# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2020 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import argparse import importlib import json import os import random import sys from multiprocessing import Process, Queue import cv2 import megengine as mge import numpy as np from megengine import jit from megengine.data import DataLoader, SequentialSampler from megengine.data.dataset import COCO as COCODataset from tqdm import tqdm from official.vision.detection.tools.nms import py_cpu_nms logger = mge.get_logger(__name__) class DetEvaluator: def __init__(self, model): self.model = model @staticmethod def get_hw_by_short_size(im_height, im_width, short_size, max_size): """get height and width by short size Args: im_height(int): height of original image, e.g. 800 im_width(int): width of original image, e.g. 1000 short_size(int): short size of transformed image. e.g. 800 max_size(int): max size of transformed image. e.g. 1333 Returns: resized_height(int): height of transformed image resized_width(int): width of transformed image """ im_size_min = np.min([im_height, im_width]) im_size_max = np.max([im_height, im_width]) scale = (short_size + 0.0) / im_size_min if scale * im_size_max > max_size: scale = (max_size + 0.0) / im_size_max resized_height, resized_width = ( int(round(im_height * scale)), int(round(im_width * scale)), ) return resized_height, resized_width @staticmethod def process_inputs(img, short_size, max_size, flip=False): original_height, original_width, _ = img.shape resized_height, resized_width = DetEvaluator.get_hw_by_short_size( original_height, original_width, short_size, max_size ) resized_img = cv2.resize( img, (resized_width, resized_height), interpolation=cv2.INTER_LINEAR, ) resized_img = cv2.flip(resized_img, 1) if flip else resized_img trans_img = np.ascontiguousarray( resized_img.transpose(2, 0, 1)[None, :, :, :], dtype=np.uint8 ) im_info = np.array( [(resized_height, resized_width, original_height, original_width)], dtype=np.float32, ) return trans_img, im_info def predict(self, val_func): """ Args: val_func(callable): model inference function Returns: results boxes: detection model output """ model = self.model box_cls, box_delta = val_func() box_cls, box_delta = box_cls.numpy(), box_delta.numpy() dtboxes_all = list() all_inds = np.where(box_cls > model.cfg.test_cls_threshold) for c in range(0, model.cfg.num_classes): inds = np.where(all_inds[1] == c)[0] inds = all_inds[0][inds] scores = box_cls[inds, c] if model.cfg.class_aware_box: bboxes = box_delta[inds, c, :] else: bboxes = box_delta[inds, :] dtboxes = np.hstack((bboxes, scores[:, np.newaxis])).astype(np.float32) if dtboxes.size > 0: keep = py_cpu_nms(dtboxes, model.cfg.test_nms) dtboxes = np.hstack( (dtboxes[keep], np.ones((len(keep), 1), np.float32) * c) ).astype(np.float32) dtboxes_all.extend(dtboxes) if len(dtboxes_all) > model.cfg.test_max_boxes_per_image: dtboxes_all = sorted(dtboxes_all, reverse=True, key=lambda i: i[4])[ : model.cfg.test_max_boxes_per_image ] dtboxes_all = np.array(dtboxes_all, dtype=np.float) return dtboxes_all @staticmethod def format(results): all_results = [] for record in results: image_filename = record["image_id"] boxes = record["det_res"] if len(boxes) <= 0: continue boxes[:, 2:4] = boxes[:, 2:4] - boxes[:, 0:2] for box in boxes: elem = dict() elem["image_id"] = image_filename elem["bbox"] = box[:4].tolist() elem["score"] = box[4] elem["category_id"] = COCODataset.classes_originID[ COCODataset.class_names[int(box[5]) + 1] ] all_results.append(elem) return all_results @staticmethod def vis_det( img, dets, is_show_label=True, classes=None, thresh=0.3, name="detection", return_img=True, ): img = np.array(img) colors = dict() font = cv2.FONT_HERSHEY_SIMPLEX for det in dets: bb = det[:4].astype(int) if is_show_label: cls_id = int(det[5] + 1) score = det[4] if cls_id == 0: continue if score > thresh: if cls_id not in colors: colors[cls_id] = ( random.random() * 255, random.random() * 255, random.random() * 255, ) cv2.rectangle( img, (bb[0], bb[1]), (bb[2], bb[3]), colors[cls_id], 3 ) if classes and len(classes) > cls_id: cls_name = classes[cls_id] else: cls_name = str(cls_id) cv2.putText( img, "{:s} {:.3f}".format(cls_name, score), (bb[0], bb[1] - 2), font, 0.5, (255, 255, 255), 1, ) else: cv2.rectangle(img, (bb[0], bb[1]), (bb[2], bb[3]), (0, 0, 255), 2) if return_img: return img cv2.imshow(name, img) while True: c = cv2.waitKey(100000) if c == ord("d"): return None elif c == ord("n"): break def build_dataloader(rank, world_size, data_dir): val_dataset = COCODataset( os.path.join(data_dir, "val2017"), os.path.join(data_dir, "annotations/instances_val2017.json"), order=["image", "info"], ) val_sampler = SequentialSampler(val_dataset, 1, world_size=world_size, rank=rank) val_dataloader = DataLoader(val_dataset, sampler=val_sampler, num_workers=2) return val_dataloader def worker( net_file, model_file, data_dir, worker_id, total_worker, result_queue, ): """ :param net_file: network description file :param model_file: file of dump weights :param data_dir: the dataset directory :param worker_id: the index of the worker :param total_worker: number of gpu for evaluation :param result_queue: processing queue """ os.environ["CUDA_VISIBLE_DEVICES"] = str(worker_id) @jit.trace(symbolic=True, opt_level=2) def val_func(): pred = model(model.inputs) return pred sys.path.insert(0, os.path.dirname(net_file)) current_network = importlib.import_module(os.path.basename(net_file).split(".")[0]) model = current_network.Net(current_network.Cfg(), batch_size=1) model.eval() evaluator = DetEvaluator(model) model.load_state_dict(mge.load(model_file)["state_dict"]) loader = build_dataloader(worker_id, total_worker, data_dir) for data_dict in loader: data, im_info = DetEvaluator.process_inputs( data_dict[0][0], model.cfg.test_image_short_size, model.cfg.test_image_max_size, ) model.inputs["im_info"].set_value(im_info) model.inputs["image"].set_value(data.astype(np.float32)) pred_res = evaluator.predict(val_func) result_queue.put_nowait( { "det_res": pred_res, "image_id": int(data_dict[1][2][0].split(".")[0].split("_")[-1]), } ) def make_parser(): parser = argparse.ArgumentParser() parser.add_argument("-b", "--batch_size", default=1, type=int) parser.add_argument("-n", "--ngpus", default=1, type=int) parser.add_argument( "-f", "--file", default="net.py", type=str, help="net description file" ) parser.add_argument("-d", "--dataset_dir", default="/data/datasets/coco", type=str) parser.add_argument("-se", "--start_epoch", default=-1, type=int) parser.add_argument("-ee", "--end_epoch", default=-1, type=int) parser.add_argument("-m", "--model", default=None, type=str) return parser def main(): from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval parser = make_parser() args = parser.parse_args() if args.end_epoch == -1: args.end_epoch = args.start_epoch for epoch_num in range(args.start_epoch, args.end_epoch + 1): if args.model: model_file = args.model else: model_file = "log-of-{}/epoch_{}.pkl".format( os.path.basename(args.file).split(".")[0], epoch_num ) logger.info("Load Model : %s completed", model_file) results_list = list() result_queue = Queue(2000) procs = [] for i in range(args.ngpus): proc = Process( target=worker, args=( args.file, model_file, args.dataset_dir, i, args.ngpus, result_queue, ), ) proc.start() procs.append(proc) for _ in tqdm(range(5000)): results_list.append(result_queue.get()) for p in procs: p.join() all_results = DetEvaluator.format(results_list) json_path = "log-of-{}/epoch_{}.json".format( os.path.basename(args.file).split(".")[0], epoch_num ) all_results = json.dumps(all_results) with open(json_path, "w") as fo: fo.write(all_results) logger.info("Save to %s finished, start evaluation!", json_path) eval_gt = COCO( os.path.join(args.dataset_dir, "annotations/instances_val2017.json") ) eval_dt = eval_gt.loadRes(json_path) cocoEval = COCOeval(eval_gt, eval_dt, iouType="bbox") cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() metrics = [ "AP", "AP@0.5", "AP@0.75", "APs", "APm", "APl", "AR@1", "AR@10", "AR@100", "ARs", "ARm", "ARl", ] logger.info("mmAP".center(32, "-")) for i, m in enumerate(metrics): logger.info("|\t%s\t|\t%.03f\t|", m, cocoEval.stats[i]) logger.info("-" * 32) if __name__ == "__main__": main()