_event_id(struct perf_event *event)
139
{
140
	u64 id = event->id;
141

142 143
	if (event->parent)
		id = event->parent->id;
144 145 146 147

	return id;
}

148
/*
149
 * Get the perf_event_context for a task and lock it.
150 151 152
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
153
static struct perf_event_context *
154
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155
{
156
	struct perf_event_context *ctx;
157 158 159

	rcu_read_lock();
 retry:
160
	ctx = rcu_dereference(task->perf_event_ctxp);
161 162 163 164
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
165
		 * perf_event_task_sched_out, though the
166 167 168 169 170 171
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
172
		raw_spin_lock_irqsave(&ctx->lock, *flags);
173
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 176
			goto retry;
		}
177 178

		if (!atomic_inc_not_zero(&ctx->refcount)) {
179
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 181
			ctx = NULL;
		}
182 183 184 185 186 187 188 189 190 191
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
192
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193
{
194
	struct perf_event_context *ctx;
195 196 197 198 199
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
200
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 202 203 204
	}
	return ctx;
}

205
static void perf_unpin_context(struct perf_event_context *ctx)
206 207 208
{
	unsigned long flags;

209
	raw_spin_lock_irqsave(&ctx->lock, flags);
210
	--ctx->pin_count;
211
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 213 214
	put_ctx(ctx);
}

215 216
static inline u64 perf_clock(void)
{
217
	return cpu_clock(raw_smp_processor_id());
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

243 244 245 246 247 248
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
249 250 251 252 253 254 255 256 257

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

258 259 260 261 262 263 264 265 266
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

267
/*
268
 * Add a event from the lists for its context.
269 270
 * Must be called with ctx->mutex and ctx->lock held.
 */
271
static void
272
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
273
{
274
	struct perf_event *group_leader = event->group_leader;
275 276

	/*
277 278
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
279 280
	 * leader's sibling list:
	 */
281 282 283
	if (group_leader == event) {
		struct list_head *list;

284 285 286
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

287 288 289
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
	} else {
290 291 292 293
		if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
		    !is_software_event(event))
			group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

294
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
295 296
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
297

298 299 300
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
301
		ctx->nr_stat++;
302 303
}

304
/*
305
 * Remove a event from the lists for its context.
306
 * Must be called with ctx->mutex and ctx->lock held.
307
 */
308
static void
309
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
310
{
311
	struct perf_event *sibling, *tmp;
312

313
	if (list_empty(&event->group_entry))
314
		return;
315 316
	ctx->nr_events--;
	if (event->attr.inherit_stat)
317
		ctx->nr_stat--;
318

319 320
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
321

322 323
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
324

325
	update_event_times(event);
326 327 328 329 330 331 332 333 334 335

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
336

337
	/*
338 339
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
340 341
	 * to the context list directly:
	 */
342
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
343
		struct list_head *list;
344

345 346
		list = ctx_group_list(event, ctx);
		list_move_tail(&sibling->group_entry, list);
347
		sibling->group_leader = sibling;
348 349 350

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
351 352 353
	}
}

354
static void
355
event_sched_out(struct perf_event *event,
356
		  struct perf_cpu_context *cpuctx,
357
		  struct perf_event_context *ctx)
358
{
359
	if (event->state != PERF_EVENT_STATE_ACTIVE)
360 361
		return;

362 363 364 365
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
366
	}
367 368 369
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
370

371
	if (!is_software_event(event))
372 373
		cpuctx->active_oncpu--;
	ctx->nr_active--;
374
	if (event->attr.exclusive || !cpuctx->active_oncpu)
375 376 377
		cpuctx->exclusive = 0;
}

378
static void
379
group_sched_out(struct perf_event *group_event,
380
		struct perf_cpu_context *cpuctx,
381
		struct perf_event_context *ctx)
382
{
383
	struct perf_event *event;
384

385
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
386 387
		return;

388
	event_sched_out(group_event, cpuctx, ctx);
389 390 391 392

	/*
	 * Schedule out siblings (if any):
	 */
393 394
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
395

396
	if (group_event->attr.exclusive)
397 398 399
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
400
/*
401
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
402
 *
403
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
404 405
 * remove it from the context list.
 */
406
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
407 408
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
409 410
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
411 412 413 414 415 416

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
417
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
418 419
		return;

420
	raw_spin_lock(&ctx->lock);
421 422
	/*
	 * Protect the list operation against NMI by disabling the
423
	 * events on a global level.
424 425
	 */
	perf_disable();
T
Thomas Gleixner 已提交
426

427
	event_sched_out(event, cpuctx, ctx);
428

429
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
430 431 432

	if (!ctx->task) {
		/*
433
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
434 435 436
		 * reservation:
		 */
		cpuctx->max_pertask =
437 438
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
439 440
	}

441
	perf_enable();
442
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
443 444 445 446
}


/*
447
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
448
 *
449
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
450
 *
451
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
452
 * call when the task is on a CPU.
453
 *
454 455
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
456 457
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
458
 * When called from perf_event_exit_task, it's OK because the
459
 * context has been detached from its task.
T
Thomas Gleixner 已提交
460
 */
461
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
462
{
463
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
464 465 466 467
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
468
		 * Per cpu events are removed via an smp call and
469
		 * the removal is always successful.
T
Thomas Gleixner 已提交
470
		 */
471 472 473
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
474 475 476 477
		return;
	}

retry:
478 479
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
480

481
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
482 483 484
	/*
	 * If the context is active we need to retry the smp call.
	 */
485
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
486
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
487 488 489 490 491
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
492
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
493 494
	 * succeed.
	 */
P
Peter Zijlstra 已提交
495
	if (!list_empty(&event->group_entry))
496
		list_del_event(event, ctx);
497
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
498 499
}

500
/*
501
 * Update total_time_enabled and total_time_running for all events in a group.
502
 */
503
static void update_group_times(struct perf_event *leader)
504
{
505
	struct perf_event *event;
506

507 508 509
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
510 511
}

512
/*
513
 * Cross CPU call to disable a performance event
514
 */
515
static void __perf_event_disable(void *info)
516
{
517
	struct perf_event *event = info;
518
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
519
	struct perf_event_context *ctx = event->ctx;
520 521

	/*
522 523
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
524
	 */
525
	if (ctx->task && cpuctx->task_ctx != ctx)
526 527
		return;

528
	raw_spin_lock(&ctx->lock);
529 530

	/*
531
	 * If the event is on, turn it off.
532 533
	 * If it is in error state, leave it in error state.
	 */
534
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
535
		update_context_time(ctx);
536 537 538
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
539
		else
540 541
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
542 543
	}

544
	raw_spin_unlock(&ctx->lock);
545 546 547
}

/*
548
 * Disable a event.
549
 *
550 551
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
552
 * remains valid.  This condition is satisifed when called through
553 554 555 556
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
557
 * is the current context on this CPU and preemption is disabled,
558
 * hence we can't get into perf_event_task_sched_out for this context.
559
 */
560
void perf_event_disable(struct perf_event *event)
561
{
562
	struct perf_event_context *ctx = event->ctx;
563 564 565 566
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
567
		 * Disable the event on the cpu that it's on
568
		 */
569 570
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
571 572 573 574
		return;
	}

 retry:
575
	task_oncpu_function_call(task, __perf_event_disable, event);
576

577
	raw_spin_lock_irq(&ctx->lock);
578
	/*
579
	 * If the event is still active, we need to retry the cross-call.
580
	 */
581
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
582
		raw_spin_unlock_irq(&ctx->lock);
583 584 585 586 587 588 589
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
590 591 592
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
593
	}
594

595
	raw_spin_unlock_irq(&ctx->lock);
596 597
}

598
static int
599
event_sched_in(struct perf_event *event,
600
		 struct perf_cpu_context *cpuctx,
601
		 struct perf_event_context *ctx)
602
{
603
	if (event->state <= PERF_EVENT_STATE_OFF)
604 605
		return 0;

606
	event->state = PERF_EVENT_STATE_ACTIVE;
607
	event->oncpu = smp_processor_id();
608 609 610 611 612
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

613 614 615
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
616 617 618
		return -EAGAIN;
	}

619
	event->tstamp_running += ctx->time - event->tstamp_stopped;
620

621
	if (!is_software_event(event))
622
		cpuctx->active_oncpu++;
623 624
	ctx->nr_active++;

625
	if (event->attr.exclusive)
626 627
		cpuctx->exclusive = 1;

628 629 630
	return 0;
}

631
static int
632
group_sched_in(struct perf_event *group_event,
633
	       struct perf_cpu_context *cpuctx,
634
	       struct perf_event_context *ctx)
635
{
636 637 638
	struct perf_event *event, *partial_group = NULL;
	const struct pmu *pmu = group_event->pmu;
	bool txn = false;
639 640
	int ret;

641
	if (group_event->state == PERF_EVENT_STATE_OFF)
642 643
		return 0;

644 645 646 647 648 649
	/* Check if group transaction availabe */
	if (pmu->start_txn)
		txn = true;

	if (txn)
		pmu->start_txn(pmu);
650

651
	if (event_sched_in(group_event, cpuctx, ctx))
652 653 654 655 656
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
657
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
658
		if (event_sched_in(event, cpuctx, ctx)) {
659
			partial_group = event;
660 661 662 663
			goto group_error;
		}
	}

664 665
	if (!txn)
		return 0;
666

667 668 669 670
	ret = pmu->commit_txn(pmu);
	if (!ret) {
		pmu->cancel_txn(pmu);
		return 0;
671
	}
672 673

group_error:
674 675 676
	if (txn)
		pmu->cancel_txn(pmu);

677 678 679 680
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
681 682
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
683
			break;
684
		event_sched_out(event, cpuctx, ctx);
685
	}
686
	event_sched_out(group_event, cpuctx, ctx);
687 688 689 690

	return -EAGAIN;
}

691
/*
692
 * Work out whether we can put this event group on the CPU now.
693
 */
694
static int group_can_go_on(struct perf_event *event,
695 696 697 698
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
699
	 * Groups consisting entirely of software events can always go on.
700
	 */
701
	if (event->group_flags & PERF_GROUP_SOFTWARE)
702 703 704
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
705
	 * events can go on.
706 707 708 709 710
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
711
	 * events on the CPU, it can't go on.
712
	 */
713
	if (event->attr.exclusive && cpuctx->active_oncpu)
714 715 716 717 718 719 720 721
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

722 723
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
724
{
725 726 727 728
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
729 730
}

T
Thomas Gleixner 已提交
731
/*
732
 * Cross CPU call to install and enable a performance event
733 734
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
735 736 737 738
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
739 740 741
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
742
	int err;
T
Thomas Gleixner 已提交
743 744 745 746 747

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
748
	 * Or possibly this is the right context but it isn't
749
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
750
	 */
751
	if (ctx->task && cpuctx->task_ctx != ctx) {
752
		if (cpuctx->task_ctx || ctx->task != current)
753 754 755
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
756

757
	raw_spin_lock(&ctx->lock);
758
	ctx->is_active = 1;
759
	update_context_time(ctx);
T
Thomas Gleixner 已提交
760 761 762

	/*
	 * Protect the list operation against NMI by disabling the
763
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
764
	 */
765
	perf_disable();
T
Thomas Gleixner 已提交
766

767
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
768

769 770 771
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

772
	/*
773
	 * Don't put the event on if it is disabled or if
774 775
	 * it is in a group and the group isn't on.
	 */
776 777
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
778 779
		goto unlock;

780
	/*
781 782 783
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
784
	 */
785
	if (!group_can_go_on(event, cpuctx, 1))
786 787
		err = -EEXIST;
	else
788
		err = event_sched_in(event, cpuctx, ctx);
789

790 791
	if (err) {
		/*
792
		 * This event couldn't go on.  If it is in a group
793
		 * then we have to pull the whole group off.
794
		 * If the event group is pinned then put it in error state.
795
		 */
796
		if (leader != event)
797
			group_sched_out(leader, cpuctx, ctx);
798
		if (leader->attr.pinned) {
799
			update_group_times(leader);
800
			leader->state = PERF_EVENT_STATE_ERROR;
801
		}
802
	}
T
Thomas Gleixner 已提交
803

804
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
805 806
		cpuctx->max_pertask--;

807
 unlock:
808
	perf_enable();
809

810
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
811 812 813
}

/*
814
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
815
 *
816 817
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
818
 *
819
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
820 821
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
822 823
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
824 825
 */
static void
826 827
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
828 829 830 831 832 833
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
834
		 * Per cpu events are installed via an smp call and
835
		 * the install is always successful.
T
Thomas Gleixner 已提交
836 837
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
838
					 event, 1);
T
Thomas Gleixner 已提交
839 840 841 842 843
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
844
				 event);
T
Thomas Gleixner 已提交
845

846
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
847 848 849
	/*
	 * we need to retry the smp call.
	 */
850
	if (ctx->is_active && list_empty(&event->group_entry)) {
851
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
852 853 854 855 856
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
857
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
858 859
	 * succeed.
	 */
860 861
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
862
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
863 864
}

865
/*
866
 * Put a event into inactive state and update time fields.
867 868 869 870 871 872
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
873 874
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
875
{
876
	struct perf_event *sub;
877

878 879 880 881
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
882 883 884 885
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

886
/*
887
 * Cross CPU call to enable a performance event
888
 */
889
static void __perf_event_enable(void *info)
890
{
891
	struct perf_event *event = info;
892
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
893 894
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
895
	int err;
896

897
	/*
898 899
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
900
	 */
901
	if (ctx->task && cpuctx->task_ctx != ctx) {
902
		if (cpuctx->task_ctx || ctx->task != current)
903 904 905
			return;
		cpuctx->task_ctx = ctx;
	}
906

907
	raw_spin_lock(&ctx->lock);
908
	ctx->is_active = 1;
909
	update_context_time(ctx);
910

911
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
912
		goto unlock;
913
	__perf_event_mark_enabled(event, ctx);
914

915 916 917
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

918
	/*
919
	 * If the event is in a group and isn't the group leader,
920
	 * then don't put it on unless the group is on.
921
	 */
922
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
923
		goto unlock;
924

925
	if (!group_can_go_on(event, cpuctx, 1)) {
926
		err = -EEXIST;
927
	} else {
928
		perf_disable();
929
		if (event == leader)
930
			err = group_sched_in(event, cpuctx, ctx);
931
		else
932
			err = event_sched_in(event, cpuctx, ctx);
933
		perf_enable();
934
	}
935 936 937

	if (err) {
		/*
938
		 * If this event can't go on and it's part of a
939 940
		 * group, then the whole group has to come off.
		 */
941
		if (leader != event)
942
			group_sched_out(leader, cpuctx, ctx);
943
		if (leader->attr.pinned) {
944
			update_group_times(leader);
945
			leader->state = PERF_EVENT_STATE_ERROR;
946
		}
947 948 949
	}

 unlock:
950
	raw_spin_unlock(&ctx->lock);
951 952 953
}

/*
954
 * Enable a event.
955
 *
956 957
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
958
 * remains valid.  This condition is satisfied when called through
959 960
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
961
 */
962
void perf_event_enable(struct perf_event *event)
963
{
964
	struct perf_event_context *ctx = event->ctx;
965 966 967 968
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
969
		 * Enable the event on the cpu that it's on
970
		 */
971 972
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
973 974 975
		return;
	}

976
	raw_spin_lock_irq(&ctx->lock);
977
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
978 979 980
		goto out;

	/*
981 982
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
983 984 985 986
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
987 988
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
989 990

 retry:
991
	raw_spin_unlock_irq(&ctx->lock);
992
	task_oncpu_function_call(task, __perf_event_enable, event);
993

994
	raw_spin_lock_irq(&ctx->lock);
995 996

	/*
997
	 * If the context is active and the event is still off,
998 999
	 * we need to retry the cross-call.
	 */
1000
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1001 1002 1003 1004 1005 1006
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1007 1008
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1009

1010
 out:
1011
	raw_spin_unlock_irq(&ctx->lock);
1012 1013
}

1014
static int perf_event_refresh(struct perf_event *event, int refresh)
1015
{
1016
	/*
1017
	 * not supported on inherited events
1018
	 */
1019
	if (event->attr.inherit)
1020 1021
		return -EINVAL;

1022 1023
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1024 1025

	return 0;
1026 1027
}

1028 1029 1030 1031 1032 1033 1034 1035 1036
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1037
{
1038
	struct perf_event *event;
1039

1040
	raw_spin_lock(&ctx->lock);
1041
	ctx->is_active = 0;
1042
	if (likely(!ctx->nr_events))
1043
		goto out;
1044
	update_context_time(ctx);
1045

1046
	perf_disable();
1047 1048 1049 1050
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1051 1052 1053
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1054
	if (event_type & EVENT_FLEXIBLE)
1055
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1056
			group_sched_out(event, cpuctx, ctx);
1057 1058

 out_enable:
1059
	perf_enable();
1060
 out:
1061
	raw_spin_unlock(&ctx->lock);
1062 1063
}

1064 1065 1066
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1067 1068 1069 1070
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1071
 * in them directly with an fd; we can only enable/disable all
1072
 * events via prctl, or enable/disable all events in a family
1073 1074
 * via ioctl, which will have the same effect on both contexts.
 */
1075 1076
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1077 1078
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1079
		&& ctx1->parent_gen == ctx2->parent_gen
1080
		&& !ctx1->pin_count && !ctx2->pin_count;
1081 1082
}

1083 1084
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1085 1086 1087
{
	u64 value;

1088
	if (!event->attr.inherit_stat)
1089 1090 1091
		return;

	/*
1092
	 * Update the event value, we cannot use perf_event_read()
1093 1094
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1095
	 * we know the event must be on the current CPU, therefore we
1096 1097
	 * don't need to use it.
	 */
1098 1099
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1100 1101
		event->pmu->read(event);
		/* fall-through */
1102

1103 1104
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1105 1106 1107 1108 1109 1110 1111
		break;

	default:
		break;
	}

	/*
1112
	 * In order to keep per-task stats reliable we need to flip the event
1113 1114
	 * values when we flip the contexts.
	 */
1115 1116 1117
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1118

1119 1120
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1121

1122
	/*
1123
	 * Since we swizzled the values, update the user visible data too.
1124
	 */
1125 1126
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1127 1128 1129 1130 1131
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1132 1133
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1134
{
1135
	struct perf_event *event, *next_event;
1136 1137 1138 1139

	if (!ctx->nr_stat)
		return;

1140 1141
	update_context_time(ctx);

1142 1143
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1144

1145 1146
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1147

1148 1149
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1150

1151
		__perf_event_sync_stat(event, next_event);
1152

1153 1154
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1155 1156 1157
	}
}

T
Thomas Gleixner 已提交
1158
/*
1159
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1160 1161
 * with interrupts disabled.
 *
1162
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1163
 *
I
Ingo Molnar 已提交
1164
 * This does not protect us against NMI, but disable()
1165 1166 1167
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1168
 */
1169
void perf_event_task_sched_out(struct task_struct *task,
1170
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1171
{
1172
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1173 1174 1175
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1176
	int do_switch = 1;
T
Thomas Gleixner 已提交
1177

1178
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1179

1180
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1181 1182
		return;

1183 1184
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1185
	next_ctx = next->perf_event_ctxp;
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1197 1198
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1199
		if (context_equiv(ctx, next_ctx)) {
1200 1201
			/*
			 * XXX do we need a memory barrier of sorts
1202
			 * wrt to rcu_dereference() of perf_event_ctxp
1203
			 */
1204 1205
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1206 1207 1208
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1209

1210
			perf_event_sync_stat(ctx, next_ctx);
1211
		}
1212 1213
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1214
	}
1215
	rcu_read_unlock();
1216

1217
	if (do_switch) {
1218
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1219 1220
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1221 1222
}

1223 1224
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1225 1226 1227
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1228 1229
	if (!cpuctx->task_ctx)
		return;
1230 1231 1232 1233

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1234
	ctx_sched_out(ctx, cpuctx, event_type);
1235 1236 1237
	cpuctx->task_ctx = NULL;
}

1238 1239 1240
/*
 * Called with IRQs disabled
 */
1241
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1242
{
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1253 1254
}

1255
static void
1256
ctx_pinned_sched_in(struct perf_event_context *ctx,
1257
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1258
{
1259
	struct perf_event *event;
T
Thomas Gleixner 已提交
1260

1261 1262
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1263
			continue;
1264
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1265 1266
			continue;

1267
		if (group_can_go_on(event, cpuctx, 1))
1268
			group_sched_in(event, cpuctx, ctx);
1269 1270 1271 1272 1273

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1274 1275 1276
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1277
		}
1278
	}
1279 1280 1281 1282
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1283
		      struct perf_cpu_context *cpuctx)
1284 1285 1286
{
	struct perf_event *event;
	int can_add_hw = 1;
1287

1288 1289 1290
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1291
			continue;
1292 1293
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1294
		 * of events:
1295
		 */
1296
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1297 1298
			continue;

1299
		if (group_can_go_on(event, cpuctx, can_add_hw))
1300
			if (group_sched_in(event, cpuctx, ctx))
1301
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1302
	}
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1324
		ctx_pinned_sched_in(ctx, cpuctx);
1325 1326 1327

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1328
		ctx_flexible_sched_in(ctx, cpuctx);
1329

1330
	perf_enable();
1331
 out:
1332
	raw_spin_unlock(&ctx->lock);
1333 1334
}

1335 1336 1337 1338 1339 1340 1341 1342
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1356
/*
1357
 * Called from scheduler to add the events of the current task
1358 1359
 * with interrupts disabled.
 *
1360
 * We restore the event value and then enable it.
1361 1362
 *
 * This does not protect us against NMI, but enable()
1363 1364 1365
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1366
 */
1367
void perf_event_task_sched_in(struct task_struct *task)
1368
{
1369 1370
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1371

1372 1373
	if (likely(!ctx))
		return;
1374

1375 1376 1377
	if (cpuctx->task_ctx == ctx)
		return;

1378 1379
	perf_disable();

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1392 1393

	perf_enable();
1394 1395
}

1396 1397
#define MAX_INTERRUPTS (~0ULL)

1398
static void perf_log_throttle(struct perf_event *event, int enable);
1399

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

	return div64_u64(dividend, divisor);
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1486
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1487
{
1488
	struct hw_perf_event *hwc = &event->hw;
1489 1490 1491
	u64 period, sample_period;
	s64 delta;

1492
	period = perf_calculate_period(event, nsec, count);
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1503 1504 1505

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1506
		perf_event_stop(event);
1507
		atomic64_set(&hwc->period_left, 0);
1508
		perf_event_start(event);
1509 1510
		perf_enable();
	}
1511 1512
}

1513
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1514
{
1515 1516
	struct perf_event *event;
	struct hw_perf_event *hwc;
1517 1518
	u64 interrupts, now;
	s64 delta;
1519

1520
	raw_spin_lock(&ctx->lock);
1521
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1522
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1523 1524
			continue;

1525 1526 1527
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1528
		hwc = &event->hw;
1529 1530 1531

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1532

1533
		/*
1534
		 * unthrottle events on the tick
1535
		 */
1536
		if (interrupts == MAX_INTERRUPTS) {
1537
			perf_log_throttle(event, 1);
1538
			perf_disable();
1539
			event->pmu->unthrottle(event);
1540
			perf_enable();
1541 1542
		}

1543
		if (!event->attr.freq || !event->attr.sample_freq)
1544 1545
			continue;

1546
		perf_disable();
1547 1548 1549 1550
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1551

1552 1553
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1554
		perf_enable();
1555
	}
1556
	raw_spin_unlock(&ctx->lock);
1557 1558
}

1559
/*
1560
 * Round-robin a context's events:
1561
 */
1562
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1563
{
1564
	raw_spin_lock(&ctx->lock);
1565 1566 1567 1568

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1569
	raw_spin_unlock(&ctx->lock);
1570 1571
}

1572
void perf_event_task_tick(struct task_struct *curr)
1573
{
1574
	struct perf_cpu_context *cpuctx;
1575
	struct perf_event_context *ctx;
1576
	int rotate = 0;
1577

1578
	if (!atomic_read(&nr_events))
1579 1580
		return;

1581
	cpuctx = &__get_cpu_var(perf_cpu_context);
1582 1583 1584
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1585

1586 1587 1588
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1589

1590
	perf_ctx_adjust_freq(&cpuctx->ctx);
1591
	if (ctx)
1592
		perf_ctx_adjust_freq(ctx);
1593

1594 1595 1596 1597
	if (!rotate)
		return;

	perf_disable();
1598
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1599
	if (ctx)
1600
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1601

1602
	rotate_ctx(&cpuctx->ctx);
1603 1604
	if (ctx)
		rotate_ctx(ctx);
1605

1606
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1607
	if (ctx)
1608
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1609
	perf_enable();
T
Thomas Gleixner 已提交
1610 1611
}

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1627
/*
1628
 * Enable all of a task's events that have been marked enable-on-exec.
1629 1630
 * This expects task == current.
 */
1631
static void perf_event_enable_on_exec(struct task_struct *task)
1632
{
1633 1634
	struct perf_event_context *ctx;
	struct perf_event *event;
1635 1636
	unsigned long flags;
	int enabled = 0;
1637
	int ret;
1638 1639

	local_irq_save(flags);
1640 1641
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1642 1643
		goto out;

1644
	__perf_event_task_sched_out(ctx);
1645

1646
	raw_spin_lock(&ctx->lock);
1647

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1658 1659 1660
	}

	/*
1661
	 * Unclone this context if we enabled any event.
1662
	 */
1663 1664
	if (enabled)
		unclone_ctx(ctx);
1665

1666
	raw_spin_unlock(&ctx->lock);
1667

1668
	perf_event_task_sched_in(task);
1669 1670 1671 1672
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1673
/*
1674
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1675
 */
1676
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1677
{
1678
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1679 1680
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1681

1682 1683 1684 1685
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1686 1687
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1688 1689 1690 1691
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1692
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1693
	update_context_time(ctx);
1694
	update_event_times(event);
1695
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1696

P
Peter Zijlstra 已提交
1697
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1698 1699
}

1700
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1701 1702
{
	/*
1703 1704
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1705
	 */
1706 1707 1708 1709
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1710 1711 1712
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1713
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1714
		update_context_time(ctx);
1715
		update_event_times(event);
1716
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1717 1718
	}

1719
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1720 1721
}

1722
/*
1723
 * Initialize the perf_event context in a task_struct:
1724 1725
 */
static void
1726
__perf_event_init_context(struct perf_event_context *ctx,
1727 1728
			    struct task_struct *task)
{
1729
	raw_spin_lock_init(&ctx->lock);
1730
	mutex_init(&ctx->mutex);
1731 1732
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1733 1734 1735 1736 1737
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1738
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1739
{
1740
	struct perf_event_context *ctx;
1741
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1742
	struct task_struct *task;
1743
	unsigned long flags;
1744
	int err;
T
Thomas Gleixner 已提交
1745

1746
	if (pid == -1 && cpu != -1) {
1747
		/* Must be root to operate on a CPU event: */
1748
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1749 1750
			return ERR_PTR(-EACCES);

1751
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1752 1753 1754
			return ERR_PTR(-EINVAL);

		/*
1755
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1756 1757 1758
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1759
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1760 1761 1762 1763
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1764
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1781
	/*
1782
	 * Can't attach events to a dying task.
1783 1784 1785 1786 1787
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1788
	/* Reuse ptrace permission checks for now. */
1789 1790 1791 1792 1793
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1794
	ctx = perf_lock_task_context(task, &flags);
1795
	if (ctx) {
1796
		unclone_ctx(ctx);
1797
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1798 1799
	}

1800
	if (!ctx) {
1801
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1802 1803 1804
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1805
		__perf_event_init_context(ctx, task);
1806
		get_ctx(ctx);
1807
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1808 1809 1810 1811 1812
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1813
			goto retry;
1814
		}
1815
		get_task_struct(task);
1816 1817
	}

1818
	put_task_struct(task);
T
Thomas Gleixner 已提交
1819
	return ctx;
1820 1821 1822 1823

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1824 1825
}

L
Li Zefan 已提交
1826 1827
static void perf_event_free_filter(struct perf_event *event);

1828
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1829
{
1830
	struct perf_event *event;
P
Peter Zijlstra 已提交
1831

1832 1833 1834
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1835
	perf_event_free_filter(event);
1836
	kfree(event);
P
Peter Zijlstra 已提交
1837 1838
}

1839
static void perf_pending_sync(struct perf_event *event);
1840

1841
static void free_event(struct perf_event *event)
1842
{
1843
	perf_pending_sync(event);
1844

1845 1846 1847 1848 1849 1850 1851 1852
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1853
	}
1854

1855 1856 1857
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1858 1859
	}

1860 1861
	if (event->destroy)
		event->destroy(event);
1862

1863 1864
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1865 1866
}

1867
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1868
{
1869
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1870

1871
	WARN_ON_ONCE(ctx->parent_ctx);
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1885
	perf_event_remove_from_context(event);
1886
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1887

1888 1889 1890 1891
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1892

1893
	free_event(event);
T
Thomas Gleixner 已提交
1894 1895 1896

	return 0;
}
1897
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1898

1899 1900 1901 1902
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1903
{
1904
	struct perf_event *event = file->private_data;
1905

1906
	file->private_data = NULL;
1907

1908
	return perf_event_release_kernel(event);
1909 1910
}

1911
static int perf_event_read_size(struct perf_event *event)
1912 1913 1914 1915 1916
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1917
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1918 1919
		size += sizeof(u64);

1920
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1921 1922
		size += sizeof(u64);

1923
	if (event->attr.read_format & PERF_FORMAT_ID)
1924 1925
		entry += sizeof(u64);

1926 1927
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1928 1929 1930 1931 1932 1933 1934 1935
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1936
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1937
{
1938
	struct perf_event *child;
1939 1940
	u64 total = 0;

1941 1942 1943
	*enabled = 0;
	*running = 0;

1944
	mutex_lock(&event->child_mutex);
1945
	total += perf_event_read(event);
1946 1947 1948 1949 1950 1951
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1952
		total += perf_event_read(child);
1953 1954 1955
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1956
	mutex_unlock(&event->child_mutex);
1957 1958 1959

	return total;
}
1960
EXPORT_SYMBOL_GPL(perf_event_read_value);
1961

1962
static int perf_event_read_group(struct perf_event *event,
1963 1964
				   u64 read_format, char __user *buf)
{
1965
	struct perf_event *leader = event->group_leader, *sub;
1966 1967
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1968
	u64 values[5];
1969
	u64 count, enabled, running;
1970

1971
	mutex_lock(&ctx->mutex);
1972
	count = perf_event_read_value(leader, &enabled, &running);
1973 1974

	values[n++] = 1 + leader->nr_siblings;
1975 1976 1977 1978
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1979 1980 1981
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1982 1983 1984 1985

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1986
		goto unlock;
1987

1988
	ret = size;
1989

1990
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1991
		n = 0;
1992

1993
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1994 1995 1996 1997 1998
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1999
		if (copy_to_user(buf + ret, values, size)) {
2000 2001 2002
			ret = -EFAULT;
			goto unlock;
		}
2003 2004

		ret += size;
2005
	}
2006 2007
unlock:
	mutex_unlock(&ctx->mutex);
2008

2009
	return ret;
2010 2011
}

2012
static int perf_event_read_one(struct perf_event *event,
2013 2014
				 u64 read_format, char __user *buf)
{
2015
	u64 enabled, running;
2016 2017 2018
	u64 values[4];
	int n = 0;

2019 2020 2021 2022 2023
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2024
	if (read_format & PERF_FORMAT_ID)
2025
		values[n++] = primary_event_id(event);
2026 2027 2028 2029 2030 2031 2032

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2033
/*
2034
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2035 2036
 */
static ssize_t
2037
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2038
{
2039
	u64 read_format = event->attr.read_format;
2040
	int ret;
T
Thomas Gleixner 已提交
2041

2042
	/*
2043
	 * Return end-of-file for a read on a event that is in
2044 2045 2046
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2047
	if (event->state == PERF_EVENT_STATE_ERROR)
2048 2049
		return 0;

2050
	if (count < perf_event_read_size(event))
2051 2052
		return -ENOSPC;

2053
	WARN_ON_ONCE(event->ctx->parent_ctx);
2054
	if (read_format & PERF_FORMAT_GROUP)
2055
		ret = perf_event_read_group(event, read_format, buf);
2056
	else
2057
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2058

2059
	return ret;
T
Thomas Gleixner 已提交
2060 2061 2062 2063 2064
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2065
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2066

2067
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2068 2069 2070 2071
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2072
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2073
	struct perf_mmap_data *data;
2074
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2075 2076

	rcu_read_lock();
2077
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
2078
	if (data)
2079
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
2080
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2081

2082
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2083 2084 2085 2086

	return events;
}

2087
static void perf_event_reset(struct perf_event *event)
2088
{
2089 2090 2091
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2092 2093
}

2094
/*
2095 2096 2097 2098
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2099
 */
2100 2101
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2102
{
2103
	struct perf_event *child;
P
Peter Zijlstra 已提交
2104

2105 2106 2107 2108
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2109
		func(child);
2110
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2111 2112
}

2113 2114
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2115
{
2116 2117
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2118

2119 2120
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2121
	event = event->group_leader;
2122

2123 2124 2125 2126
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2127
	mutex_unlock(&ctx->mutex);
2128 2129
}

2130
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2131
{
2132
	struct perf_event_context *ctx = event->ctx;
2133 2134 2135 2136
	unsigned long size;
	int ret = 0;
	u64 value;

2137
	if (!event->attr.sample_period)
2138 2139 2140 2141 2142 2143 2144 2145 2146
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2147
	raw_spin_lock_irq(&ctx->lock);
2148 2149
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2150 2151 2152 2153
			ret = -EINVAL;
			goto unlock;
		}

2154
		event->attr.sample_freq = value;
2155
	} else {
2156 2157
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2158 2159
	}
unlock:
2160
	raw_spin_unlock_irq(&ctx->lock);
2161 2162 2163 2164

	return ret;
}

L
Li Zefan 已提交
2165 2166
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2167

2168 2169
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2170 2171
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2172
	u32 flags = arg;
2173 2174

	switch (cmd) {
2175 2176
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2177
		break;
2178 2179
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2180
		break;
2181 2182
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2183
		break;
P
Peter Zijlstra 已提交
2184

2185 2186
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2187

2188 2189
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2190

2191 2192
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2193

L
Li Zefan 已提交
2194 2195 2196
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2197
	default:
P
Peter Zijlstra 已提交
2198
		return -ENOTTY;
2199
	}
P
Peter Zijlstra 已提交
2200 2201

	if (flags & PERF_IOC_FLAG_GROUP)
2202
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2203
	else
2204
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2205 2206

	return 0;
2207 2208
}

2209
int perf_event_task_enable(void)
2210
{
2211
	struct perf_event *event;
2212

2213 2214 2215 2216
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2217 2218 2219 2220

	return 0;
}

2221
int perf_event_task_disable(void)
2222
{
2223
	struct perf_event *event;
2224

2225 2226 2227 2228
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2229 2230 2231 2232

	return 0;
}

2233 2234
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2235 2236
#endif

2237
static int perf_event_index(struct perf_event *event)
2238
{
2239
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2240 2241
		return 0;

2242
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2243 2244
}

2245 2246 2247 2248 2249
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2250
void perf_event_update_userpage(struct perf_event *event)
2251
{
2252
	struct perf_event_mmap_page *userpg;
2253
	struct perf_mmap_data *data;
2254 2255

	rcu_read_lock();
2256
	data = rcu_dereference(event->data);
2257 2258 2259 2260
	if (!data)
		goto unlock;

	userpg = data->user_page;
2261

2262 2263 2264 2265 2266
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2267
	++userpg->lock;
2268
	barrier();
2269 2270 2271 2272
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2273

2274 2275
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2276

2277 2278
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2279

2280
	barrier();
2281
	++userpg->lock;
2282
	preempt_enable();
2283
unlock:
2284
	rcu_read_unlock();
2285 2286
}

2287
static unsigned long perf_data_size(struct perf_mmap_data *data)
2288
{
2289 2290
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2291

2292
#ifndef CONFIG_PERF_USE_VMALLOC
2293

2294 2295 2296
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2297

2298 2299 2300 2301 2302
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2303

2304 2305
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2306

2307
	return virt_to_page(data->data_pages[pgoff - 1]);
2308 2309
}

2310 2311
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2312 2313 2314 2315 2316
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2317
	WARN_ON(atomic_read(&event->mmap_count));
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2336
	data->data_order = 0;
2337 2338
	data->nr_pages = nr_pages;

2339
	return data;
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2351
	return NULL;
2352 2353
}

2354 2355
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2356
	struct page *page = virt_to_page((void *)addr);
2357 2358 2359 2360 2361

	page->mapping = NULL;
	__free_page(page);
}

2362
static void perf_mmap_data_free(struct perf_mmap_data *data)
2363 2364 2365
{
	int i;

2366
	perf_mmap_free_page((unsigned long)data->user_page);
2367
	for (i = 0; i < data->nr_pages; i++)
2368
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2369
	kfree(data);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2410
	kfree(data);
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2426

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2504
		data->watermark = max_size / 2;
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2516 2517
}

2518
static void perf_mmap_data_release(struct perf_event *event)
2519
{
2520
	struct perf_mmap_data *data = event->data;
2521

2522
	WARN_ON(atomic_read(&event->mmap_count));
2523

2524
	rcu_assign_pointer(event->data, NULL);
2525
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2526 2527 2528 2529
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2530
	struct perf_event *event = vma->vm_file->private_data;
2531

2532
	atomic_inc(&event->mmap_count);
2533 2534 2535 2536
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2537
	struct perf_event *event = vma->vm_file->private_data;
2538

2539 2540
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2541
		unsigned long size = perf_data_size(event->data);
2542 2543
		struct user_struct *user = current_user();

2544
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2545
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2546
		perf_mmap_data_release(event);
2547
		mutex_unlock(&event->mmap_mutex);
2548
	}
2549 2550
}

2551
static const struct vm_operations_struct perf_mmap_vmops = {
2552 2553 2554 2555
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2556 2557 2558 2559
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2560
	struct perf_event *event = file->private_data;
2561
	unsigned long user_locked, user_lock_limit;
2562
	struct user_struct *user = current_user();
2563
	unsigned long locked, lock_limit;
2564
	struct perf_mmap_data *data;
2565 2566
	unsigned long vma_size;
	unsigned long nr_pages;
2567
	long user_extra, extra;
2568
	int ret = 0;
2569

2570
	if (!(vma->vm_flags & VM_SHARED))
2571
		return -EINVAL;
2572 2573 2574 2575

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2576 2577 2578 2579 2580
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2581 2582
		return -EINVAL;

2583
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2584 2585
		return -EINVAL;

2586 2587
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2588

2589 2590 2591
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2592 2593 2594 2595
		ret = -EINVAL;
		goto unlock;
	}

2596 2597
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2598 2599 2600 2601
			ret = -EINVAL;
		goto unlock;
	}

2602
	user_extra = nr_pages + 1;
2603
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2604 2605 2606 2607 2608 2609

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2610
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2611

2612 2613 2614
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2615

2616
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2617
	lock_limit >>= PAGE_SHIFT;
2618
	locked = vma->vm_mm->locked_vm + extra;
2619

2620 2621
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2622 2623 2624
		ret = -EPERM;
		goto unlock;
	}
2625

2626
	WARN_ON(event->data);
2627 2628 2629 2630

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2631 2632
		goto unlock;

2633 2634 2635
	ret = 0;
	perf_mmap_data_init(event, data);

2636
	atomic_set(&event->mmap_count, 1);
2637
	atomic_long_add(user_extra, &user->locked_vm);
2638
	vma->vm_mm->locked_vm += extra;
2639
	event->data->nr_locked = extra;
2640
	if (vma->vm_flags & VM_WRITE)
2641
		event->data->writable = 1;
2642

2643
unlock:
2644
	mutex_unlock(&event->mmap_mutex);
2645 2646 2647

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2648 2649

	return ret;
2650 2651
}

P
Peter Zijlstra 已提交
2652 2653 2654
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2655
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2656 2657 2658
	int retval;

	mutex_lock(&inode->i_mutex);
2659
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2660 2661 2662 2663 2664 2665 2666 2667
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2668
static const struct file_operations perf_fops = {
2669
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
2670 2671 2672
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2673 2674
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2675
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2676
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2677 2678
};

2679
/*
2680
 * Perf event wakeup
2681 2682 2683 2684 2685
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2686
void perf_event_wakeup(struct perf_event *event)
2687
{
2688
	wake_up_all(&event->waitq);
2689

2690 2691 2692
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2693
	}
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2705
static void perf_pending_event(struct perf_pending_entry *entry)
2706
{
2707 2708
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2709

2710 2711 2712
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2713 2714
	}

2715 2716 2717
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2718 2719 2720
	}
}

2721
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2722

2723
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2724 2725 2726
	PENDING_TAIL,
};

2727 2728
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2729
{
2730
	struct perf_pending_entry **head;
2731

2732
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2733 2734
		return;

2735 2736 2737
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2738 2739

	do {
2740 2741
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2742

2743
	set_perf_event_pending();
2744

2745
	put_cpu_var(perf_pending_head);
2746 2747 2748 2749
}

static int __perf_pending_run(void)
{
2750
	struct perf_pending_entry *list;
2751 2752
	int nr = 0;

2753
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2754
	while (list != PENDING_TAIL) {
2755 2756
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2757 2758 2759

		list = list->next;

2760 2761
		func = entry->func;
		entry->next = NULL;
2762 2763 2764 2765 2766 2767 2768
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2769
		func(entry);
2770 2771 2772 2773 2774 2775
		nr++;
	}

	return nr;
}

2776
static inline int perf_not_pending(struct perf_event *event)
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2791
	return event->pending.next == NULL;
2792 2793
}

2794
static void perf_pending_sync(struct perf_event *event)
2795
{
2796
	wait_event(event->waitq, perf_not_pending(event));
2797 2798
}

2799
void perf_event_do_pending(void)
2800 2801 2802 2803
{
	__perf_pending_run();
}

2804 2805 2806 2807
/*
 * Callchain support -- arch specific
 */

2808
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2809 2810 2811 2812
{
	return NULL;
}

2813 2814 2815 2816
__weak
void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
{
}
2817

2818

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

2840 2841 2842
/*
 * Output
 */
2843 2844
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2845 2846 2847 2848 2849 2850
{
	unsigned long mask;

	if (!data->writable)
		return true;

2851
	mask = perf_data_size(data) - 1;
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2862
static void perf_output_wakeup(struct perf_output_handle *handle)
2863
{
2864 2865
	atomic_set(&handle->data->poll, POLL_IN);

2866
	if (handle->nmi) {
2867 2868 2869
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2870
	} else
2871
		perf_event_wakeup(handle->event);
2872 2873
}

2874 2875 2876
/*
 * Curious locking construct.
 *
2877 2878
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2879 2880 2881 2882 2883 2884
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2885
 * event_id completes.
2886 2887 2888 2889
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2890
	int cur, cpu = get_cpu();
2891 2892 2893

	handle->locked = 0;

2894 2895 2896 2897 2898 2899 2900 2901
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2902 2903

		cpu_relax();
2904
	}
2905 2906 2907 2908 2909
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2910 2911
	unsigned long head;
	int cpu;
2912

2913
	data->done_head = data->head;
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2924
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2925 2926 2927
		data->user_page->data_head = head;

	/*
2928
	 * NMI can happen here, which means we can miss a done_head update.
2929 2930
	 */

2931
	cpu = atomic_xchg(&data->lock, -1);
2932 2933 2934 2935 2936
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2937
	if (unlikely(atomic_long_read(&data->done_head))) {
2938 2939 2940
		/*
		 * Since we had it locked, we can lock it again.
		 */
2941
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2942 2943 2944 2945 2946
			cpu_relax();

		goto again;
	}

2947
	if (atomic_xchg(&data->wakeup, 0))
2948 2949
		perf_output_wakeup(handle);
out:
2950
	put_cpu();
2951 2952
}

2953 2954
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2955 2956
{
	unsigned int pages_mask;
2957
	unsigned long offset;
2958 2959 2960 2961 2962 2963 2964 2965
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2966 2967
		unsigned long page_offset;
		unsigned long page_size;
2968 2969 2970
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2971 2972 2973
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2991
int perf_output_begin(struct perf_output_handle *handle,
2992
		      struct perf_event *event, unsigned int size,
2993
		      int nmi, int sample)
2994
{
2995
	struct perf_event *output_event;
2996
	struct perf_mmap_data *data;
2997
	unsigned long tail, offset, head;
2998 2999 3000 3001 3002 3003
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3004

3005
	rcu_read_lock();
3006
	/*
3007
	 * For inherited events we send all the output towards the parent.
3008
	 */
3009 3010
	if (event->parent)
		event = event->parent;
3011

3012 3013 3014
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
3015

3016
	data = rcu_dereference(event->data);
3017 3018 3019
	if (!data)
		goto out;

3020
	handle->data	= data;
3021
	handle->event	= event;
3022 3023
	handle->nmi	= nmi;
	handle->sample	= sample;
3024

3025
	if (!data->nr_pages)
3026
		goto fail;
3027

3028 3029 3030 3031
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

3032 3033
	perf_output_lock(handle);

3034
	do {
3035 3036 3037 3038 3039 3040 3041
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
3042
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
3043
		head += size;
3044
		if (unlikely(!perf_output_space(data, tail, offset, head)))
3045
			goto fail;
3046
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3047

3048
	handle->offset	= offset;
3049
	handle->head	= head;
3050

3051
	if (head - tail > data->watermark)
3052
		atomic_set(&data->wakeup, 1);
3053

3054
	if (have_lost) {
3055
		lost_event.header.type = PERF_RECORD_LOST;
3056 3057
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3058
		lost_event.id          = event->id;
3059 3060 3061 3062 3063
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

3064
	return 0;
3065

3066
fail:
3067 3068
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
3069 3070
out:
	rcu_read_unlock();
3071

3072 3073
	return -ENOSPC;
}
3074

3075
void perf_output_end(struct perf_output_handle *handle)
3076
{
3077
	struct perf_event *event = handle->event;
3078 3079
	struct perf_mmap_data *data = handle->data;

3080
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3081

3082
	if (handle->sample && wakeup_events) {
3083
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
3084
		if (events >= wakeup_events) {
3085
			atomic_sub(wakeup_events, &data->events);
3086
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
3087
		}
3088 3089 3090
	}

	perf_output_unlock(handle);
3091
	rcu_read_unlock();
3092 3093
}

3094
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3095 3096
{
	/*
3097
	 * only top level events have the pid namespace they were created in
3098
	 */
3099 3100
	if (event->parent)
		event = event->parent;
3101

3102
	return task_tgid_nr_ns(p, event->ns);
3103 3104
}

3105
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3106 3107
{
	/*
3108
	 * only top level events have the pid namespace they were created in
3109
	 */
3110 3111
	if (event->parent)
		event = event->parent;
3112

3113
	return task_pid_nr_ns(p, event->ns);
3114 3115
}

3116
static void perf_output_read_one(struct perf_output_handle *handle,
3117
				 struct perf_event *event)
3118
{
3119
	u64 read_format = event->attr.read_format;
3120 3121 3122
	u64 values[4];
	int n = 0;

3123
	values[n++] = atomic64_read(&event->count);
3124
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3125 3126
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3127 3128
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3129 3130
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3131 3132
	}
	if (read_format & PERF_FORMAT_ID)
3133
		values[n++] = primary_event_id(event);
3134 3135 3136 3137 3138

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3139
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3140 3141
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3142
			    struct perf_event *event)
3143
{
3144 3145
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3157
	if (leader != event)
3158 3159 3160 3161
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3162
		values[n++] = primary_event_id(leader);
3163 3164 3165

	perf_output_copy(handle, values, n * sizeof(u64));

3166
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3167 3168
		n = 0;

3169
		if (sub != event)
3170 3171 3172 3173
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3174
			values[n++] = primary_event_id(sub);
3175 3176 3177 3178 3179 3180

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3181
			     struct perf_event *event)
3182
{
3183 3184
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3185
	else
3186
		perf_output_read_one(handle, event);
3187 3188
}

3189 3190 3191
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3192
			struct perf_event *event)
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3223
		perf_output_read(handle, event);
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3261
			 struct perf_event *event,
3262
			 struct pt_regs *regs)
3263
{
3264
	u64 sample_type = event->attr.sample_type;
3265

3266
	data->type = sample_type;
3267

3268
	header->type = PERF_RECORD_SAMPLE;
3269 3270 3271 3272
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3273

3274
	if (sample_type & PERF_SAMPLE_IP) {
3275 3276 3277
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3278
	}
3279

3280
	if (sample_type & PERF_SAMPLE_TID) {
3281
		/* namespace issues */
3282 3283
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3284

3285
		header->size += sizeof(data->tid_entry);
3286 3287
	}

3288
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3289
		data->time = perf_clock();
3290

3291
		header->size += sizeof(data->time);
3292 3293
	}

3294
	if (sample_type & PERF_SAMPLE_ADDR)
3295
		header->size += sizeof(data->addr);
3296

3297
	if (sample_type & PERF_SAMPLE_ID) {
3298
		data->id = primary_event_id(event);
3299

3300 3301 3302 3303
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3304
		data->stream_id = event->id;
3305 3306 3307

		header->size += sizeof(data->stream_id);
	}
3308

3309
	if (sample_type & PERF_SAMPLE_CPU) {
3310 3311
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3312

3313
		header->size += sizeof(data->cpu_entry);
3314 3315
	}

3316
	if (sample_type & PERF_SAMPLE_PERIOD)
3317
		header->size += sizeof(data->period);
3318

3319
	if (sample_type & PERF_SAMPLE_READ)
3320
		header->size += perf_event_read_size(event);
3321

3322
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3323
		int size = 1;
3324

3325 3326 3327 3328 3329 3330
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3331 3332
	}

3333
	if (sample_type & PERF_SAMPLE_RAW) {
3334 3335 3336 3337 3338 3339 3340 3341
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3342
		header->size += size;
3343
	}
3344
}
3345

3346
static void perf_event_output(struct perf_event *event, int nmi,
3347 3348 3349 3350 3351
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3352

3353
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3354

3355
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3356
		return;
3357

3358
	perf_output_sample(&handle, &header, data, event);
3359

3360
	perf_output_end(&handle);
3361 3362
}

3363
/*
3364
 * read event_id
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3375
perf_event_read_event(struct perf_event *event,
3376 3377 3378
			struct task_struct *task)
{
	struct perf_output_handle handle;
3379
	struct perf_read_event read_event = {
3380
		.header = {
3381
			.type = PERF_RECORD_READ,
3382
			.misc = 0,
3383
			.size = sizeof(read_event) + perf_event_read_size(event),
3384
		},
3385 3386
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3387
	};
3388
	int ret;
3389

3390
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3391 3392 3393
	if (ret)
		return;

3394
	perf_output_put(&handle, read_event);
3395
	perf_output_read(&handle, event);
3396

3397 3398 3399
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3400
/*
P
Peter Zijlstra 已提交
3401 3402 3403
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3404 3405
 */

P
Peter Zijlstra 已提交
3406
struct perf_task_event {
3407
	struct task_struct		*task;
3408
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3409 3410 3411 3412 3413 3414

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3415 3416
		u32				tid;
		u32				ptid;
3417
		u64				time;
3418
	} event_id;
P
Peter Zijlstra 已提交
3419 3420
};

3421
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3422
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3423 3424
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3425
	struct task_struct *task = task_event->task;
3426 3427 3428 3429 3430 3431 3432 3433
	unsigned long flags;
	int size, ret;

	/*
	 * If this CPU attempts to acquire an rq lock held by a CPU spinning
	 * in perf_output_lock() from interrupt context, it's game over.
	 */
	local_irq_save(flags);
3434

3435 3436
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3437

3438 3439
	if (ret) {
		local_irq_restore(flags);
P
Peter Zijlstra 已提交
3440
		return;
3441
	}
P
Peter Zijlstra 已提交
3442

3443 3444
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3445

3446 3447
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3448

3449
	perf_output_put(&handle, task_event->event_id);
3450

P
Peter Zijlstra 已提交
3451
	perf_output_end(&handle);
3452
	local_irq_restore(flags);
P
Peter Zijlstra 已提交
3453 3454
}

3455
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3456
{
P
Peter Zijlstra 已提交
3457
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3458 3459
		return 0;

3460 3461 3462
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3463
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3464 3465 3466 3467 3468
		return 1;

	return 0;
}

3469
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3470
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3471
{
3472
	struct perf_event *event;
P
Peter Zijlstra 已提交
3473

3474 3475 3476
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3477 3478 3479
	}
}

3480
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3481 3482
{
	struct perf_cpu_context *cpuctx;
3483
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3484

3485
	rcu_read_lock();
P
Peter Zijlstra 已提交
3486
	cpuctx = &get_cpu_var(perf_cpu_context);
3487
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3488
	if (!ctx)
P
Peter Zijlstra 已提交
3489
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3490
	if (ctx)
3491
		perf_event_task_ctx(ctx, task_event);
3492
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3493 3494 3495
	rcu_read_unlock();
}

3496 3497
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3498
			      int new)
P
Peter Zijlstra 已提交
3499
{
P
Peter Zijlstra 已提交
3500
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3501

3502 3503 3504
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3505 3506
		return;

P
Peter Zijlstra 已提交
3507
	task_event = (struct perf_task_event){
3508 3509
		.task	  = task,
		.task_ctx = task_ctx,
3510
		.event_id    = {
P
Peter Zijlstra 已提交
3511
			.header = {
3512
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3513
				.misc = 0,
3514
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3515
			},
3516 3517
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3518 3519
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3520
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3521 3522 3523
		},
	};

3524
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3525 3526
}

3527
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3528
{
3529
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3530 3531
}

3532 3533 3534 3535 3536
/*
 * comm tracking
 */

struct perf_comm_event {
3537 3538
	struct task_struct	*task;
	char			*comm;
3539 3540 3541 3542 3543 3544 3545
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3546
	} event_id;
3547 3548
};

3549
static void perf_event_comm_output(struct perf_event *event,
3550 3551 3552
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3553 3554
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3555 3556 3557 3558

	if (ret)
		return;

3559 3560
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3561

3562
	perf_output_put(&handle, comm_event->event_id);
3563 3564 3565 3566 3567
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3568
static int perf_event_comm_match(struct perf_event *event)
3569
{
P
Peter Zijlstra 已提交
3570
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3571 3572
		return 0;

3573 3574 3575
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3576
	if (event->attr.comm)
3577 3578 3579 3580 3581
		return 1;

	return 0;
}

3582
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3583 3584
				  struct perf_comm_event *comm_event)
{
3585
	struct perf_event *event;
3586

3587 3588 3589
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3590 3591 3592
	}
}

3593
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3594 3595
{
	struct perf_cpu_context *cpuctx;
3596
	struct perf_event_context *ctx;
3597
	unsigned int size;
3598
	char comm[TASK_COMM_LEN];
3599

3600
	memset(comm, 0, sizeof(comm));
3601
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3602
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3603 3604 3605 3606

	comm_event->comm = comm;
	comm_event->comm_size = size;

3607
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3608

3609
	rcu_read_lock();
3610
	cpuctx = &get_cpu_var(perf_cpu_context);
3611 3612
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3613
	if (ctx)
3614
		perf_event_comm_ctx(ctx, comm_event);
3615
	put_cpu_var(perf_cpu_context);
3616
	rcu_read_unlock();
3617 3618
}

3619
void perf_event_comm(struct task_struct *task)
3620
{
3621 3622
	struct perf_comm_event comm_event;

3623 3624
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3625

3626
	if (!atomic_read(&nr_comm_events))
3627
		return;
3628

3629
	comm_event = (struct perf_comm_event){
3630
		.task	= task,
3631 3632
		/* .comm      */
		/* .comm_size */
3633
		.event_id  = {
3634
			.header = {
3635
				.type = PERF_RECORD_COMM,
3636 3637 3638 3639 3640
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3641 3642 3643
		},
	};

3644
	perf_event_comm_event(&comm_event);
3645 3646
}

3647 3648 3649 3650 3651
/*
 * mmap tracking
 */

struct perf_mmap_event {
3652 3653 3654 3655
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3656 3657 3658 3659 3660 3661 3662 3663 3664

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3665
	} event_id;
3666 3667
};

3668
static void perf_event_mmap_output(struct perf_event *event,
3669 3670 3671
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3672 3673
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3674 3675 3676 3677

	if (ret)
		return;

3678 3679
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3680

3681
	perf_output_put(&handle, mmap_event->event_id);
3682 3683
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3684
	perf_output_end(&handle);
3685 3686
}

3687
static int perf_event_mmap_match(struct perf_event *event,
3688 3689
				   struct perf_mmap_event *mmap_event)
{
P
Peter Zijlstra 已提交
3690
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3691 3692
		return 0;

3693 3694 3695
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3696
	if (event->attr.mmap)
3697 3698 3699 3700 3701
		return 1;

	return 0;
}

3702
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3703 3704
				  struct perf_mmap_event *mmap_event)
{
3705
	struct perf_event *event;
3706

3707 3708 3709
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3710 3711 3712
	}
}

3713
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3714 3715
{
	struct perf_cpu_context *cpuctx;
3716
	struct perf_event_context *ctx;
3717 3718
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3719 3720 3721
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3722
	const char *name;
3723

3724 3725
	memset(tmp, 0, sizeof(tmp));

3726
	if (file) {
3727 3728 3729 3730 3731 3732
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3733 3734 3735 3736
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3737
		name = d_path(&file->f_path, buf, PATH_MAX);
3738 3739 3740 3741 3742
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3743 3744 3745
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3746
			goto got_name;
3747
		}
3748 3749 3750 3751 3752 3753

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3754 3755 3756 3757 3758
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3759
	size = ALIGN(strlen(name)+1, sizeof(u64));
3760 3761 3762 3763

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3764
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3765

3766
	rcu_read_lock();
3767
	cpuctx = &get_cpu_var(perf_cpu_context);
3768 3769
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3770
	if (ctx)
3771
		perf_event_mmap_ctx(ctx, mmap_event);
3772
	put_cpu_var(perf_cpu_context);
3773 3774
	rcu_read_unlock();

3775 3776 3777
	kfree(buf);
}

3778
void __perf_event_mmap(struct vm_area_struct *vma)
3779
{
3780 3781
	struct perf_mmap_event mmap_event;

3782
	if (!atomic_read(&nr_mmap_events))
3783 3784 3785
		return;

	mmap_event = (struct perf_mmap_event){
3786
		.vma	= vma,
3787 3788
		/* .file_name */
		/* .file_size */
3789
		.event_id  = {
3790
			.header = {
3791
				.type = PERF_RECORD_MMAP,
3792
				.misc = PERF_RECORD_MISC_USER,
3793 3794 3795 3796
				/* .size */
			},
			/* .pid */
			/* .tid */
3797 3798
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3799
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3800 3801 3802
		},
	};

3803
	perf_event_mmap_event(&mmap_event);
3804 3805
}

3806 3807 3808 3809
/*
 * IRQ throttle logging
 */

3810
static void perf_log_throttle(struct perf_event *event, int enable)
3811 3812 3813 3814 3815 3816 3817
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3818
		u64				id;
3819
		u64				stream_id;
3820 3821
	} throttle_event = {
		.header = {
3822
			.type = PERF_RECORD_THROTTLE,
3823 3824 3825
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3826
		.time		= perf_clock(),
3827 3828
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3829 3830
	};

3831
	if (enable)
3832
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3833

3834
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3835 3836 3837 3838 3839 3840 3841
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3842
/*
3843
 * Generic event overflow handling, sampling.
3844 3845
 */

3846
static int __perf_event_overflow(struct perf_event *event, int nmi,
3847 3848
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3849
{
3850 3851
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3852 3853
	int ret = 0;

3854
	throttle = (throttle && event->pmu->unthrottle != NULL);
3855

3856
	if (!throttle) {
3857
		hwc->interrupts++;
3858
	} else {
3859 3860
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3861
			if (HZ * hwc->interrupts >
3862
					(u64)sysctl_perf_event_sample_rate) {
3863
				hwc->interrupts = MAX_INTERRUPTS;
3864
				perf_log_throttle(event, 0);
3865 3866 3867 3868
				ret = 1;
			}
		} else {
			/*
3869
			 * Keep re-disabling events even though on the previous
3870
			 * pass we disabled it - just in case we raced with a
3871
			 * sched-in and the event got enabled again:
3872
			 */
3873 3874 3875
			ret = 1;
		}
	}
3876

3877
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3878
		u64 now = perf_clock();
3879
		s64 delta = now - hwc->freq_time_stamp;
3880

3881
		hwc->freq_time_stamp = now;
3882

3883 3884
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3885 3886
	}

3887 3888
	/*
	 * XXX event_limit might not quite work as expected on inherited
3889
	 * events
3890 3891
	 */

3892 3893
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3894
		ret = 1;
3895
		event->pending_kill = POLL_HUP;
3896
		if (nmi) {
3897 3898 3899
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3900
		} else
3901
			perf_event_disable(event);
3902 3903
	}

3904 3905 3906 3907 3908
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3909
	return ret;
3910 3911
}

3912
int perf_event_overflow(struct perf_event *event, int nmi,
3913 3914
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3915
{
3916
	return __perf_event_overflow(event, nmi, 1, data, regs);
3917 3918
}

3919
/*
3920
 * Generic software event infrastructure
3921 3922
 */

3923
/*
3924 3925
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3926 3927 3928 3929
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3930
static u64 perf_swevent_set_period(struct perf_event *event)
3931
{
3932
	struct hw_perf_event *hwc = &event->hw;
3933 3934 3935 3936 3937
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3938 3939

again:
3940 3941 3942
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3943

3944 3945 3946 3947 3948
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3949

3950
	return nr;
3951 3952
}

3953
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3954 3955
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3956
{
3957
	struct hw_perf_event *hwc = &event->hw;
3958
	int throttle = 0;
3959

3960
	data->period = event->hw.last_period;
3961 3962
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3963

3964 3965
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3966

3967
	for (; overflow; overflow--) {
3968
		if (__perf_event_overflow(event, nmi, throttle,
3969
					    data, regs)) {
3970 3971 3972 3973 3974 3975
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3976
		throttle = 1;
3977
	}
3978 3979
}

3980
static void perf_swevent_unthrottle(struct perf_event *event)
3981 3982
{
	/*
3983
	 * Nothing to do, we already reset hwc->interrupts.
3984
	 */
3985
}
3986

3987
static void perf_swevent_add(struct perf_event *event, u64 nr,
3988 3989
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3990
{
3991
	struct hw_perf_event *hwc = &event->hw;
3992

3993
	atomic64_add(nr, &event->count);
3994

3995 3996 3997
	if (!regs)
		return;

3998 3999
	if (!hwc->sample_period)
		return;
4000

4001 4002 4003 4004
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
4005
		return;
4006

4007
	perf_swevent_overflow(event, 0, nmi, data, regs);
4008 4009
}

L
Li Zefan 已提交
4010 4011 4012
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4027
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4028
				enum perf_type_id type,
L
Li Zefan 已提交
4029 4030 4031
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4032
{
4033
	if (event->attr.type != type)
4034
		return 0;
4035

4036
	if (event->attr.config != event_id)
4037 4038
		return 0;

4039 4040
	if (perf_exclude_event(event, regs))
		return 0;
4041

L
Li Zefan 已提交
4042 4043 4044 4045
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

4046 4047 4048
	return 1;
}

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

static struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	u64 hash;
	struct swevent_hlist *hlist;

	hash = swevent_hash(type, event_id);

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

	return &hlist->heads[hash];
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4075
{
4076
	struct perf_cpu_context *cpuctx;
4077
	struct perf_event *event;
4078 4079
	struct hlist_node *node;
	struct hlist_head *head;
4080

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

	head = find_swevent_head(cpuctx, type, event_id);

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4091
		if (perf_swevent_match(event, type, event_id, data, regs))
4092
			perf_swevent_add(event, nr, nmi, data, regs);
4093
	}
4094 4095
end:
	rcu_read_unlock();
4096 4097
}

4098
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4099
{
4100 4101
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
4102

P
Peter Zijlstra 已提交
4103
	if (in_nmi())
4104
		rctx = 3;
4105
	else if (in_irq())
4106
		rctx = 2;
4107
	else if (in_softirq())
4108
		rctx = 1;
4109
	else
4110
		rctx = 0;
P
Peter Zijlstra 已提交
4111

4112 4113
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
4114
		return -1;
4115
	}
P
Peter Zijlstra 已提交
4116

4117 4118
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4119

4120
	return rctx;
P
Peter Zijlstra 已提交
4121
}
I
Ingo Molnar 已提交
4122
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4123

4124
void perf_swevent_put_recursion_context(int rctx)
4125
{
4126 4127
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4128
	cpuctx->recursion[rctx]--;
4129
	put_cpu_var(perf_cpu_context);
4130
}
I
Ingo Molnar 已提交
4131
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
4132

4133

4134
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4135
			    struct pt_regs *regs, u64 addr)
4136
{
4137
	struct perf_sample_data data;
4138 4139 4140 4141 4142
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4143

4144
	perf_sample_data_init(&data, addr);
4145

4146
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4147 4148

	perf_swevent_put_recursion_context(rctx);
4149 4150
}

4151
static void perf_swevent_read(struct perf_event *event)
4152 4153 4154
{
}

4155
static int perf_swevent_enable(struct perf_event *event)
4156
{
4157
	struct hw_perf_event *hwc = &event->hw;
4158 4159 4160 4161
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4162 4163 4164

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4165
		perf_swevent_set_period(event);
4166
	}
4167 4168 4169 4170 4171 4172 4173

	head = find_swevent_head(cpuctx, event->attr.type, event->attr.config);
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4174 4175 4176
	return 0;
}

4177
static void perf_swevent_disable(struct perf_event *event)
4178
{
4179
	hlist_del_rcu(&event->hlist_entry);
4180 4181
}

4182
static const struct pmu perf_ops_generic = {
4183 4184 4185 4186
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4187 4188
};

4189
/*
4190
 * hrtimer based swevent callback
4191 4192
 */

4193
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4194 4195 4196
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4197
	struct pt_regs *regs;
4198
	struct perf_event *event;
4199 4200
	u64 period;

4201
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4202
	event->pmu->read(event);
4203

4204
	perf_sample_data_init(&data, 0);
4205
	data.period = event->hw.last_period;
4206
	regs = get_irq_regs();
4207

4208
	if (regs && !perf_exclude_event(event, regs)) {
4209 4210 4211
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4212 4213
	}

4214
	period = max_t(u64, 10000, event->hw.sample_period);
4215 4216 4217 4218 4219
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4256
/*
4257
 * Software event: cpu wall time clock
4258 4259
 */

4260
static void cpu_clock_perf_event_update(struct perf_event *event)
4261 4262 4263 4264 4265 4266
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4267
	prev = atomic64_xchg(&event->hw.prev_count, now);
4268
	atomic64_add(now - prev, &event->count);
4269 4270
}

4271
static int cpu_clock_perf_event_enable(struct perf_event *event)
4272
{
4273
	struct hw_perf_event *hwc = &event->hw;
4274 4275 4276
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4277
	perf_swevent_start_hrtimer(event);
4278 4279 4280 4281

	return 0;
}

4282
static void cpu_clock_perf_event_disable(struct perf_event *event)
4283
{
4284
	perf_swevent_cancel_hrtimer(event);
4285
	cpu_clock_perf_event_update(event);
4286 4287
}

4288
static void cpu_clock_perf_event_read(struct perf_event *event)
4289
{
4290
	cpu_clock_perf_event_update(event);
4291 4292
}

4293
static const struct pmu perf_ops_cpu_clock = {
4294 4295 4296
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4297 4298
};

4299
/*
4300
 * Software event: task time clock
4301 4302
 */

4303
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4304
{
4305
	u64 prev;
I
Ingo Molnar 已提交
4306 4307
	s64 delta;

4308
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4309
	delta = now - prev;
4310
	atomic64_add(delta, &event->count);
4311 4312
}

4313
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4314
{
4315
	struct hw_perf_event *hwc = &event->hw;
4316 4317
	u64 now;

4318
	now = event->ctx->time;
4319

4320
	atomic64_set(&hwc->prev_count, now);
4321 4322

	perf_swevent_start_hrtimer(event);
4323 4324

	return 0;
I
Ingo Molnar 已提交
4325 4326
}

4327
static void task_clock_perf_event_disable(struct perf_event *event)
4328
{
4329
	perf_swevent_cancel_hrtimer(event);
4330
	task_clock_perf_event_update(event, event->ctx->time);
4331

4332
}
I
Ingo Molnar 已提交
4333

4334
static void task_clock_perf_event_read(struct perf_event *event)
4335
{
4336 4337 4338
	u64 time;

	if (!in_nmi()) {
4339 4340
		update_context_time(event->ctx);
		time = event->ctx->time;
4341 4342
	} else {
		u64 now = perf_clock();
4343 4344
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4345 4346
	}

4347
	task_clock_perf_event_update(event, time);
4348 4349
}

4350
static const struct pmu perf_ops_task_clock = {
4351 4352 4353
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4354 4355
};

4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
	struct swevent_hlist *hlist;

	if (!cpuctx->swevent_hlist)
		return;

	hlist = cpuctx->swevent_hlist;
	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

	if (!cpuctx->swevent_hlist && cpu_online(cpu)) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
 exit:
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
 fail:
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
#ifdef CONFIG_EVENT_TRACING

void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
		   int entry_size, struct pt_regs *regs)
{
	struct perf_sample_data data;
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

	/* Trace events already protected against recursion */
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
			 &data, regs);
}
EXPORT_SYMBOL_GPL(perf_tp_event);

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

4485
static void tp_perf_event_destroy(struct perf_event *event)
4486
{
4487
	perf_trace_disable(event->attr.config);
4488
	swevent_hlist_put(event);
4489 4490
}

4491
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4492
{
4493 4494
	int err;

4495 4496 4497 4498
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4499
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4500
			perf_paranoid_tracepoint_raw() &&
4501 4502 4503
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4504
	if (perf_trace_enable(event->attr.config))
4505 4506
		return NULL;

4507
	event->destroy = tp_perf_event_destroy;
4508 4509 4510 4511 4512
	err = swevent_hlist_get(event);
	if (err) {
		perf_trace_disable(event->attr.config);
		return ERR_PTR(err);
	}
4513 4514 4515

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4540
#else
L
Li Zefan 已提交
4541 4542 4543 4544 4545 4546 4547

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4548
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4549 4550 4551
{
	return NULL;
}
L
Li Zefan 已提交
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4562
#endif /* CONFIG_EVENT_TRACING */
4563

4564 4565 4566 4567 4568 4569 4570 4571 4572
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4573 4574

	err = register_perf_hw_breakpoint(bp);
4575 4576 4577 4578 4579 4580 4581 4582
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4583
void perf_bp_event(struct perf_event *bp, void *data)
4584
{
4585 4586 4587
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4588
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4589 4590 4591

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4604
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4605

4606
static void sw_perf_event_destroy(struct perf_event *event)
4607
{
4608
	u64 event_id = event->attr.config;
4609

4610
	WARN_ON(event->parent);
4611

4612
	atomic_dec(&perf_swevent_enabled[event_id]);
4613
	swevent_hlist_put(event);
4614 4615
}

4616
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4617
{
4618
	const struct pmu *pmu = NULL;
4619
	u64 event_id = event->attr.config;
4620

4621
	/*
4622
	 * Software events (currently) can't in general distinguish
4623 4624 4625 4626 4627
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4628
	switch (event_id) {
4629
	case PERF_COUNT_SW_CPU_CLOCK:
4630
		pmu = &perf_ops_cpu_clock;
4631

4632
		break;
4633
	case PERF_COUNT_SW_TASK_CLOCK:
4634
		/*
4635 4636
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4637
		 */
4638
		if (event->ctx->task)
4639
			pmu = &perf_ops_task_clock;
4640
		else
4641
			pmu = &perf_ops_cpu_clock;
4642

4643
		break;
4644 4645 4646 4647 4648
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4649 4650
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4651
		if (!event->parent) {
4652 4653 4654 4655 4656 4657
			int err;

			err = swevent_hlist_get(event);
			if (err)
				return ERR_PTR(err);

4658 4659
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4660
		}
4661
		pmu = &perf_ops_generic;
4662
		break;
4663
	}
4664

4665
	return pmu;
4666 4667
}

T
Thomas Gleixner 已提交
4668
/*
4669
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4670
 */
4671 4672
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4673
		   int cpu,
4674 4675 4676
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4677
		   perf_overflow_handler_t overflow_handler,
4678
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4679
{
4680
	const struct pmu *pmu;
4681 4682
	struct perf_event *event;
	struct hw_perf_event *hwc;
4683
	long err;
T
Thomas Gleixner 已提交
4684

4685 4686
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4687
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4688

4689
	/*
4690
	 * Single events are their own group leaders, with an
4691 4692 4693
	 * empty sibling list:
	 */
	if (!group_leader)
4694
		group_leader = event;
4695

4696 4697
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4698

4699 4700 4701 4702
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4703

4704
	mutex_init(&event->mmap_mutex);
4705

4706 4707 4708 4709 4710 4711
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4712

4713
	event->parent		= parent_event;
4714

4715 4716
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4717

4718
	event->state		= PERF_EVENT_STATE_INACTIVE;
4719

4720 4721
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4722
	
4723
	event->overflow_handler	= overflow_handler;
4724

4725
	if (attr->disabled)
4726
		event->state = PERF_EVENT_STATE_OFF;
4727

4728
	pmu = NULL;
4729

4730
	hwc = &event->hw;
4731
	hwc->sample_period = attr->sample_period;
4732
	if (attr->freq && attr->sample_freq)
4733
		hwc->sample_period = 1;
4734
	hwc->last_period = hwc->sample_period;
4735 4736

	atomic64_set(&hwc->period_left, hwc->sample_period);
4737

4738
	/*
4739
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4740
	 */
4741
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4742 4743
		goto done;

4744
	switch (attr->type) {
4745
	case PERF_TYPE_RAW:
4746
	case PERF_TYPE_HARDWARE:
4747
	case PERF_TYPE_HW_CACHE:
4748
		pmu = hw_perf_event_init(event);
4749 4750 4751
		break;

	case PERF_TYPE_SOFTWARE:
4752
		pmu = sw_perf_event_init(event);
4753 4754 4755
		break;

	case PERF_TYPE_TRACEPOINT:
4756
		pmu = tp_perf_event_init(event);
4757
		break;
4758

4759 4760 4761 4762 4763
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4764 4765
	default:
		break;
4766
	}
4767 4768
done:
	err = 0;
4769
	if (!pmu)
4770
		err = -EINVAL;
4771 4772
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4773

4774
	if (err) {
4775 4776 4777
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4778
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4779
	}
4780

4781
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4782

4783 4784 4785 4786 4787 4788 4789 4790
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4791
	}
4792

4793
	return event;
T
Thomas Gleixner 已提交
4794 4795
}

4796 4797
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4798 4799
{
	u32 size;
4800
	int ret;
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4825 4826 4827
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4828 4829
	 */
	if (size > sizeof(*attr)) {
4830 4831 4832
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4833

4834 4835
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4836

4837
		for (; addr < end; addr++) {
4838 4839 4840 4841 4842 4843
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4844
		size = sizeof(*attr);
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4858
	if (attr->__reserved_1)
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4876
static int perf_event_set_output(struct perf_event *event, int output_fd)
4877
{
4878
	struct perf_event *output_event = NULL;
4879
	struct file *output_file = NULL;
4880
	struct perf_event *old_output;
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4894
	output_event = output_file->private_data;
4895 4896

	/* Don't chain output fds */
4897
	if (output_event->output)
4898 4899 4900
		goto out;

	/* Don't set an output fd when we already have an output channel */
4901
	if (event->data)
4902 4903 4904 4905 4906
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4907 4908 4909 4910
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4911 4912 4913 4914

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4915
		 * is still referencing this event.
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4927
/**
4928
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4929
 *
4930
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4931
 * @pid:		target pid
I
Ingo Molnar 已提交
4932
 * @cpu:		target cpu
4933
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4934
 */
4935 4936
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4937
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4938
{
4939 4940 4941 4942
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4943 4944
	struct file *group_file = NULL;
	int fput_needed = 0;
4945
	int fput_needed2 = 0;
4946
	int err;
T
Thomas Gleixner 已提交
4947

4948
	/* for future expandability... */
4949
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4950 4951
		return -EINVAL;

4952 4953 4954
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4955

4956 4957 4958 4959 4960
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4961
	if (attr.freq) {
4962
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4963 4964 4965
			return -EINVAL;
	}

4966
	/*
I
Ingo Molnar 已提交
4967 4968 4969 4970 4971 4972 4973
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4974
	 * Look up the group leader (we will attach this event to it):
4975 4976
	 */
	group_leader = NULL;
4977
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4978
		err = -EINVAL;
4979 4980
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4981
			goto err_put_context;
4982
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4983
			goto err_put_context;
4984 4985 4986

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4987 4988 4989 4990 4991 4992 4993 4994
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4995
		 */
I
Ingo Molnar 已提交
4996 4997
		if (group_leader->ctx != ctx)
			goto err_put_context;
4998 4999 5000
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5001
		if (attr.exclusive || attr.pinned)
5002
			goto err_put_context;
5003 5004
	}

5005
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5006
				     NULL, NULL, GFP_KERNEL);
5007 5008
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
5009 5010
		goto err_put_context;

5011
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
5012
	if (err < 0)
5013 5014
		goto err_free_put_context;

5015 5016
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
5017 5018
		goto err_free_put_context;

5019
	if (flags & PERF_FLAG_FD_OUTPUT) {
5020
		err = perf_event_set_output(event, group_fd);
5021 5022
		if (err)
			goto err_fput_free_put_context;
5023 5024
	}

5025
	event->filp = event_file;
5026
	WARN_ON_ONCE(ctx->parent_ctx);
5027
	mutex_lock(&ctx->mutex);
5028
	perf_install_in_context(ctx, event, cpu);
5029
	++ctx->generation;
5030
	mutex_unlock(&ctx->mutex);
5031

5032
	event->owner = current;
5033
	get_task_struct(current);
5034 5035 5036
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5037

5038
err_fput_free_put_context:
5039
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
5040

5041
err_free_put_context:
5042
	if (err < 0)
5043
		free_event(event);
T
Thomas Gleixner 已提交
5044 5045

err_put_context:
5046 5047 5048 5049
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
5050

5051
	return err;
T
Thomas Gleixner 已提交
5052 5053
}

5054 5055 5056 5057 5058 5059 5060 5061 5062
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5063 5064
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5075 5076 5077 5078
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5079 5080

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5081
				 NULL, overflow_handler, GFP_KERNEL);
5082 5083
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5084
		goto err_put_context;
5085
	}
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5102 5103 5104 5105
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5106 5107 5108
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5109
/*
5110
 * inherit a event from parent task to child task:
5111
 */
5112 5113
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5114
	      struct task_struct *parent,
5115
	      struct perf_event_context *parent_ctx,
5116
	      struct task_struct *child,
5117 5118
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5119
{
5120
	struct perf_event *child_event;
5121

5122
	/*
5123 5124
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5125 5126 5127
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5128 5129
	if (parent_event->parent)
		parent_event = parent_event->parent;
5130

5131 5132 5133
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5134
					   NULL, GFP_KERNEL);
5135 5136
	if (IS_ERR(child_event))
		return child_event;
5137
	get_ctx(child_ctx);
5138

5139
	/*
5140
	 * Make the child state follow the state of the parent event,
5141
	 * not its attr.disabled bit.  We hold the parent's mutex,
5142
	 * so we won't race with perf_event_{en, dis}able_family.
5143
	 */
5144 5145
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5146
	else
5147
		child_event->state = PERF_EVENT_STATE_OFF;
5148

5149 5150 5151 5152 5153 5154 5155 5156 5157
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5158

5159 5160
	child_event->overflow_handler = parent_event->overflow_handler;

5161 5162 5163
	/*
	 * Link it up in the child's context:
	 */
5164
	add_event_to_ctx(child_event, child_ctx);
5165 5166 5167

	/*
	 * Get a reference to the parent filp - we will fput it
5168
	 * when the child event exits. This is safe to do because
5169 5170 5171
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5172
	atomic_long_inc(&parent_event->filp->f_count);
5173

5174
	/*
5175
	 * Link this into the parent event's child list
5176
	 */
5177 5178 5179 5180
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5181

5182
	return child_event;
5183 5184
}

5185
static int inherit_group(struct perf_event *parent_event,
5186
	      struct task_struct *parent,
5187
	      struct perf_event_context *parent_ctx,
5188
	      struct task_struct *child,
5189
	      struct perf_event_context *child_ctx)
5190
{
5191 5192 5193
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5194

5195
	leader = inherit_event(parent_event, parent, parent_ctx,
5196
				 child, NULL, child_ctx);
5197 5198
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5199 5200
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5201 5202 5203
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5204
	}
5205 5206 5207
	return 0;
}

5208
static void sync_child_event(struct perf_event *child_event,
5209
			       struct task_struct *child)
5210
{
5211
	struct perf_event *parent_event = child_event->parent;
5212
	u64 child_val;
5213

5214 5215
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5216

5217
	child_val = atomic64_read(&child_event->count);
5218 5219 5220 5221

	/*
	 * Add back the child's count to the parent's count:
	 */
5222 5223 5224 5225 5226
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5227 5228

	/*
5229
	 * Remove this event from the parent's list
5230
	 */
5231 5232 5233 5234
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5235 5236

	/*
5237
	 * Release the parent event, if this was the last
5238 5239
	 * reference to it.
	 */
5240
	fput(parent_event->filp);
5241 5242
}

5243
static void
5244 5245
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5246
			 struct task_struct *child)
5247
{
5248
	struct perf_event *parent_event;
5249

5250
	perf_event_remove_from_context(child_event);
5251

5252
	parent_event = child_event->parent;
5253
	/*
5254
	 * It can happen that parent exits first, and has events
5255
	 * that are still around due to the child reference. These
5256
	 * events need to be zapped - but otherwise linger.
5257
	 */
5258 5259 5260
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5261
	}
5262 5263 5264
}

/*
5265
 * When a child task exits, feed back event values to parent events.
5266
 */
5267
void perf_event_exit_task(struct task_struct *child)
5268
{
5269 5270
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5271
	unsigned long flags;
5272

5273 5274
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5275
		return;
P
Peter Zijlstra 已提交
5276
	}
5277

5278
	local_irq_save(flags);
5279 5280 5281 5282 5283 5284
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5285 5286
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5287 5288 5289

	/*
	 * Take the context lock here so that if find_get_context is
5290
	 * reading child->perf_event_ctxp, we wait until it has
5291 5292
	 * incremented the context's refcount before we do put_ctx below.
	 */
5293
	raw_spin_lock(&child_ctx->lock);
5294
	child->perf_event_ctxp = NULL;
5295 5296 5297
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5298
	 * the events from it.
5299 5300
	 */
	unclone_ctx(child_ctx);
5301
	update_context_time(child_ctx);
5302
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5303 5304

	/*
5305 5306 5307
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5308
	 */
5309
	perf_event_task(child, child_ctx, 0);
5310

5311 5312 5313
	/*
	 * We can recurse on the same lock type through:
	 *
5314 5315 5316
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5317 5318 5319 5320 5321
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5322
	mutex_lock(&child_ctx->mutex);
5323

5324
again:
5325 5326 5327 5328 5329
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5330
				 group_entry)
5331
		__perf_event_exit_task(child_event, child_ctx, child);
5332 5333

	/*
5334
	 * If the last event was a group event, it will have appended all
5335 5336 5337
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5338 5339
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5340
		goto again;
5341 5342 5343 5344

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5345 5346
}

5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

	list_del_event(event, ctx);
	free_event(event);
}

5365 5366 5367 5368
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5369
void perf_event_free_task(struct task_struct *task)
5370
{
5371 5372
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5373 5374 5375 5376 5377 5378

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5379 5380
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5381

5382 5383 5384
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5385

5386 5387 5388
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5389

5390
	mutex_unlock(&ctx->mutex);
5391

5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5407 5408
	}

5409 5410 5411 5412 5413 5414 5415
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5416

5417 5418 5419 5420
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5421

5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5434 5435
}

5436

5437
/*
5438
 * Initialize the perf_event context in task_struct
5439
 */
5440
int perf_event_init_task(struct task_struct *child)
5441
{
5442
	struct perf_event_context *child_ctx, *parent_ctx;
5443 5444
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5445
	struct task_struct *parent = current;
5446
	int inherited_all = 1;
5447
	int ret = 0;
5448

5449
	child->perf_event_ctxp = NULL;
5450

5451 5452
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5453

5454
	if (likely(!parent->perf_event_ctxp))
5455 5456
		return 0;

5457
	/*
5458 5459
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5460
	 */
5461 5462
	parent_ctx = perf_pin_task_context(parent);

5463 5464 5465 5466 5467 5468 5469
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5470 5471 5472 5473
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5474
	mutex_lock(&parent_ctx->mutex);
5475 5476 5477 5478 5479

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5480 5481 5482 5483 5484 5485
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5486

5487 5488 5489 5490
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5491
			break;
5492 5493
	}

5494 5495
	child_ctx = child->perf_event_ctxp;

5496
	if (child_ctx && inherited_all) {
5497 5498 5499
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5500 5501
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5502
		 * because the list of events and the generation
5503
		 * count can't have changed since we took the mutex.
5504
		 */
5505 5506 5507
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5508
			child_ctx->parent_gen = parent_ctx->parent_gen;
5509 5510 5511 5512 5513
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5514 5515
	}

5516
	mutex_unlock(&parent_ctx->mutex);
5517

5518
	perf_unpin_context(parent_ctx);
5519

5520
	return ret;
5521 5522
}

5523 5524 5525 5526 5527 5528 5529
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5530
		mutex_init(&cpuctx->hlist_mutex);
5531 5532 5533 5534
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5535
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5536
{
5537
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5538

5539
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5540

5541
	spin_lock(&perf_resource_lock);
5542
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5543
	spin_unlock(&perf_resource_lock);
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553

	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5554 5555 5556
}

#ifdef CONFIG_HOTPLUG_CPU
5557
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5558 5559
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5560 5561
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5562

5563 5564 5565
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5566
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5567
}
5568
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5569
{
5570
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5571
	struct perf_event_context *ctx = &cpuctx->ctx;
5572

5573 5574 5575 5576
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5577
	mutex_lock(&ctx->mutex);
5578
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5579
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5580 5581
}
#else
5582
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5594
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5595 5596 5597 5598
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5599
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5600 5601 5602 5603 5604 5605 5606 5607 5608
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5609 5610 5611
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5612 5613
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5614
	.priority		= 20,
T
Thomas Gleixner 已提交
5615 5616
};

5617
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5618
{
5619
	perf_event_init_all_cpus();
T
Thomas Gleixner 已提交
5620 5621
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5622 5623
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5624 5625 5626
	register_cpu_notifier(&perf_cpu_nb);
}

5627 5628 5629
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5630 5631 5632 5633 5634 5635
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5636
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5647
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5648 5649
		return -EINVAL;

5650
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5651 5652 5653
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5654
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5655 5656
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5657
		cpuctx->max_pertask = mpt;
5658
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5659
	}
5660
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5661 5662 5663 5664

	return count;
}

5665 5666 5667
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
5668 5669 5670 5671 5672
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
5673 5674 5675
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5686
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5687
	perf_overcommit = val;
5688
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5715
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5716 5717
};

5718
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5719 5720 5721 5722
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5723
device_initcall(perf_event_sysfs_init);