test.py 11.3 KB
Newer Older
M
MegEngine Team 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import argparse
import importlib
import json
import os
import random
import sys
from multiprocessing import Process, Queue

import cv2
import megengine as mge
import numpy as np
from megengine import jit
from megengine.data import DataLoader, SequentialSampler
from megengine.data.dataset import COCO as COCODataset
from tqdm import tqdm

from official.vision.detection.tools.nms import py_cpu_nms

logger = mge.get_logger(__name__)


class DetEvaluator:
    def __init__(self, model):
        self.model = model

    @staticmethod
    def get_hw_by_short_size(im_height, im_width, short_size, max_size):
        """get height and width by short size

           Args:
               im_height(int): height of original image, e.g. 800
               im_width(int): width of original image, e.g. 1000
               short_size(int): short size of transformed image. e.g. 800
               max_size(int): max size of transformed image. e.g. 1333

           Returns:
               resized_height(int): height of transformed image
               resized_width(int): width of transformed image
        """

        im_size_min = np.min([im_height, im_width])
        im_size_max = np.max([im_height, im_width])
        scale = (short_size + 0.0) / im_size_min
        if scale * im_size_max > max_size:
            scale = (max_size + 0.0) / im_size_max

        resized_height, resized_width = (
            int(round(im_height * scale)),
            int(round(im_width * scale)),
        )
        return resized_height, resized_width

    @staticmethod
    def process_inputs(img, short_size, max_size, flip=False):
        original_height, original_width, _ = img.shape
        resized_height, resized_width = DetEvaluator.get_hw_by_short_size(
            original_height, original_width, short_size, max_size
        )
        resized_img = cv2.resize(
            img, (resized_width, resized_height), interpolation=cv2.INTER_LINEAR,
        )
        resized_img = cv2.flip(resized_img, 1) if flip else resized_img
        trans_img = np.ascontiguousarray(
            resized_img.transpose(2, 0, 1)[None, :, :, :], dtype=np.uint8
        )
        im_info = np.array(
            [(resized_height, resized_width, original_height, original_width)],
            dtype=np.float32,
        )
        return trans_img, im_info

    def predict(self, val_func):
        """
        Args:
            val_func(callable): model inference function

        Returns:
            results boxes: detection model output
        """
        model = self.model

        box_cls, box_delta = val_func()
        box_cls, box_delta = box_cls.numpy(), box_delta.numpy()
        dtboxes_all = list()
        all_inds = np.where(box_cls > model.cfg.test_cls_threshold)

        for c in range(0, model.cfg.num_classes):
            inds = np.where(all_inds[1] == c)[0]
            inds = all_inds[0][inds]
            scores = box_cls[inds, c]
            if model.cfg.class_aware_box:
                bboxes = box_delta[inds, c, :]
            else:
                bboxes = box_delta[inds, :]

            dtboxes = np.hstack((bboxes, scores[:, np.newaxis])).astype(np.float32)

            if dtboxes.size > 0:
                keep = py_cpu_nms(dtboxes, model.cfg.test_nms)
                dtboxes = np.hstack(
                    (dtboxes[keep], np.ones((len(keep), 1), np.float32) * c)
                ).astype(np.float32)
                dtboxes_all.extend(dtboxes)

        if len(dtboxes_all) > model.cfg.test_max_boxes_per_image:
            dtboxes_all = sorted(dtboxes_all, reverse=True, key=lambda i: i[4])[
                : model.cfg.test_max_boxes_per_image
            ]

        dtboxes_all = np.array(dtboxes_all, dtype=np.float)
        return dtboxes_all

    @staticmethod
    def format(results):
        all_results = []

        for record in results:
            image_filename = record["image_id"]
            boxes = record["det_res"]
            if len(boxes) <= 0:
                continue
            boxes[:, 2:4] = boxes[:, 2:4] - boxes[:, 0:2]
            for box in boxes:
                elem = dict()
                elem["image_id"] = image_filename
                elem["bbox"] = box[:4].tolist()
                elem["score"] = box[4]
                elem["category_id"] = COCODataset.classes_originID[
                    COCODataset.class_names[int(box[5]) + 1]
                ]
                all_results.append(elem)
        return all_results

    @staticmethod
    def vis_det(
        img,
        dets,
        is_show_label=True,
        classes=None,
        thresh=0.3,
        name="detection",
        return_img=True,
    ):
        img = np.array(img)
        colors = dict()
        font = cv2.FONT_HERSHEY_SIMPLEX

        for det in dets:
            bb = det[:4].astype(int)
            if is_show_label:
                cls_id = int(det[5] + 1)
                score = det[4]

                if cls_id == 0:
                    continue
                if score > thresh:
                    if cls_id not in colors:
                        colors[cls_id] = (
                            random.random() * 255,
                            random.random() * 255,
                            random.random() * 255,
                        )

                    cv2.rectangle(
                        img, (bb[0], bb[1]), (bb[2], bb[3]), colors[cls_id], 3
                    )

                    if classes and len(classes) > cls_id:
                        cls_name = classes[cls_id]
                    else:
                        cls_name = str(cls_id)
                    cv2.putText(
                        img,
                        "{:s} {:.3f}".format(cls_name, score),
                        (bb[0], bb[1] - 2),
                        font,
                        0.5,
                        (255, 255, 255),
                        1,
                    )
            else:
                cv2.rectangle(img, (bb[0], bb[1]), (bb[2], bb[3]), (0, 0, 255), 2)

        if return_img:
            return img
        cv2.imshow(name, img)
        while True:
            c = cv2.waitKey(100000)
            if c == ord("d"):
                return None
            elif c == ord("n"):
                break


def build_dataloader(rank, world_size, data_dir):
    val_dataset = COCODataset(
        os.path.join(data_dir, "val2017"),
        os.path.join(data_dir, "annotations/instances_val2017.json"),
        order=["image", "info"],
    )
    val_sampler = SequentialSampler(val_dataset, 1, world_size=world_size, rank=rank)
    val_dataloader = DataLoader(val_dataset, sampler=val_sampler, num_workers=2)
    return val_dataloader


def worker(
    net_file, model_file, data_dir, worker_id, total_worker, result_queue,
):
    """
    :param net_file: network description file
    :param model_file: file of dump weights
    :param data_dir: the dataset directory
    :param worker_id: the index of the worker
    :param total_worker: number of gpu for evaluation
    :param result_queue: processing queue
    """
    os.environ["CUDA_VISIBLE_DEVICES"] = str(worker_id)

    @jit.trace(symbolic=True, opt_level=2)
    def val_func():
        pred = model(model.inputs)
        return pred

    sys.path.insert(0, os.path.dirname(net_file))
    current_network = importlib.import_module(os.path.basename(net_file).split(".")[0])
    model = current_network.Net(current_network.Cfg(), batch_size=1)
    model.eval()
    evaluator = DetEvaluator(model)
    model.load_state_dict(mge.load(model_file)["state_dict"])

    loader = build_dataloader(worker_id, total_worker, data_dir)
    for data_dict in loader:
        data, im_info = DetEvaluator.process_inputs(
            data_dict[0][0],
            model.cfg.test_image_short_size,
            model.cfg.test_image_max_size,
        )
        model.inputs["im_info"].set_value(im_info)
        model.inputs["image"].set_value(data.astype(np.float32))

        pred_res = evaluator.predict(val_func)
        result_queue.put_nowait(
            {
                "det_res": pred_res,
                "image_id": int(data_dict[1][2][0].split(".")[0].split("_")[-1]),
            }
        )


def make_parser():
    parser = argparse.ArgumentParser()
    parser.add_argument("-b", "--batch_size", default=1, type=int)
    parser.add_argument("-n", "--ngpus", default=1, type=int)
    parser.add_argument(
        "-f", "--file", default="net.py", type=str, help="net description file"
    )
    parser.add_argument("-d", "--dataset_dir", default="/data/datasets/coco", type=str)
    parser.add_argument("-se", "--start_epoch", default=-1, type=int)
    parser.add_argument("-ee", "--end_epoch", default=-1, type=int)
    parser.add_argument("-m", "--model", default=None, type=str)
    return parser


def main():
273 274 275
    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval
    
M
MegEngine Team 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    parser = make_parser()
    args = parser.parse_args()

    if args.end_epoch == -1:
        args.end_epoch = args.start_epoch

    for epoch_num in range(args.start_epoch, args.end_epoch + 1):
        if args.model:
            model_file = args.model
        else:
            model_file = "log-of-{}/epoch_{}.pkl".format(
                os.path.basename(args.file).split(".")[0], epoch_num
            )
        logger.info("Load Model : %s completed", model_file)

        results_list = list()
        result_queue = Queue(2000)
        procs = []
        for i in range(args.ngpus):
            proc = Process(
                target=worker,
                args=(
                    args.file,
                    model_file,
                    args.dataset_dir,
                    i,
                    args.ngpus,
                    result_queue,
                ),
            )
            proc.start()
            procs.append(proc)

        for _ in tqdm(range(5000)):
            results_list.append(result_queue.get())
        for p in procs:
            p.join()

        all_results = DetEvaluator.format(results_list)
        json_path = "log-of-{}/epoch_{}.json".format(
            os.path.basename(args.file).split(".")[0], epoch_num
        )
        all_results = json.dumps(all_results)

        with open(json_path, "w") as fo:
            fo.write(all_results)
        logger.info("Save to %s finished, start evaluation!", json_path)

        eval_gt = COCO(
            os.path.join(args.dataset_dir, "annotations/instances_val2017.json")
        )
        eval_dt = eval_gt.loadRes(json_path)
        cocoEval = COCOeval(eval_gt, eval_dt, iouType="bbox")
        cocoEval.evaluate()
        cocoEval.accumulate()
        cocoEval.summarize()
        metrics = [
            "AP",
            "AP@0.5",
            "AP@0.75",
            "APs",
            "APm",
            "APl",
            "AR@1",
            "AR@10",
            "AR@100",
            "ARs",
            "ARm",
            "ARl",
        ]
        logger.info("mmAP".center(32, "-"))
        for i, m in enumerate(metrics):
            logger.info("|\t%s\t|\t%.03f\t|", m, cocoEval.stats[i])
        logger.info("-" * 32)


if __name__ == "__main__":
    main()